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Abstract: We present an overview of the microscopic theory of the Dzyaloshinskii–Moriya (DM)
coupling in strongly correlated 3d compounds. Most attention in the paper centers around the
derivation of the Dzyaloshinskii vector, its value, orientation, and sense (sign) under different types
of the (super)exchange interaction and crystal field. We consider both the Moriya mechanism of the
antisymmetric interaction and novel contributions, in particular, that of spin–orbital coupling on the
intermediate ligand ions. We have predicted a novel magnetic phenomenon, weak ferrimagnetism in
mixed weak ferromagnets with competing signs of Dzyaloshinskii vectors. We revisit a problem of
the DM coupling for a single bond in cuprates specifying the local spin–orbital contributions to the
Dzyaloshinskii vector focusing on the oxygen term. We predict a novel puzzling effect of the on-site
staggered spin polarization to be a result of the on-site spin–orbital coupling and the cation-ligand
spin density transfer. The intermediate ligand nuclear magnetic resonance (NMR) measurements are
shown to be an effective tool to inspect the effects of the DM coupling in an external magnetic field.
We predict the effect of a strong oxygen-weak antiferromagnetism in edge-shared CuO2 chains due
to uncompensated oxygen Dzyaloshinskii vectors. We revisit the effects of symmetric spin anisotropy
directly induced by the DM coupling. A critical analysis will be given of different approaches to
exchange-relativistic coupling based on the cluster and the DFT (density functional theory) based
calculations. Theoretical results are applied to different classes of 3d compounds from conventional
weak ferromagnets (α-Fe2O3, FeBO3, FeF3, RFeO3, RCrO3, ...) to unconventional systems such as weak
ferrimagnets (e.g., RFe1−xCrxO3), helimagnets (e.g., CsCuCl3), and parent cuprates (La2CuO4, ...).

Keywords: Dzyaloshinskii–Moriya coupling; weak ferromagnetism; weak ferrimagnetism;
orthoferrites; cuprates

1. Introduction

The history of the Dzyaloshinskii–Moriya interaction is closely related to the history of the
discovery and investigation of weak ferromagnetism. For the first time, weak, or parasitic,
ferromagnetism was observed by T. Smith [1] in 1916 in an “international family line” of natural
hematite α-Fe2O3 single crystalline samples from Italy, Hungary, Brasil, and Russia (Schabry,
a small settlement near Ekaterinburg) and was first assigned to ferromagnetic impurities. Later the
phenomenon was observed in many other 3d compounds, such as nickel fluoride NiF2 with rutile
structure, orthorhombic orthoferrites RFeO3 (where R is a rare-earth element or Y), rhombohedral
carbonates MnCO3, NiCO3, CoCO3, and FeBO3. However, only in 1954 L.M. Matarrese and J.W. Stout
for NiF2 [2] and in 1956 A.S. Borovik-Romanov and M.P. Orlova for very pure synthesized carbonates
MnCO3 and CoCO3 [3] have firmly established that the weak ferromagnetism is observed in chemically
pure crystals with basic antiferromagnetic order and therefore it is a specific intrinsic property of
some antiferromagnets. Furthermore, Borovik-Romanov and Orlova assigned the uncompensated
moment in MnCO3 and CoCO3 to an overt canting of the two magnetic sublattices in an almost
antiferromagnetic matrix. The model of a canted antiferromagnet became the generally adopted model
of the weak ferromagnet.
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A theoretical explanation and first thermodynamic theory for weak ferromagnetism in α-Fe2O3,
MnCO3, and CoCO3 was provided in 1957 by Igor Dzyaloshinskii [4,5], who wrotes the free energy of
the two-sublattice uniaxial weak ferromagnet such as α-Fe2O3, MnCO3, CoCO3, FeBO3 as follows

F = MHE(m1 ·m2)−MH0(m1 + m2) + ED + EA

= MHE(m2 − l2)−MH0m + ED + EA . (1)

In this expression m1 and m2 are unit vectors in the directions of the sublattice moments, M is
the sublattice magnetization, m = 1

2 (m1 + m2) and l = 1
2 (m1 −m2) are basic vectors of the ferro- and

antiferromagnetism, respectively, H0 is the applied external field, HE is the exchange field,

ED = −MHD[m1 ×m2]z = +2MHD[m× l]z = +2MHD(mxly −mylx) (2)

is now called the Dzyaloshinskii interaction, HD > 0 is the Dzyaloshinskii field. The anisotropy
energy EA is assumed to have the form: EA = HA/2M(m2

1z + m2
2z) = 2HA/2M(m2

z + l2
z ),

where HA is the anisotropy field and the c axis is a hard direction of magnetization. Generally
speaking, the Dzyaloshinskii interaction includes the terms that are linear both on ferro- and
antiferromagnetic vectors. For instance, in orthorhombic orthoferrites RFeO3 and orthochromites
RCrO3 the Dzyaloshinskii interaction consists both of the antisymmetric and symmetric terms

ED = d1mzlx + d2mxlz =
d1 − d2

2
(mzlx −mxlz) +

d1 + d2

2
(mzlx + mxlz) =

− 2MHD[m× l]y +
d1 + d2

2
(mzlx + mxlz) , (3)

while for tetragonal fluorides NiF2 and CoF2 the Dzyaloshinskii interaction consists of the only
symmetric term. The theory by Dzyaloshinskii was phenomenological one and did not clarify the
microscopic nature of the Dzyaloshinskii interaction that does result in the canting. Later on, in 1960,
Toru Moriya [6,7] proposed a model microscopic theory of the effective exchange-relativistic spin-spin
antisymmetric interaction

VDM = ∑
mn

(dmn · [Sm × Sn]) , (4)

now called Dzyaloshinskii–Moriya (DM) spin coupling, as a main contributing mechanism of weak
ferromagnetism. Here dmn is the axial Dzyaloshinskii vector. Presently Keffer [8] proposed a simple
phenomenological expression for the Dzyaloshinskii vector for two magnetic cations Mi and Mj
interacting by the superexchange mechanism via intermediate ligand O (see Figure 1):

dij ∝ [ri × rj] , (5)

where ri,j are unit radius vectors for O - Mi,j bonds with presumably equal bond lenghts. Later on
Moskvin [9] derived a microscopic formula for the Dzyaloshinskii vector

dij = dij(θ)[ri × rj] , (6)

where
dij(θ) = d1(Ri, Rj) + d2(Ri, Rj)cosθij , (7)

with θij being the Mi - O - Mj superexchange bonding angle, Ri,j are the O - Mi,j separations. The sign
of the scalar parameter dij(θ) can be addressed to be the sign, or sense of the Dzyaloshinskii vector.
The Formula (6) was shown to work only for the S-type magnetic ions with orbitally nondegenerate
ground state, e.g., for 3d ions with half-filled shells 3d5, t3

2g, t3
2ge2

g, t6
2ge2

g (for instance, Fe3+, Mn2+, Cr3+,
Mn4+, Ni2+).
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Figure 1. Superexchange geometry and the Dzyaloshinskii vector.

It should be noted that sometimes instead of (6) one may use another form of the structural factor
for the Dzyaloshinskii vector:

[r1 × r2] =
1
2
[(r1 − r2)× (r1 + r2)] =

1
2l2 [R12 × ρρρ12] , (8)

where R12 = R1 −R2, ρρρ12 = (R1 + R2), l = |R1,2|, R1,2 are radius vectors for O-M1,2 bonds, respectively.
Starting with the pioneering papers by Dzyaloshinskii [4] and Moriya [6] the DM coupling was

extensively investigated in the 1960–80s in connection with the weak ferromagnetism focusing on
hematite α-Fe2O3 and orthoferrites RFeO3 [10–13]. Typical values of the canting angle αD turned out
to be on the order of 0.001–0.01, in particular, αD = 1.1× 10−3 in α-Fe2O3 [14,15], (2.2–2.9)×10−3

in La2CuO4 [16,17], 5.5 × 10−3 in FeF3 [18], 1.1 × 10−2 in YFeO3 [19], 1.7 × 10−2 in FeBO3 [20].
Main exchange and DM coupling parameters for these weak ferromagnets are given in the Table 1.

Table 1. Main exchange and DM coupling parameters in weak ferromagnets (WFMs), I is the exchange
integral, αD is the canting angle. See text for detail.

WFM RFeO, Å θ TN , K I, K (MFA) HE, Tesla αD HD, Tesla d(θ), K

α-Fe2O3 [14,15] 2.111 145◦ 948 54.2 870–920 1.1× 10−3 1.9–2.2 2.3
YFeO3 [19] 2.001 (×2) 145◦ 640 36.6 640 1.1× 10−2 14 3.2
FeBO3 [20] 2.028 126◦ 348 19.9 300 1.7× 10−2 10 2.3
FeF3 [18] 1.914 153◦ 363 20.7 440 5.5× 10−3 4.88 1.1

Valerii Ozhogin et al. [21] in 1968 first raised the issue of the sign of the Dzyaloshinskii vector,
however, the reliable local information on its sign, or to be exact, that of the Dzyaloshinskii parameter
d12, was first extracted only in 1990 from the 19F ligand NMR (nuclear magnetic resonance) data in a
weak ferromagnet FeF3 [22]. In 1977 we have shown that the Dzyaloshinskii vectors can be of opposite
sign for different pairs of S-type ions [12] that allowed us to uncover a novel magnetic phenomenon,
weak ferrimagnetism, and a novel class of magnetic materials, weak ferrimagnets, which are systems
such as solid solutions YFe1−xCrxO3 with competing signs of the Dzyaloshinskii vectors and the very
unusual concentration and temperature dependence of the magnetization [23,24]. The relation between
Dzyaloshinskii vector and the superexchange geometry (6) allowed us to find numerically all the overt
and hidden canting angles in the rare-earth orthoferrites RFeO3 [11] that was nicely confirmed in 57Fe
NMR [25] and neutron diffraction [26–28] measurements.

The stimulus to a renewed interest to the DM coupling was given by the high-Tc cuprate problem,
in particular, by the weak ferromagnetism observed in the parent cuprate La2CuO4 [16,17] and
many other interesting effects for the low-dimensional DM systems, in particular, the “field-induced
gap” phenomena [29,30]. At variance with typical 3d systems such as orthoferrites, the cuprates
are characterized by a low-dimensionality, large diversity of Cu-O-Cu bonds including corner- and
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edge-sharing, different ladder configurations, strong quantum effects for the s = 1/2 Cu2+ centers,
and a particularly strong Cu-O covalency resulting in a comparable magnitude of the hole charge/spin
densities on the copper and oxygen sites. Several groups (see, e.g., refs. [31–36]) have developed the
microscopic model approach by Moriya for different 1D and 2D cuprates, making use of different
perturbation schemes, different types of the low-symmetry crystalline field, different approaches to
the intra-atomic electron–electron correlation. However, despite a rather large number of publications
and hot debates (see, e.g., refs. [37,38]) the problem of exchange-relativistic effects, that is of the DM
coupling and related problem of spin anisotropy in cuprates remains to be open (see, e.g., refs. [39,40]
for experimental data and discussion). Common shortcomings of current approaches to DM coupling
in 3d oxides concern a problem of allocation of the Dzyaloshinskii vector and respective “weak”
(anti)ferromagnetic moments, and full neglect of spin–orbital effects for “nonmagnetic” oxygen O2−

ions, which are usually believed to play only an indirect intervening role. On the other hand, the oxygen
17O NMR-NQR (NQR, nuclear quadrupole resonance) studies of weak ferromagnet La2CuO4 [41,42]
seem to evidence unconventional local oxygen “weak-ferromagnetic” polarization whose origin cannot
be explained in frames of current models.

In recent years interest has shifted towards other manifestation of the DM coupling, such as the
magnetoelectric effect [43,44], so-called flexoelectric effect in multiferroic bismuth ferrite BiFeO3 with
coexisting spin canting and the spin cycloidal ordering [45], and skyrmion states [46], where reliable
theoretical predictions have been lacking.

Phenomenologically antisymmetric DM coupling in a continual approximation gives rise to
the so-called Lifshitz invariants, or energy contributions linear in first spatial derivatives of the
magnetization m(r) [47]

mi
∂mj

∂xl
−mj

∂mi
∂xl

, (9)

where xl is a spatial coordinate. These chiral interactions derived from the DM coupling
stabilize localized (vortices) and spatially modulated structures with a fixed rotation sense of the
magnetization [46]. In fact, these are believed to be the only mechanisms to induce nanosize skyrmion
structures in condensed matter.

In this paper we present an overview of the microscopic theory of the DM coupling in strongly
correlated compounds such as 3d oxides. The rest part of the paper is organized as follows. In Section 2
we shortly address main results of the microscopic theory of the isotropic superexchange interactions
for so-called S-type ions focusing on the angular dependence of the exchange integrals. Most attention
in Section 3 centers around the derivation of the Dzyaloshinskii vector, its value, orientation, and sense
(sign) under different types of the (super)exchange interaction and crystal field. Theoretical predictions
of this section are compared in Section 4 with experimental data for the overt and hidden canting in
orthoferrites. Here, too, we consider a weak ferrimagnetism, a novel type of magnetic ordering in
systems with competing signs of the Dzyaloshinskii vectors. The ligand NMR in weak ferromagnet
FeF3 and the first reliable determination of the sign of the Dzyaloshinskii vector are considered in
Section 5. An alternative method to derive DM coupling is discussed in Section 6 by the example
of the three-center two-electron/hole system such as a triad Cu2+-O2−-Cu2+ in cuprates. Here we
emphasize specific features of the ligand contribution to the DM coupling and some inconsistencies
of its traditional form. As a direct application of the theory, we address in Section 7 the 17O NMR in
La2CuO4 and argue that the field-induced staggered magnetization due to DM coupling does explain
a puzzling Knight shift anomaly. In Section 8 we consider features of the DM coupling in helimagnetic
cuprate CsCuCl3. Short Section 9 is devoted to puzzling features of the exchange-relativistic two-ion
symmetric spin anisotropy due to DM coupling in quantum s = 1/2 magnets. So-called “first-principles”
calculations of the exchange interactions and DM coupling are critically discussed in Section 10. A short
summary is presented in Section 11.
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2. Microscopic Theory of the Isotropic Superexchange Coupling

DM coupling is derived from the off-diagonal (super)exchange coupling and does usually
accompany a conventional (diagonal) Heisenberg type isotropic (super)exchange coupling:

V̂ex = I12(S1 · S2) . (10)

The modern microscopic theory of the (super)exchange coupling had been elaborated by
many physicists starting with well-known papers by P. Anderson [48,49], especially intensively in
1960–70s (see review article [50]). Numerous papers devoted to the problem pointed to the existence
of many hardly estimated exchange mechanisms, seemingly comparable in value, in particular,
for superexchange via intermediate ligand ion to be the most interesting for strongly correlated
systems such as 3d oxides. Unfortunately, up to now, we have no reliable estimations of the exchange
parameters, though on the other hand we have no reliable experimental information about their
magnitudes. To that end, many efforts were focused on the fundamental points such as many-electron
theory and orbital dependence [9,51–54], crystal-field effects [55], off-diagonal exchange [56], exchange
in excited states [57], the angular dependence of the superexchange coupling [9]. The irreducible
tensor operators (the Racah algebra) were shown to be a very instructive tool both for description and
analysis of the exchange coupling in the 3d- and 4f-systems [9,51–55].

First poor man’s microscopic derivation for the dependence of the superexchange integral on the
bonding angle (see Figure 1) was performed by the author in 1970 [9] under simplified assumptions.
As a result, for S-ions with configuration 3d5 (Fe3+, Mn2+)

I12(θ) = a + b · cosθ12 + c · cos2θ12 , (11)

where parameters a, b, c depend on the cation-ligand separation. A more comprehensive analysis has
supported the validity of the expression. Interestingly, the second term in (11) is determined by the
ligand inter-configurational 2p-ns excitations, while other terms are related with intra-configurational
2p-, 2s-contributions.

Later on, the derivation had been generalized for the 3d ions in a strong cubic crystal field [13].
Orbitally isotropic contribution to the exchange integral for pair of 3d-ions with configurations tn1

2gen2
g

can be written as follows
I = ∑

γi ,γj

I(γiγj) (gγi − 1) (gγj − 1) , (12)

where gγi , gγj are effective “g-factors” of the γi, γj subshells of ion 1 and 2, respectively:

gγi = 1 +
S(S + 1) + Si(Si + 1)− Sj(Sj + 1)

2S(S + 1)
. (13)

Kinetic exchange contribution to partial exchange parameters I(γiγj) related with the electron
transfer to partially filled shells can be written as follows [13,55]

I(egeg) =
(tss + tσσcosθ)2

2U
; I(egt2g) =

t2
σπ

3U
sin2θ; I(t2gt2g) =

2t2
ππ

9U
(2− sin2θ) , (14)

where tσσ > tπσ > tππ > tss are positive definite d-d transfer integrals, U is a mean d-d transfer energy
(correlation energy). All the partial exchange integrals appear to be positive or “antiferromagnetic”,
irrespective of the bonding angle value, though the combined effect of the ss and σσ bonds ∝ cosθ in
I(egeg) yields a ferromagnetic contribution given bonding angles π/2 < θ < π. It should be noted
that the “large” ferromagnetic potential contribution [58] has a similar angular dependence [57].
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Some predictions regarding the relative magnitude of the I(γiγj) exchange parameters can be
made using the relation among different d-d transfer integrals as follows

tσσ : tπσ : tππ : tss ≈ λ2
σ : λπλσ : λ2

π : λ2
s , (15)

where λσ, λπ , λs are covalency parameters. The simplified kinetic exchange contribution (14) related
with the electron transfer to partially filled shells does not account for intra-center correlations which
are of a particular importance for the contribution related with the electron transfer to empty shells.
For instance, appropriate contributions related with the transfer to empty eg subshell for the Cr3+-Cr3+

and Fe3+-Cr3+ exchange integrals are

∆ICrCr = −
∆E(35)

6U
t2
σπ

U
sin2θ ; ∆IFeCr = −

∆E(35)
10U

[
(tss + tσσcosθ)2

U
+

t2
σπ

U
sin2θ

]
, (16)

where ∆E(35) is the energy separation between 3Eg and 5Eg terms for t3
2geg configuration (Cr2+ ion).

Obviously, these contributions have a ferromagnetic sign. Furthermore, the exchange integral I(CrCr)
can change sign at θ = θcr:

sin2θcr =
1(

1
2 + 3

8
∆E(35)

U
t2
σπ

t2
ππ

) . (17)

Microscopically derived angular dependence of the superexchange integrals does nicely
describe the experimental data for exchange integrals I(FeFe), I(CrCr), and I(FeCr) in orthoferrites,
orthochromites, and orthoferrites-orthochromites [59] (see Figure 2). The fitting allows us to predict
the sign change for I(CrCr) and I(FeCr) at θ12≈ 133◦ and 170◦, respectively. In other words,
the Cr3+-O2−-Cr3+ (Fe3+-O2−-Cr3+) superexchange coupling becomes ferromagnetic at θ12 ≤ 133◦

(θ12 ≥ 170◦). However, it should be noted that too narrow (141–156◦) range of the superexchange
bonding angles we used for the fitting with assumption of the same Fe(Cr)-O bond separations and
mean superexchange bonding angles for all the systems gives rise to a sizeable parameter’s uncertainty,
in particular, for I(FeFe) and I(FeCr). In addition, it is necessary to note a large uncertainty regarding
what is here called the “experimental” value of the exchange integral. The fact is that the “experimental”
exchange integrals we have just used above are calculated using simple MFA relation

TN =
zS(S + 1)

3kB
I , (18)

however, this relation yields the exchange integrals that can be one and a half or even twice less than
the values obtained by other methods [13,60].

Above, we addressed only typically antiferromagnetic kinetic (super)exchange contribution as
a result of the second order perturbation theory. However, actually this contribution does compete
with typically ferromagnetic potential (super)exchange contribution, or Heisenberg exchange, which
is a result of the first order perturbation theory. The most important contribution to the potential
superexchange can be related with the intra-atomic ferromagnetic Hund exchange interaction of
unpaired electrons on orthogonal ligand orbitals hybridized with the d-orbitals of the two nearest
magnetic cations.

Strong dependence of the d− d superexchange integrals on the cation-ligand-cation separation is
usually described by the Bloch’s rule [61]:

∂ ln I
∂ ln R

=
∂I
∂R

/
I
R
≈ − 10 . (19)
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Figure 2. Dependence of the Fe3+-Fe3+, Cr3+-Cr3+, Fe3+-Cr3+ exchange integrals (in K) on the
superexchange bond angle in orthoferrites-orthocromites [59].

3. Microscopic Theory of the DM Coupling

3.1. Moriya’s Microscopic Theory

First microscopic theory of weak ferromagnetism, or theory of anisotropic superexchange
interaction was provided by Moriya [6], who extended the Anderson theory of superexchange to
include spin–orbital coupling Vso = ∑i ξ(li · si). Moriya started with the one-electron Hamiltonian for
d-electrons as follows

Ĥ = ∑
f mσ

εmd̂†
f mσ d̂ f mσ + ∑

m 6=m′ ,σ
t f m f ′m′ d̂

†
f mσ d̂ f ′m′σ + ∑

f m 6= f ′m′ ,σσ′
d̂†

f mσ(C f m f ′m′ · σσσ)d̂ f ′m′σ′ , (20)

where

C f m f ′m′ = −
ξ

2 ∑
m′′

( l f m f m′′ t f m′′ f ′m′

εm′′ − εm
+

t f m f ′m′′ l f ′m′′ f ′m′

εm′′ − εm′

)
(21)

is a spin–orbital correction to transfer integral, m and m′ are orbitally nondegenerate ground states on
sites f and f ′, respectively. Then Moriya did calculate the generalized Anderson kinetic exchange that
contains both conventional isotropic exchange and anisotropic symmetric and antisymmetric terms,
that is quasidipole anisotropy and DM coupling, respectively. We emphasize that the expression for
the Dzyaloshinskii vector

d f f ′ =
4i
U ∑

m 6=m′

[
t f m f ′m′C f ′m′ f m −C f m f ′m′ t f ′m′ f m

]
. (22)

has been obtained by Moriya assuming orbitally nondegenerate ground states m and m′ on sites f
and f ′, respectively. It is worth noting that the spin-operator form of the DM coupling follows from
the relation:

S1(S1 · S2) + (S1 · S2)S2 = −i[S1 × S2] , (23)

which is a simple consequence of the spin algebra, in particular, of the commutation relations for the
spin projection operators.

Moriya found the symmetry constraints on the orientation of the Dzyaloshinskii vector dij.
Let two ions 1 and 2 are located at the points A and B, respectively, with C point bisecting the AB line:

1. When C is a center of inversion: d = 0.
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2. When a mirror plane ⊥AB passes through C, d ‖mirror plane or d ⊥ AB.
3. When there is a mirror plane including A and B, d ⊥mirror plane.
4. When a twofold rotation axis ⊥ AB passes through C, d ⊥ twofold axis.
5. When there is an n-fold axis (n ≥2) along AB, d ‖ AB.

Despite its seeming simplicity the operator form of the DM coupling (4) raises some questions
and doubts. First, at variance with the scalar product (S1 · S2) the vector product of the spin operators
[S1 × S2] changes the spin multiplicity, that is the net spin S12 = S1 + S2, that underscores the need
for quantum description. Spin nondiagonality of the DM coupling implies very unusual features of
the d-vector somewhat resembling vector orbital operator whose transformational properties cannot
be isolated from the lattice [62]. It seems the d-vector does not transform as a vector at all.

Another issue that causes some concern is the structure and location of the d vector and
corresponding spin cantings. Obviously, the d12 vector should be related in one or another way
to spin–orbital contributions localized on sites 1 and 2, respectively. These components may differ in
their magnitude and direction, while the operator form (4) implies some averaging both for d12 vector
and spin canting between the two sites.

Moriya did not take into account the effects of the crystal field symmetry and strength and did not
specify the character of the (super)exchange coupling, that, as we will see below, can crucially affect the
direction and value of the Dzyaloshinskii vector up to its vanishing. Furthermore, he made use of a very
simplified form (21) of the spin–orbital perturbation correction to the transfer integral (see Exp. (2.5) in
ref. [6]). The fact is that the structure of the charge transfer matrix elements implies the involvement
of several different on-site configurations (tkn ∝ 〈N1 − 1N2 + 1|Ĥ|N1N2〉). Hence, the perturbation
correction has to be more complicated than (21), at least, it should involve the spin–orbital matrix
elements (and excitation energies!) for one- and two-particle configurations. As a result, it does
invalidate the author’s conclusion about the equivalence of the two perturbation schemes, based on the
VSO corrections to the transfer integral and to the exchange coupling, respectively. Another limitation
of the Moriya’s theory is related to the full neglect of the ligand spin–orbital contribution to DM
coupling. Despite these shortcomings the Moriya’s estimation for the ratio between the magnitudes of
the Dzyaloshinskii vector d = |d| and isotropic exchange J: d/J ≈ ∆g/g, where g is the gyromagnetic
ratio, ∆g is its deviation from the free-electron value, respectively, in some cases may be helpful,
however, only for a very rough estimation.

3.2. Microscopic Theory of the DM Coupling: Direct Exchange Interaction of the S-Type Ions

We start with a derivation of the DM coupling in the pair of the exchange coupled free ions with
valent n1lN1

1 and n2lN2
2 shells to be a result of the second-order perturbation theory as a combined

effect of the exchange and spin–orbital couplings when schematically

V̂DM = ∑
ES

〈GS|(Vso(1)Vex(12) + Vex(12)Vso(2) + h.c.)|GS〉
∆EES

, (24)

where excited states |ES〉 are the terms which are allowable one by the spin–orbital selection rules
∆L ≤ 1, ∆S ≤ 1. Spin–orbit interaction has a fairly simple form Vso = ∑i ξnl(li · si), whereas for the
exchange interaction Hamiltonian one has to use a complex expression in terms of irreducible tensor
operators [9,12,51–54,63]. The task seems to be more limited to academic interest, however, it is of
a great importance from methodological point of view. After some routine though rather intricate
procedure we arrive at the Dzyaloshinskii vector to be a complicated “multistory” irreducible orbital
operator as follows [12]

D̂q = −
iξn1l1√

2
∑

b1b2b
∑
b′1b′

∑
S′′1 L′′1

(−1)2S1+b+b
′
+b2(2b

′
1 + 1)[(2b + 1)(2b

′
+ 1)]1/2×
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{
b1 b

′
1 1

b
′

b b2

}{
b1 1 b

′
1

L1 L1 L
′′
1

}
(〈S1‖S‖S1〉〈S2‖S‖S2〉)−1∆E−1

S′′1 L′′1

W(1b2)
S2L2;S2L2

(
W(1b1)

S1L1;S′′1 L′′1
W(11)

S′′1 L′′1 ;S1L1
+ (−1)b1+b

′
1W(11)

S1L1;S′′1 L′′1
W(1b1)

S′′1 L′′1 ;S1L1

)
I(b1b2b)×

[
V̂b
′
1(L1)× V̂b2(L2)

]b
′1

q

, (25)

where we make use of standard notations for 6j-symbols, irreducible matrix elements, spectroscopic
coefficients, and irreducible tensor products [63–66]. Matrix elements of irreducible tensor operators
V̂b(L) are defined by the Wigner–Eckart theorem [64,65] as follows

〈LM|V̂b
β (L)|LM′〉 = (−1)L−M

(
L b L
−M β M′

)
.

For the exchange parameters we have a simple dependence on the pair radius-vector: I(b1b2bβ) =

J(b1b2b)Cb
β(R12), where Cb

β is the tensor spherical harmonics (Ck
q =

√
4π

2k+1 Ykq). Here in (25) we took
into account Vso(1) while the contribution of Vso(2) has the same expression with the minus sign and
the 1↔2 permutation. In addition, we restrict ourselves by the DM coupling operator which is diagonal
on the spin and orbital moments. Obviously, nonzero DM coupling is only at even value of (b1 + b

′
1)

and |b1 − b
′
1| ≤ 1 ≤ b1 + b

′
1. In addition (b2 + b

′
1) should also be an even number. Thus we should

conclude that for the pair of equivalent free S-ions (Fe3+, Mn2+) when b2 = b
′
1 = 0 we have no DM

coupling [13]. We arrive at the same conclusion, if to take into account that the exchange parameters
I(101q) and I(011q) specifying the appropriate contribution turn into zero [13]. The appearance of the
DM coupling in such a case can be driven by the inter-configurational or crystal field effects.

As the most illustrative example we consider a pair of 3d5 ions such as Fe3+, or Mn2+ with the
ground state 6S in an intermediate octahedral crystal field which does split the 2S+1L terms into crystal
2S+1LΓ terms and mix the crystal terms with the same octahedral symmetry, that is with the same
Γ’s [67]. Spin–orbital coupling does mix the 6S ground state with the 4PT1g term, however the 4PT1g
term has been mixed with other 4T1g terms, 4FT1g and 4GT1g. Namely the latter effect is believed to
be a decisive factor for appearance of the DM coupling. The |4(L)T1g〉 wave functions can be easily
calculated by a standard technique [67] as follows [13]:

|4(P)T1g〉 = 0.679|4PT1g〉 − 0.604|4FT1g〉+ 0.418|4GT1g〉 ;

|4(F)T1g〉 = 0.387|4PT1g〉+ 0.777|4FT1g〉+ 0.495|4GT1g〉 ;

|4(G)T1g〉 = −0.604|4PT1g〉 − 0.169|4FT1g〉+ 0.737|4GT1g〉 , (26)

given the crystal field and intra-atomic correlation parameters [67] typical for orthoferrites [68]:
10Dq = 12,200 cm−1; B = 700 cm−1; C = 2600 cm−1.

The huge expression (25) reduces to a more compact form as follows:

dq(12) = −2
√

2iξ3d

5
√

3
V(14)

6S4G

∑
4T1g

α4Gα4P
∆E4T1g

 (I(404T1q)− I(044T1q)) , (27)

where V(14)
6S4G is the conventional spectroscopic Racah coefficient [64], α4P, α4G are the mixing coefficients

for the 4T1g term, I(404T1q) = ∑β α
T1q
4β I(404β) are the T1-symmetry combinations of the exchange

parameters. It is worth noting the conclusive effect of the 4P-4G mixing.
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For the direct exchange we have a simple expression for the parameters

I(404β) = J(404)C4
β(R12)→ I(404T1q) = J(404)C4T1

q (R12) , (28)

where C4T1
q is the T1-symmetry combination, or cubic harmonics. Finally we arrive at a

remarkable relation:
dq(12) = i

[
d0(12)C4T1

q (R12)− d0(21)C4T1
q (R21)

]
, (29)

where the T1-symmetry combinations of spherical harmonics are taken in local coordinate systems
for the first and second ions, respectively, d0(12) ∝ J(404) and d0(21) ∝ J(044) are determined
by the spin–orbital coupling on the sites 1 and 2, respectively. For locally equivalent Fe3+ centers
J(404) = J(044) and d0(12) = d0(21). In the coordinate axes with Oz ‖ C4

αT10
44 = −αT10

4−4 =
1√
2

; αT11
41 = −αT1−1

4−1 =

√
7√
8

; αT11
4−3 = −αT1−1

43 =
1√
8

, (30)

and

C4T1
0 = i

√
35
8

sin4θsin4ϕ ; C4T1
±1 =

√
35

16
√

2
sin2θ[(3− 7cos2θ)e±iϕ + sin2θe∓3iϕ] , (31)

where θ and ϕ are polar and azimuthal angles of the R12 vector. Obviously, the Dzyaloshinskii vector
turns into zero, if local crystal field axes coincide for the both ions. In addition, d(12)= 0, if R12 ‖
C2, C3, C4, that is to any symmetry axis for the first and second site. If R12 lies in a mirror plane d(12)
⊥mirror plane. It should be pointed out a very untypical vector character of the Dzyaloshinskii vector.

3.3. Microscopic Theory of the DM Coupling: Superexchange Interaction of the S-Ions

Hamiltonian for the superexchange coupling of two ions with electron configurations n1lN1
1

and n2lN2
2 via intermediate nonmagnetic ligand ion has the same general expression as for

direct exchange [13], however, with a specific dependence of the exchange parameters on the
superexchange geometry:

I(b1b2bβ) = ∑
k1k2

J(b1b2k1k2b)
[
Ck1(R10)× Ck2(R20)

]b

β
. (32)

In the local coordinate system for the site 1 with Oz ‖ R10 we can write out the superexchange
parameter I(404T1q) as follows

I(404T1q) = ∑
k1k2q2

J(40k1k24)

[
k1 k2 4
0 q2 q2

]
Ck2

q2 (r20)α
T1q
4q2

, (33)

where

[
k1 k2 4
0 q2 q2

]
is the Clebsch–Gordan coefficient [64,65]. Obviously, for the superexchange

mechanisms related with a particular ligand 2s or 2p electrons we have for k2: k2 = 0 or k2 = 0; 2,
respectively. For mechanisms related with the ligand inter-configurational 2p→ 3s excitations k2 = 1.
Taking into account the properties of the α

T1q
4q2

coefficients (30) we see that since |q2| ≤ 2 it follows
that the terms with k2 = 1 and k2 = 2 in (33) can be expressed in terms of the vector product[
C1(R10)× C1(R20)

]1
q = i√

2
[r1 × r2)]q. Indeed

∑
q2

[
k1 1 4
0 q2 q2

]
C1

q2
(r20)α

T1q
4q2

=

√
7
8

[
k1 1 4
0 1 1

] [
1 1 1
0 1 1

]−1 [
C1(r10)× C1(r20)

]1

q
. (34)
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∑
q2

[
k1 2 4
0 q2 q2

]
C2

q2
(r20)α

T1q
4q2

=
√

3
8

[
k1 2 4
0 1 1

] [
1 1 1
0 1 1

]−1

cosθ12
[
C1(r10)× C1(r20)

]1
q . (35)

Obviously, final expression for the Dzyaloshinskii vector can be written as follows

d12 = d12(θ12)[r1 × r2] , (36)

with
d12(θ) = d1(R10, R20) + d2(R10, R20)cosθ12 , (37)

where the first and the second terms are determined by the superexchange mechanisms related with the
ligand inter-configurational 2p→ 3s excitations and intra-configurational 2p− 2p effects, respectively.
It should be noted that given θ = θcr, where cosθcr = −d1/d2, the Dzyaloshinskii vector changes
its sign.

3.4. Microscopic Theory of the DM Coupling: Superexchange Interaction of the S-Type Ions in a Strong Cubic
Crystal Field

Hereafter we address the DM coupling for the S-type magnetic 3d ions with orbitally
nondegenerate high-spin ground state in a strong cubic crystal field, that is for the 3d ions with
half-filled shells t3

2g, t3
2ge2

g, t6
2ge2

g and ground states 4 A2g, 6 A1g, 3 A2g, respectively. The strong crystal
field approximation seems to be more appropriate for the most part of 3d ions in crystals. In particular,
for the 4T1g terms of the 3d5 ion in a strong cubic crystal field approximation instead of expressions (26)
we arrive at a superposition of the wave functions for different tn1

2gen2
g configurations (n1 + n2 = 5) [67].

Using the same crystal field and correlation parameters as in expressions (26) we get a triplet of new
functions as follows

|4T1g(41)〉 = 0.988|t4
2ge1

g
4T1g〉 − 0.123|t3

2ge2
g

4T1g〉+ 0.088|t2
2ge3

g
4T1g〉 ; E(41) = 0.96× 104 cm−1

|4T1g(32)〉 = 0.058|t4
2ge1

g
4T1g〉+ 0.844|t3

2ge2
g

4T1g〉 − 0.534|t2
2ge3

g
4T1g〉 ; E(32) = 2.96× 104 cm−1

|4T1g(23)〉 = −0.140|t4
2ge1

g
4T1g〉 − 0.522|t3

2ge2
g

4T1g〉+ 0.841|t2
2ge3

g
4T1g〉 ; E(23) = 3.69× 104 cm−1 ,

(38)
with a more clearly defined contribution of a particular configuration compared with the intermediate
crystal field scheme.

Making use of expressions for spin–orbital coupling Vso [63] and main kinetic contribution to the
superexchange parameters, that define the DM coupling, after routine algebra we have found that the
DM coupling can be written in a standard form (36), where d12 can be written as follows [12,13]

d12 = X1Y2 + X2Y1 , (39)

where the X and Y factors do reflect the exchange-relativistic structure of the second-order perturbation
theory and details of the electron configuration for S-type ion. The exchange factors X are

Xi =
(g(i)eg − 1)

2U
tπσ(tss + tσσcosθ)−

(g(i)t2g
− 1)

3U
tππtσπcosθ , (40)

where g(i)eg , g(i)t2g
are effective g-factors for eg, t2g subshells, respectively, tσσ > tπσ > tππ > tss

are positive definite d - d transfer integrals, U is the d - d transfer energy (correlation energy).
The dimensionless factors Y are determined by the spin–orbital constants and excitation energies
as follows

Yi = ∑
SΓ
(−1)2S+1〈Si‖S‖Si〉−1

{
1 1 1
Si Si S

}
< eg‖ξ‖t2g >

∆ESΓ
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W(1T1)
SiΓi ;SΓ(egt2g)

(
W(1T1)

SΓ;SiΓi
(egt2g)−W(1T1)

SΓ;SiΓi
(t2geg)

)
, (41)

where W(1T1) are spectroscopic coefficients for cubic point group [63] and summation runs on all
the terms 2S+1Γ, mixed by the spin–orbital coupling with the ground state term 2Si+1Γi (Γi = A1,2,
Γ = Γi × T1 = T1,2). It should be noted that the nonzero DM coupling for S-type ions can be obtained
only due to inter-configurational t2g − eg interaction. The factors X and Y are presented in Table 2 for
S-type 3d-ions. There ξ3d is the spin–orbital parameter, ∆E2S+1Γ is the energy of the 2S+1Γ crystal term.

The signs for X and Y factors in Table 2 are predicted for rather large superexchange bonding
angles |cosθ12| > tss/tσσ which are typical for many 3d compounds such as oxides and a relation
∆E4T1g

(41) < ∆E4T1g
(32) which is typical for high-spin 3d5 configurations.

It is worth noting that while working with the paper we have detected and corrected a casual and
unintentional error in sign of the Xi parameters having made both in our earlier papers [12,13] and
very recent paper ref. [69]. Hereafter we present correct signs for Xi in (40) and Table 2.

Table 2. Expressions for the X and Y parameters that define the magnitude and the sign of the
Dzyaloshinskii vector in pairs of the S-type 3d-ions with local octahedral symmetry. Signs for Xi

correspond to the bonding angle θ > θcr.

Ground Sate
Configuration X Sign X Y Sign Y Excited State

Configuration

3d3(t3
2g):4 A2g

V2+, Cr3+, Mn4+ − 1
3U tππtσπcosθ + 2ξ3d

3
√

3
( 1

∆E4 T2g
+ 2

∆E2 T2g
) + t2

2ge1
g

3d5(t3
2ge2

g):6 A1g

Mn2+, Fe3+
− 1

5U (tππtσπcosθ -
tπσ (tss + tσσcosθ))

– – 6ξ3d

5
√

3
( 1

∆E4 T1g
(41) −

1
∆E4 T1g

(23) ) – t4
2ge1

g, t2
2ge3

g

3d8(t6
2ge2

g):3 A2g

Ni2+, Cu3+
1

2U tπσ(tss + tσσcosθ) – 3ξ3d

2
√

3
( 1

∆E3 T2g
+ 1

∆E1 T2g
) + t5

2ge3
g

Rather simple expressions (40) and (41) for the factors Xi and Yi do not take into account the
mixing/interaction effects for the 2S+1Γ terms with the same symmetry and the contribution of empty
subshells to the exchange coupling (see ref. [13]). Nevertheless, the data in Table 2 allow us to evaluate
both the numerical value and sign of the d12 parameters.

It should be noted that for critical angle θcr, when the Dzyaloshinskii vector changes its sign

we have cosθcr = −d1/d2 = λ2
s

λ2
σ

for d8 − d8 pairs and cosθcr = −d1/d2 = λ2
s

λ2
σ−λ2

π
for d5 − d5 pairs.

Making use of different experimental data for covalency parameters (see, e.g., ref. [70]) we arrive at
d1/d2 ∼ 1

5 −
1
3 and θcr ≈ 100◦ − 110◦ for Fe3+ − Fe3+ pairs in oxides.

Relation among different X’s given the superexchange geometry and covalency parameters typical
for orthoferrites and orthochromites [13] is

|Xd8 | ≥ |Xd3 | ≥ |Xd5 | , (42)

however, it should be underlined its sensitivity both to superexchange geometry and covalency
parameters. Simple comparison of the exchange parameters X (see (40) and Table 2) with exchange
parameters I(γiγj) (14) evidences their close magnitudes. Furthermore, the relation (15) allows us to
maintain more definite correspondence.

Given typical values of the cubic crystal field parameter 10Dq ≈ 1.5 eV we arrive at a relation
among different Y’s [13]

|Yd8 | ≥ |Yd5 | ≥ |Yd3 | (43)

with Yd8 ≈ 7.0× 10−2, Yd5 ≈ −2.5× 10−2, Yd3 ≈ 1.5× 10−2.
The highest value of the d12 factor is predicted for d8− d8 pairs, while for d5− d5 pairs one expects

a much less (may be one order of magnitude) value. The d12 factor for d3 − d3 pairs is predicted to
be somewhat above the value for d5 − d5 pairs. For different pairs: d12(d3 − d5) ≈ −d12(d3 − d3);
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d12(d8 − d5) ≈ d12(d5 − d5); d12(d3 − d8) ≥ d12(d3 − d3). Puzzlingly, that despite strong isotropic
exchange coupling for d5 − d5 and d5 − d8 pairs, the DM coupling for these pairs is expected to
be the least one among the S-type pairs. For d5 − d5 pairs, in particular, Fe3+-Fe3+ we have two
compensation effects. First, the σ-bonding contribution to the X parameter is partially compensated
by the π-bonding contribution, second, the contribution of the 4T1g term of the t4

2ge1
g configuration is

partially compensated by the contribution of the 4T1g term of the t2
2ge3

g configuration.
Theoretical predictions of the corrected sign of the Dzyaloshinskii vector in pairs of the S-type

3d-ions with local octahedral symmetry (the sign rules) are presented in Table 3. The signs for
d3 − d3, d5 − d5, and d3 − d8 pairs turn out to be the same but opposite to signs for d3 − d5 and
d8 − d8 pairs. In a similar way to how different signs of the conventional exchange integral determine
different (ferro-antiferro) magnetic orders the different signs of the Dzyaloshinskii vectors create a
possibility of nonuniform (ferro-antiferro) ordering of local weak (anti)ferromagnetic moments, or local
overt/hidden cantings. Novel magnetic phenomenon and novel class of magnetic materials, which are
systems such as solid solutions YFe1−xCrxO3 with competing signs of the Dzyaloshinskii vectors will
be addressed below (Section 4.3) in more detail.

Table 3. Sign rules for the Dzyaloshinskii vector in pairs of the S-type 3d-ions with local octahedral
symmetry and the bonding angle θ > θcr.

3dn 3d3(t3
2g) 3d5(t3

2ge2
g) 3d8(t6

2ge2
g)

3d3(t3
2g) + – +

3d5(t3
2ge2

g) – + +
3d8(t6

2ge2
g) + + –

3.5. DM Coupling in Trigonal Hematite α-Fe2O3

Making use of our theory based on the bare ideal octahedral symmetry of S-type ions to the
classical weak ferromagnet α-Fe2O3 we arrive at a little unexpected disappointment, as the theory does
predict that the contribution of the three equivalent Fe3+-O2−-Fe3+ superexchange pathes for the two
corner shared FeO9−

6 octahedrons to the net Dzyaloshinskii vector strictly turns into zero. Exactly the
same result will be obtained, if we consider the direct Fe3+-Fe3+ exchange in the system of two ideal
FeO9−

6 octahedrons bonded through the three common oxygen ions when R12 ‖ C3. Obviously, it is
precisely this fact that caused a tiny spin canting in hematite being an order of magnitude smaller than,
e.g., in orthoferrites RFeO3 or borate FeBO3. So what was the real reason of weak ferromagnetism
in α-Fe2O3 as “opening a new page of weak ferromagnetism”? What is a microscopic origin of
nonzero Dzyaloshinskii vector which should be directed along the C3 symmetry axis according Moriya
rules? First of all we should consider trigonal distortions for the FeO9−

6 octahedrons which have a T2

symmetry and give rise to a mixing of the 4T1g terms with 4 A2g and 4T2g terms. The best way to solve
the problem in principle is to proceed with a coordinate system where Oz axis is directed along the C3

symmetry axis rather than with the usually applied Oz ‖ C4 geometry.
In the coordinate axes with Oz ‖ C3 the nonzero coefficients α

T1q
4β have another expression [71].

Instead of (30) we arrive at

αT10
4±3 = − 1√

2
; αT1±1

4±4 = ∓
√

2
3

; αT1±1
4∓2 = ∓ 7

3
√

2
; αT1±1

4±1 = ∓ 7
3
√

2
. (44)

It is easy to see that for R12 ‖ C3 ‖ Oz C4
β(R12) = δβ0, that means that all the components of the

two contributions to Dzyaloshinskii vector (29) turn into zero.
However, the situation changes under axial (trigonal) distortion of the FeO9−

6 octahedrons that
can be described by a simple effective Hamiltonian as follows

V̂trig = BtrigV̂T2g , (45)
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where V̂T2g = V̂
T2g
2 + i(ei π

4 V̂
T2g
1 + e−i π

4 V̂
T2g
−1 ) (∝ (xy + yz + zx)) is the only irreducible tensor operator

permitted by the symmetry of the distortion, Btrig is a trigonal field parameter. Such a distortion gives
rise to a mixing of the 4T1g terms with 4 A2g, 4Eg, and 4T2g terms. As a result the bare |4T1g〉 functions
are transformed as follows:

|4T1gq〉0 → |4T1gq〉 = c0

(
|4T1gq〉0 + c

T1gq
A2g2|

4 A2g2〉+ c
T1gq
T2gµ|

4T2gµ〉
)

, (46)

where c0 is a normalization coefficient, c
T1gq
T2gµ, c

T1gq
A2g2 = c

T1g0
A2g2δq0 are the mixing coefficients.

The Dzyaloshinskii vector now has a representation as follows

dq(12) = i ∑
µ

[
c0(1)c

T1gq
T2gµ(1)d0(12)C4T2

µ (R12)− c0(2)c
T1gq
T2gµ(2)d0(21)C4T2

µ (R21)
]

, (47)

where we again suggest the possibility of nonequivalent centers 1,2. Cubic harmonics C4T2
µ one can

find, if make use of data from ref. [71]

αT22
4+0 = −2

√
5

3
√

3
; αT22

4±3 = ±
√

7
3
√

6
; αT2±1

4±4 = −2
√

7
3
√

6
; αT2∓1

4±2 =
1

3
√

6
; αT2±1

4±1 = ± 5
3
√

6
. (48)

We see that given R12 ‖ C3 the only nonzero cubic harmonic is C4T2
2 = − 2

√
5

3
√

3
that defines the

only nonzero z-component of Dzyaloshinskii vector as for µ = 2 only c
T1g0
T2g2 6= 0. Thus the axial

distortion along the Fe3+-Fe3+ bond can induce the DM coupling with Dzyaloshinskii vector directed
along the bond, however, only for locally nonequivalent Fe3+ centers, otherwise we arrive at an exact
compensation of the contributions of the spin–orbital couplings on sites 1 and 2.

Trigonal hematite α-Fe2O3 has the same crystal symmetry R3c− D6
3d as weak ferromagnet FeBO3.

Furthermore, the borate can be transformed into hematite by the Fe3+ ion substitution for B3+ with a
displacement of both “old” and “new” iron ions along trigonal axis. As a result we arrive at emergence
of an additional strong isotropic (super)exchange coupling of three-corner-shared non-centrosymmetric
FeO6 octahedra with short Fe-O separations (1.942 Å) that determines very high Néel temperature
TN = 948 K in hematite as compared with TN = 348 K in borate. However, the D3h symmetry of these
exchange bonds points to a distinct compensation of the two Fe-ion’s contribution to Dzyaloshinskii
vector. In other words, weak ferromagnetism in hematite α-Fe2O3 is determined by the DM coupling
for the same Fe-O-Fe bonds as in borate FeBO3. However, the Fe-O separations for these bonds in
hematite (2.111 Å) are markedly longer than in borate (2.028 Å) that points to a significantly weaker
DM coupling. Combination of weaker DM coupling and stronger isotropic exchange in α-Fe2O3 as
compared with FeBO3 does explain the one order of magnitude difference in canting angles.

3.6. DM Coupling with Participation of Rare-Earth Ions

Spin–orbital interaction for the rare-earth ions with valent 4 f n configuration is diagonalized
within the (LS)J multiplets hence the conventional DM coupling

Ĥ f f
DM = ∑

m>n
(dmn · [Sm × Sn]) = ∑

m>n
(gm − 1)(gn − 1)(dmn · [Jm × Jn]) (49)

(gm,n are the Lande factors) can arise for f − f superexchange only due to a spin–orbital contribution
on intermediate ligands. Obviously, for the rare-earth-3d-ion (super)exchange we have an
additional contribution of the 3d-ion spin–orbital interaction. The rare-earth-3d-ion DM coupling
Gd3+ - O2− - Fe3+

Ĥ f d
DM = ∑

m>n
(dmn · [Jm × Sn]) (50)

has been theoretically and experimentally considered in ref. [72] for GdFeO3.
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4. Theoretical Predictions as Compared with Experiment

4.1. Overt and Hidden Canting in Orthoferrites

At variance with isotropic superexchange coupling the DM coupling has a much more complicated
structural dependence. In Table 4 we present structural factors [r1 × r2]x,y,z for the superexchange
coupled Fe-O-Fe pairs in orthoferrites with numerical values for YFeO3 [73]. In all cases, the vector r1

is oriented to the Fe ion in the position (1/2,0,0), the vectors r2 are oriented to the nearest Fe ions in the
ab-plane (1a, 1b) or along the c-axis (3a). It is easy to see that the weak ferromagnetism in orthoferrites
governed by the y-component of the

Table 4. The structural factors [r1 × r2]x,y,z for the superexchange coupled Fe–O–Fe pairs in orthoferrites
with numerical values for YFeO3. See text for detail.

[r1 × r2]x [r1 × r2]y [r1 × r2]z

1a − z2bc
2l2 =−0.31 − z2ac

2l2 =−0.29 (y2−x2+
1
2 )ab

2l2 = 0.41

1b + z2bc
2l2 = 0.31 − z2ac

2l2 =−0.29 (y2−x2+
1
2 )ab

2l2 = 0.41

3a ( 1
2−y1)bc

2l2 = 0.20 - x1ac
2l2 =−0.55 0

In 1975 we made use of simple formula for the Dzyaloshinskii vector (6) and structural
factors from Table 4 to find a relation between crystallographic and canted magnetic structures
for four-sublattice’s orthoferrites RFeO3 and orthochromites RCrO3 [11,13] (see Figure 3), where
main G-type antiferromagnetic order is accompanied by both overt canting characterized by
ferromagnetic vector F (weak ferromagnetism!) and two types of a hidden canting, A and C (weak
antiferromagnetism!):

Fz =
(x1 + 2z2)ac

6l2
d
I

Gx ; Fx = − (x1 + 2z2)ac
6l2

d
I

Gz ; Ay =
( 1

2 + y2 − x2)ab
2l2

d
I

Gx ;

Ax = −
( 1

2 + y2 − x2)ab
2l2

d
I

Gy ; Cy =
( 1

2 − y1)bc
2l2

d
I

Gz ; Cz = −
( 1

2 − y1)bc
2l2

d
I

Gy , (51)

where a, b, c are unit cell parameters, x1,2, y1,2, z2 are oxygen (OI,I I) parameters [73], l is a mean
cation-anion separation. These relations imply an averaging on the Fe3+-O2−-Fe3+ bonds in ab plane
and along c-axis. It is worth noting that |Ax,y| > |Fx,z| > |Cy,z|.

Gx

Ay

Fz

Fz

Ay

Gx

Cy

Gz

Fx

Gz

Fx

Cy

Gy
Ax

Cz

d>0

Gy
Ax

Cz

d<0

G1
G4 G2

Figure 3. Basic vectors of magnetic structure for 3d sublattice in orthoferrites and orthochromites.

First of all we arrive at a simple relation between crystallographic parameters and magnetic
moment of the Fe-sublattice: in units of G · g/cm3

MFe =
4gSβeS

ρV
|Fx,z| =

2gβeSac
3l2ρV

(x1 + 2z2)
d(θ)
I(θ)

, (52)
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where ρ and V are the unit cell density and volume, respectively. The overt canting Fx,z can be
calculated through the ratio of the Dzyaloshinskii (HD) and exchange (HE) fields as follows

F = HD/2HE . (53)

If we know the Dzyaloshinskii field we can calculate the d(θ) parameter in orthoferrites as follows

HD =
S

gµB
∑

i
|dy(1i)| = S

gµB
(x1 + 2z2)

ac
l2 |d(θ)| , (54)

that yields |d(θ)| ∼= 3.2 K in YFeO3 given HD = 140 kOe [19]. It is worth noting that despite Fz ≈ 0.01
the d(θ) parameter is only one order of magnitude smaller than the exchange integral in YFeO3.

Our results have stimulated experimental studies of the hidden canting, or “weak
antiferromagnetism” in orthoferrites. As shown in Table 5 theoretically predicted relations between
overt and hidden canting nicely agree with the experimental data obtained for different orthoferrites
by NMR [25] and neutron diffraction [26–28,74].

Table 5. Hidden canting in orthoferrites.

Orthoferrite Ay/Fz, Theory [11] Ay/Fz, exp Ay/Cy, Theory [11] Ay/Cy, Exp

YFeO3 1.10
1.10± 0.03 [25]
1.4± 0.2 [26,27]

1.1± 0.1 [74]
2.04 ?

HoFeO3 1.16 0.85± 0.10 [74] 2.00 ?
TmFeO3 1.10 1.25± 0.05 [25] 1.83 ?
YbFeO3 1.11 1.22± 0.05 [28] 1.79 2.0± 0.2 [25]

4.2. The DM Coupling and Effective Magnetic Anisotropy

Hereafter we demonstrate a contribution of the DM coupling into effective magnetic anisotropy
in orthoferrites. The classical energies of the three spin configurations in orthoferrites Γ1(Ax, Gy, Cz),
Γ2(Fx, Cy, Gz), and Γ4(Gx, Ay, Fz) given |Fx| = |Fz| = F, |Cy| = |Cz| = C, |Ax| = |Az| = A can be
written as follows [75]

EΓ1 = IG − 48IS2F2
[

1
3
(

C
F
)2 +

2
3
(

A
F
)2
]

; (55)

EΓ2 = IG − 48IS2F2
[

1 +
1
3
(

C
F
)2
]

; (56)

EΓ4 = IG − 48IS2F2
[

1 +
2
3
(

A
F
)2
]

, (57)

with obvious relation EΓ4 < EΓ1 ≤ EΓ2 . The energies allow us to find the constants of the in-plane
magnetic anisotropy Ean = k1 cos2θ (ac, bc planes), Ean = k1 cos2ϕ (ab plane): k1(ac) = 1

2 (EΓ2 − EΓ4);
k1(bc) = 1

2 (EΓ2 − EΓ1); k1(ab) = 1
2 (EΓ4 − EΓ1). Detailed analysis of different mechanisms of the

magnetic anisotropy of the orthoferrites [75] points to a leading contribution of the DM coupling.
Indeed, for all the orthoferrites RFeO3 (R = Y, or rare-earth ion) this mechanism does predict a minimal
energy for Γ4 configuration which is actually realized as a ground state for all the orthoferrites,
if one neglects the R-Fe interaction. Furthermore, predicted value of the constant of the magnetic
anisotropy in ac-plane for YFeO3 k1(ac)= 2.0 · 105 erg/cm3 is close enough to experimental value of
2.5 ·105 erg/cm3 [19]. Interestingly, the model predicts a close energy for Γ1 and Γ2 configurations so
that |k1(bc)| is about one order of magnitude less than |k1(ac)| and |k1(ab)| for most orthoferrites [75].
It means the anisotropy in bc-plane will be determined by a competition of the DM coupling with
relatively weak contributors such as magneto-dipole interaction and single-ion anisotropy. It should



Condens. Matter 2019, 4, 84 17 of 46

be noted that the sign and value of the k1(bc) is of a great importance for the determination of the type
of the domain walls for orthoferrites in their basic Γ4 configuration (see, e.g., ref. [76]).

4.3. Weak Ferrimagnetism as a Novel Type of Magnetic Ordering in Systems with Competing Signs of the
Dzyaloshinskii Vector

First experimental studies of mixed orthoferrites-orthochromites YFe1−xCrxO3 [23,24] performed
in Moscow State University did confirm theoretical predictions regarding the signs of the
Dzyaloshinskii vectors and revealed the weak ferrimagnetic behavior due to a competition of Fe-Fe,
Cr-Cr, and Fe-Cr DM coupling with antiparallel orientation of the mean weak ferromagnetic moments
of Fe and Cr subsystems in a wide concentration range. In other words, we have predicted a
novel class of mixed 3d systems with competing signs of the Dzyaloshinskii vector, so-called weak
ferrimagnets. Weak ferromagnetic moment of the Cr3+ impurity ion in orthoferrite YFeO3 can be
evaluated as follows

mCr = gµBSCr(2δ− 1)F , (58)

where dimensionless parameter

δ =
dCrFe
dFeFe

IFeFe
ICrFe

(59)

does characterize a relative magnitude of the impurity-matrix DM coupling. By comparing mCr
with that of the matrix value mFe = gµBSFeF we see that the weak ferromagnetic moment for the Cr
impurity is antiparallel to that of the Fe matrix even for positive but small δ < 1/2. However, the effect
is more pronounced for negative δ, that is for different signs of dCrFe and dFeFe.

Results of a simple mean-field calculation presented in Figures 4–6 show that the weak
ferrimagnets such as RFe1−xCrxO3 [23,24], Mn1−xNixCO3 [77], Fe1−xCrxBO3 [78] do reveal
very nontrivial concentration and temperature dependencies of magnetization, in particular,
the compensation point(s). In Figure 4a–c we do present the MFA “weak ferrimagnetic” phase
diagram, concentration dependence of the low-temperature net magnetization and Fe, Cr partial
contributions in YFe1−xCrxO3 calculated at constant value of δ =−4. Comparison with experimental
data for the low-temperature net magnetization [23,24] and the MFA calculations with δ =−2
(Figure 4b) points to a reasonably well agreement everywhere except x ∼ 0.5, where δ parameter
seems to be closer to δ =−3. In Figure 4d we compare first pioneering experimental data for
the temperature dependence of magnetization m(T) in weak ferrimagnet YFe1−xCrxO3 (x = 0.38)
(Kadomtseva et al., 1977 [23,24]—curve 1) with recent data for a close composition with x = 0.4
(Dasari et al., 2012 [79]—curve 2). It is worth noting that recent MFA calculations by Dasari et al. [79]
given dFeCr = −0.39 K provide very nice description of m(T) at x = 0.4. Note that the authors [79]
found a rather strong dependence of the dFeCr parameter on the concentration x. Interestingly, that
concentration and temperature dependencies of magnetization in LuFe1−xCrxO3 are nicely described
by a simple MFA model given constant value of δ = −1.5 (Figure 5a,b [80]).

Figure 6b shows a calculated phase diagram of the trigonal weak ferrimagnet Fe1−xCrxBO3 [78].
Temperature-dependent magnetization studies from 4.2 to 600 K have been made for the solid solution
system Fe1−xCrxBO3 where 0 ≤ x ≤ 0.95 [81]. A rapid decrease is observed in the saturation
magnetization with increasing x at 4.2 K up to 0.40, after which a broad compositional minimum is
found up to x = 0.60. Compositions in the range of 0.40 ≤ x ≤ 0.60 display unusual magnetization
behavior as a function of temperature in that maxima and minima are present in the curves below the
Curie temperatures. Figure 6b shows a nice agreement between experimental data [81] and our MFA
calculations [78].
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Figure 4. (a) The MFA phase diagram of weak ferrimagnet YFe1−xCrxO3 given δ =−4; left and right
arrows demonstrate the orientation and magnitude of the magnetization for Fe- and Cr-sublattices,
respectively. The outer and inner thin curves mark the compensation points for the net and partial (Fe,
Cr) magnetization, respectively. Experimental values of TN for single crystalline and polycrystalline
samples are marked by light and dark circles, respectively. (b) Concentration dependence of
the low-temperature magnetization in YFe1−xCrxO3: experimental data (circles) [23,24], the MFA
calculations given δ =−2 and −4; (c) Concentration dependence of the magnetization and Fe-, Cr-
partial contributions in YFe0.5Cr0.5O3; (d) Temperature dependence of magnetization in YFe1−xCrxO3:
solid curves—experimental data for x = 0.38 (Kadomtseva et al., 1977 [23,24]—curve 1) and for
x = 0.4 (Dasari et al., 2012 [79]—curve 2), dotted curve—the MFA calculation for x = 0.4 [79] given
dFeCr =−0.39 K.
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Figure 5. (a) Concentration dependence of the low-temperature (T = 77 K) magnetization in
LuFe1−xCrxO3: experimental data (circles) [80], the MFA calculations (solid curve) given δ =−1.5.
(b) Temperature dependence of magnetization in LuFe1−xCrxO3: circles—experimental data [80] given
x = 0.6 (1), 0.5 (2), 0.2 (3), 0.1 (4), 0.0 (5), solid curves—the MFA calculations given δ =−1.5.
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Figure 6. (a) The MFA simulation of the T-x-phase diagram of the weak ferro(ferri)magnet
Fe1−xCrxBO3 [78] given IFeFe = IFeCr=−20.3 K, ICrCr = 2.0 K, arrows point to orientation of
the net weak ferromagnetic moment. Curves 1, 2, 3 mark the compensation points given
dz(FeFe)= dz(CrCr)= 0.67 K, dz(FeCr)=−0.67 K (1), −0.75 K (2), −0.90 K (3), respectively. (b) The
MFA simulation of the temperature dependence of the net magnetization in Fe1−xCrxBO3 [78] given
dz(FeFe)= dz(CrCr)=−dz(FeCr)= 0.67 K at different compositions, the insert shows experimental
data from ref. [81] taken at external magnetic field 1 T. (c) The MFA simulation of the concentration
dependence of the low-temperature magnetization in Mn1−xNixCO3 [77] given dz(MnNi) >

d(0)z (MnNi) and dz(MnNi) < d(0)z (MnNi), respectively.

At variance with the d5 − d3 (Fe-Cr) mixed systems such as YFe1−xCrxO3 or Fe1−xCrxBO3 the
manifestation of different DM couplings Fe-Fe, Cr-Cr, and Fe-Cr in (Fe1−xCrx)2O3 is all the more
surprising because of different magnetic structures of the end compositions, α-Fe2O3 and Cr2O3

and emergence of a nonzero DM coupling for the three-corner-shared FeO6 and CrO6 octahedra,
“forbidden” for Fe-Fe and Cr-Cr bonding. All this makes magnetic properties of mixed compositions
(Fe1−xCrx)2O3 to be very unusual [82].

It should be noted that in the Fe-Cr mixed systems we are really dealing with the two concentration
compensation points.

At variance with the d5 − d3 (Fe-Cr) mixed systems such as YFe1−xCrxO3 or Fe1−xCrxBO3, where
the two concentration compensation points do occur given rather large dFeCr parameter, in the d5 − d8

(Mn2+-Ni2+) systems we have the only concentration compensation point irrespective of the dMnNi
parameter. However, the character of the concentration dependence of the weak ferrimagnetic moment
m(x) depends strongly on its magnitude. Given the increasing concentration the m(x) is first rising or
falling with x depending on whether dMnNi greater than, or less than d(0)MnNi = (1 + SMn

SNi
) IMnNi

2IMnMn
dMnMn.

Figure 6c does clearly demonstrate this feature.
It should be noted that just recently Dmitrienko et al. [83] have first discovered experimentally

that in accordance with our theory (see Table 3) the sign of the Dzyaloshinskii vector in MnCO3 (d5–d5)
coincides with that of in FeBO3 (d5–d5), whereas NiCO3 (d8–d8) demonstrates the opposite sign.

The systems with competing DM coupling were extensively investigated up to the end of 80ths
including specific features of the DM coupling in some rare-earth ferrite-chromites, fluorine-substituted
orthoferrites, disordered magnetic oxides [84–87].

Recent renewal of interest to weak ferrimagnets as systems with the concentration and/or
temperature compensation points was stimulated by the perspectives of the applications in magnetic
memory (see, e.g., refs. [79,88] and references therein). For instance, weak ferrimagnet YFe0.5Cr0.5O3

exhibits magnetization reversal at low applied fields. Below a compensation temperature (Tcomp),
a tunable bipolar switching of magnetization is demonstrated by changing the magnitude of the
field while keeping it in the same direction. The compound also displays both normal and inverse
magnetocaloric effects above and below 260 K, respectively. Recently the exchange bias (EB) effect
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was studied in LuFe0.5Cr0.5O3 ferrite-chromite [89,90] which is a weak ferrimagnet below TN = 265 K,
exhibiting antiparallel orientation of the mean weak ferromagnetic moments (FM) of the Fe and
Cr sublattices due to opposite sign of the Fe-Cr Dzyaloshinskii vector as compared with that of
the Fe-Fe and Cr-Cr pairs. Weak ferrimagnets can exhibit the tunable exchange bias effect [91]
and have potential applications in electromagnetic devices [88]. Combining magnetization reversal
effect with magnetoelectronics can exploit tremendous technological potential for device applications,
for example, thermally assisted magnetic random access memories, thermomagnetic switches and
other multifunctional devices, in a preselected and convenient manner. Nowadays instead of the
few first weak ferrimagnets discovered at Moscow University we arrive at a large body of magnetic
materials that might be addressed as systems with competing antisymmetric exchange [92], including
novel class of mixed helimagnetic B20 alloys such as Mn1−xFexGe where the helical nature of the
main ferromagnetic spin structure is determined by a competition of the DM couplings Mn-Mn, Fe-Fe,
and Mn-Fe. Interestingly, that the magnetic chirality in the mixed compound changes its sign at
xcr ≈ 0.75, probably due to different sign of the Dzyaloshinskii vectors for Mn-Mn and Fe-Fe pairs [93].

5. Determination of the Sign of the Dzyaloshinskii Vector

Determination of the “sign” of the Dzyloshinskii vector is of a fundamental importance from
the standpoint of the microscopic theory of the DM coupling. For instance, this sign determines the
handedness of spin helix in crystals with the noncentrosymmetric B20 structure.

How to measure this sign in weak ferromagnets? According to Ref. [21], an answer to the question
can be given by determining experimentally the direction of rotation of the antiferromagnetic vector l
around the magnetic field H in the geometry H ‖ d ‖easy axis. However, as was pointed out later (see
ref. [94]), the Mössbauer experiment on the easy-axis hematite did not give an unambiguous result.

According to Dmitrienko et al. [95], firstly a strong enough magnetic field should be applied to
obtain the single domain state where the DM coupling pins antiferromagnetic ordering to the crystal
lattice. Next, single crystal diffraction methods sensitive both to oxygen coordinates and to the phase of
antiferromagnetic ordering should be used. In other words, one should observe those Bragg reflections
hkl where interference between magnetic scattering on magnetic atoms and nonmagnetic scattering on
oxygen atoms is significant. There are three suitable techniques: neutron diffraction, Mössbauer γ-ray
diffraction, and resonant X-ray scattering. For instance, the sign of the Dzyloshinskii vector in weak
ferromagnetic FeBO3 was deduced from observed interference between resonant X-ray scattering and
magnetic X-ray scattering [95].

The authors in Ref. [94] claimed that the character of the field-induced transition from an
antiferromagnetic phase to a canted phase in cobalt fluoride CoF2 depends to the “sign” of the
Dzyaloshinskii interaction that points to an opportunity of its experimental determination. However,
in fact they addressed a symmetric Dzyaloshinskii interaction, that is a magnetic anisotropy

Vsym = −D(mxly + mylx)

rather than antisymmetric DM coupling.

5.1. Ligand NMR in Weak Ferromagnets and First Determination of the Sign of the Dzyaloshinskii Vector

As was first shown in our paper [22] reliable local information on the sign of the Dzyaloshinskii
vector, or to be exact, that of the scalar Dzyaloshinskii parameter d12, can be extracted from the ligand
NMR data in weak ferromagnets. The procedure was described in details for 19F NMR data in weak
ferromagnet FeF3 [22].

The F− ions in the unit cell of FeF3 occupy six positions [96]. In a trigonal basis these are
±(x, 1/2 − x, 1/4), ±(1/2 − x, 1/4, x), ±(1/4, x, 1/2 − x), that correspond to (i) ±(3p(x −
1/4),

√
3p(1/4− x), c/4), (ii) ±(3p(1/4− x),

√
3p(1/4− x), c/4), and (iii) ±(0, 2

√
3p(x− 1/4), c/4),

in an orthogonal basis with Oz ‖ C3 and Ox ‖ C2. Each F− ion is surrounded by two Fe3+ from
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different magnetic sublattices. Hereafter we introduce basic ferromagnetic F and antiferromagnetic
G vectors:

2SF = S1 + S2, 2SG = S1 − S2, F2 + G2 = 1, (60)

where Fe3+
1 and Fe3+

2 occupy positions (1/2,1/2,1/2) and (0,0,0), respectively. FeF3 is an easy plane
weak ferromagnet with F and G lying in (111) plane with F⊥G. The two possible variants of the
mutual orientation of the F and G vectors in the basis plane, tentatively called as “left” and “right”,
respectively, are shown in Figure 7. The DM energy per Fe3+-F−-Fe3+ bond can be written as follows

EDM = −2S2dz(12)(FxGy − FyGx) = −
4
√

3
l2 p2(x +

1
4
)d(θ) = +0.78S2d(θ)(FxGy − FyGx) . (61)

In other words, the “left” and “right” orientations of basic vectors are realized at d(θ) < 0 and
d(θ) > 0, respectively.

G

F
G

F

y

x x

y

j j

d > 0d < 0

Figure 7. Two mutual orientations of F and G vectors in a basal plane of FeF3.

Absolute magnitude of the ferromagnetic vector is numerically equals to an overt canting angle
which can be found making use of familiar values of the Dzyaloshinskii field: HD = 48.8 kOe and
exchange field: HE = 4.4 · 103 kOe [18] as follows

F = HD/2HE ' 5.5 · 10−3. (62)

If we know the Dzyaloshinskii field we can calculate the d(θ) parameter as follows

HD =
6S

gµB
|dz(12)| = 6S

gµB
0.39|d(θ)| = 48.8 kOe , (63)

that yields |d(θ)| ∼= 1.1 K that is three times smaller than in YFeO3.
The local field on the nucleus of the nonmagnetic F− anion in weak ferromagnet FeF3, induced

by neighboring magnetic S-type ion (Fe3+, Mn3+, . . .) can be written as follows [97]

H = − 1
γn

ÂS (64)

(γn is a gyromagnetic ratio, γn = 4.011 MHz/kOe, S is the spin moment of the magnetic ion), where the
tensor of the transferred hyperfine interactions (HFI) Â consists of two terms: (i) an isotropic contact
term with Aij = Asδij

As =
fs

2S
A(0)

s , A(0)
s =

16
3

πµBγn|ϕ2s(0)|2 ; (65)

(ii) anisotropic term with
Aij = Ap(3ninj − δij), (66)

where n is a unit vector along the nucleus-magnetic ion bond and the Ap parameter includes the dipole
and covalent contributions

Ap = Acov
p + Ad, (67)
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Acov
p =

( fσ − fπ)

2S
A(0)

p , A(0)
p =

4
5

µBγn〈
1
r3 〉2p, Ad =

gsµBγn

R3 . (68)

Here fs,π,σ are parameters for the spin density transfer: magnetic ion—ligand along the proper s-,
σ-, π-bond; |ϕ2s(0)|2 is a probability density of the 2s-electron on nucleus; 〈 1

r3 〉2p is a radial average.
The transferred HFI for 19F in fluorides are extensively studied by different techniques, NMR,

ESR, and ENDOR [97]. For 19F one observes large values both of A(0)
s and A(0)

p ; A(0)
s = 4.54 · 104,

A(0)
p = 1.28 · 103 MHz [97], together with the 100% abundance, nuclear spin I = 1/2, and large

gyromagnetic ratio this makes the study of the transferred HFI to be simple and available one.
Contribution of the isotropic and anisotropic transferred HFI to the local field on the 19F can be

written as follows

H(iso) = −2S
γn

AsF = aFF, H(aniso) =
↔
a G, â = −2S

γn
(
↔
A(1)−

↔
A(2)). (69)

The As and Ap parameters we need to calculate parameter aF and the HFI anisotropy tensor
↔
a

that is to calculate the “ferro-” and “antiferro-” contributions to H one can find in the literature data
for the pair 19F-Fe3+. For instance, in KMgF3:Fe3+ (RMgF = 1.987 Å) [98] As = +72, Ap = +18 MHz,
in K2NaFeF6 (RFeF = 1.91 Å), in K2NaAlF6:Fe3+ As = +70.17, Ap = +20.34 MHz [99]. Thus, we expect in
FeF3 |aF| ∼ 350÷ 360 MHz (aF < 0) and H(iso) ' 2 MHz (' 0.5 kOe).

Calculated values of the components of the the local field anisotropy tensor â for different nuclei
19F are listed in Table 6.

Table 6. Values of the components of the the local field anisotropy tensor â for nuclei 19F in positions 1,
2, 3 in FeF3 (a = 5.333 Å , α = 57.72◦, p = (a/

√
3) sin α = 1.486 Å , l =1.914 Å , x =− 0.157 [100])

aij
19F1

19F2
19F3

axx 0 45p2

l2 (x + 1
4 )Ap - 45p2

l2 (x + 1
4 )Ap

= 2.53Ap = −2.53Ap

ayy 0 − 45p2

l2 (x + 1
4 )Ap

45p2

l2 (x + 1
4 )Ap

= −2.53Ap = 2.53Ap

azz 0 0 0

axy
30
√

3p2

l2 (x + 1
4 )Ap − 15

√
3p2

l2 (x + 1
4 )Ap − 15

√
3p2

l2 (x + 1
4 )Ap

= 2.92Ap = −1.46Ap −1.46Ap

axz 0 15pc
4l2 (x + 1

4 )Ap − 15pc
4l2 (x + 1

4 )Ap
= 1.89Ap −1.89Ap

ayz − 15
√

3pc
2l2 (x + 1

4 )Ap
15
√

3pc
4l2 (x + 1

4 )Ap
15
√

3pc
4l2 (x + 1

4 )Ap
= 2.18Ap = 1.09Ap = 1.09Ap

In the absence of an external magnetic field the NMR frequencies for 19F in positions 1, 2, 3 can be
written as follows

cν2 = γ2
n[(âG)2 + (a f F)2 + 2aFFâG] = (70)

γ2
n(a2

xy + a2
FF2 ± 2aFaxyF) + γ2

n(a2
yz ∓ 4aFaxyF)


cos2 ϕ

cos2(ϕ + 60o)

cos2(ϕ− 60o)

where the axy, ayz components are taken for 19F1 in position 1; ϕ is an azimuthal angle for ferromagnetic
vector F in the basis plane. The Formula (70) and Table 6 do provide a direct linkage between the 19F
NMR frequencies and parameters of the crystalline (p, c, x, l) and magnetic (F, ϕ,±) structures. As of
particular importance one should note a specific dependence of the 19F NMR frequencies on mutual
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orientation of the ferro- and antiferromagnetic vectors or the sign of the Dzyaloshinskii vector: upper
signs in (70) correspond to “right orientation” while lower signs do to “left orientation” as shown in
Figure 7.

For minimal and maximal values of the 19F NMR frequencies we have

ν±min = γn[a2
xy + a2

F ± 2aFaxyF]1/2,

ν±max = γn[a2
xy + a2

yz + a2
FF2 ∓ 2aFaxyF]1/2. (71)

Taking into account smallness of isotropic HFI contribution, signs of aF and Axy we arrive
at estimations

ν±min ' γn(|axy| ∓ |aFF|) = 2.92Ap ∓ |aFF|,

ν±max ' γn

(
[a2

xy + a2
yz]

1/2 ±
|axy

[a2
xy + a2

yz]
1/2 |aFF|

)
= 3.65Ap ± 0.8|aFF|. (72)

Thus
(νmax − νmin)

± = 0.68Ap ± 1.8|aFF|. (73)

By using the As and Ap values, typical for 19F -Fe3+ bonds [98,99] we get

ν+min = 57.6, ν+max = 75.7, (νmax − νmin)
+ = 18.1MHz (74)

given “right orientation” of F and G (Figure 7)

ν−min = 61.4, ν−max = 72.7, (νmax − νmin)
− = 11.3MHz (75)

given “left orientation” of F and G (Figure 7) .
The zero-field 19F NMR spectrum for single-crystalline samples of FeF3 we simulated on

assumption of negligibly small in-plane anisotropy [101] is shown in Figure 8 for two different
mutual orientations of the ferromagnetic F and antiferromagnetic G vectors. For a comparison in
Figure 8 we adduce the experimental NMR spectra for polycrystalline samples of FeF3 [102,103],
which are characterized by the same boundary frequencies despite rather varied lineshape. Obviously,
the theoretically simulated NMR spectrum does nicely agree with the experimental ones only for the
“right” mutual orientations of the F and G vectors, that means d(FeFe) > 0 in a full accordance with
our theoretical sign predictions (see Table 3).

The same result, d(FeFe) > 0 follows from the the magnetic x-ray scattering amplitude
measurements in the weak ferromagnet FeBO3 [95].
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Figure 8. Comparison of simulated (upper panels) and experimental (bottom panel) zero-field 19F
NMR spectra in FeF3.

5.2. Sign of the Dzyaloshinskii Vector in FeBO3 and α-Fe2O3

Making use of structural data for FeBO3 [104] we can calculate the z-component of the
Dzyaloshinskii vector for Fe1-O-Fe2 pair, with Fe1,2 in positions (1/2,1/2,1/2), (0,0,0), respectively,
as follows:

dz(12) = d12(θ) [r1 × r2]z = +
1
3
(

1
2
− xh)

ab
l2 d12(θ) ≈ +0.61 d12(θ) , (76)

where a = 4.626 Å , b = 8.012 Å are parameters of the orthohexagonal unit cell, xh = 0.2981 oxygen
parameter, l = 2.028 Å is a mean Fe–O separation [104].

Similarly to FeF3 the DM energy per Fe3+-O2−-Fe3+ bond can be written as follows

EDM = dz(12) [S1 × S2]z = −2S2dz(12)(FxGy − FyGx) = +2 · 0.61 · S2d12(θ)(FxGy − FyGx) . (77)

In other words, the “left” and “right” orientations of basic vectors are realized at d(θ) < 0 and
d(θ) > 0, respectively.

Absolute magnitude of the ferromagnetic vector equals numerically to an overt canting angle
which can be found making use of familiar values of the Dzyaloshinskii field: HD ≈ 100 kOe and
exchange field: HE ≈ 3.0 · 103 kOe [20,104] as follows

F = HD/2HE ' 1.7 · 10−2. (78)

If we know the Dzyaloshinskii field we can calculate the d12(θ) parameter as follows

HD =
6S

gµB
|dz(12)| = 6S

gµB
0.61|d(θ)| = 100 kOe , (79)

that yields |d(θ)| ∼= 1.5 K that is two times smaller than in YFeO3. The difference can be easily explained,
if one compares the superexchange bonding angles in FeBO3 (θ ≈ 125◦) and YFeO3 (θ ≈ 145◦), that is
cosθ(FeBO3)/cosθ(YFeO3)≈ 0.7, that makes the compensation effect of the pd- and sd-contributions to
the X-factor (see Table 2) more significant in borate than in orthoferrite. Interestingly that in their turn
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the structural factor [r1 × r2]z in FeBO3 is 1.6 times larger than the mean value of the factor [r1 × r2]y
in YFeO3.

The sign of the Dzyaloshinskii vector in FeBO3 has been experimentally found recently due to
making use of a new technique based on interference of the magnetic X-ray scattering with forbidden
quadrupole resonant scattering [95]. The authors found that the the magnetic twist follows the twist in
the intermediate oxygen atoms in the planes between the iron planes, that is the DM coupling induces
a small left-hand twist of opposing spins of atoms at (0,0,0) and (1/2,1/2,1/2). This means that in
our notations the Dzyaloshinskii vector for Fe1-O-Fe2 pair is directed along c-axis, dz(12) > 0, that is
d12(θ) > 0 in a full agreement with our theoretical predictions (see Table 3).

6. DM Coupling in the Three-Center Two-Electron/Hole System: Cuprates

6.1. Effective Hamiltonian

As we pointed out above the Moriya approach to derivation of the effective DM coupling does
not allow to uncover all the features of this antisymmetric interaction, in particular, the structure of
different contributions to the D12 vector, as well as the role of the intermediate ligands. For this and
other features to elucidate we address hereafter a typical for cuprates the three-center (Cu2+

1 -O-Cu2+
2 )

two-hole system with the tetragonal Cu on-site symmetry and ground Cu 3dx2−y2 hole states (see
Figure 9) whose conventional bilinear effective spin Hamiltonian is written in terms of the copper
spins as follows [105,106]

Ĥs(12) = J12(ŝ1 · ŝ2) + D12 · [ŝ1 × ŝ2] + ŝ1
↔
K12ŝ2 , (80)

where J12 > 0 is the exchange integral, D12 is the Dzyaloshinskii vector,
↔
K12 is a symmetric second-rank

tensor of the anisotropy constants. In contrast with J12,
↔
K12, the Dzyaloshinskii vector D12 is the

antisymmetric one with regard to the site permutation: D12 = −D21. Hereafter we will denote

J12 = J,
↔
K12 =

↔
K, D12 = D, respectively. It should be noted that making use of effective spin

Hamiltonian (80) implies a removal of orbital degree of freedom that calls for a caution with DM
coupling as, strictly speaking, it changes both the spin multiplicity and the orbital state.

Figure 9. Geometry of the three-center (Cu-O-Cu) two-hole system with ground Cu 3dx2−y2 states.

It is clear that the applicability of such an operator as Ĥs(12) to describe all the “oxygen” effects
is extremely limited. Moreover, the question arises in what concerns the composite structure and
spatial distribution of what that be termed as the Dzyaloshinskii vector density. Usually this vector is
assumed to be located somewhere on the bond connecting spins 1 and 2.
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Strictly speaking, to within a constant the spin Hamiltonian Hs(12) can be viewed as a result
of the projection onto the purely ionic Cu2+

1 (3dx2−y2)-O2−(2p6)-Cu2+
2 (3dx2−y2) ground state of the

effective two-hole spin Hamiltonian

Ĥs = ∑
i<j

I(i, j)(ŝ(i) · ŝ(j)) + ∑
i<j

(d(i, j) · [ŝ(i)× ŝ(j)]) + ∑
i<j

ŝ(i)
↔
K(i, j) ŝ(j) , (81)

where sum runs on the holes 1 and 2 rather than sites 1 and 2. This form implies not only both
copper and oxygen hole location, but allows to account for purely oxygen two-hole configurations.
Moreover, such a form allows us to neatly separate both the one-center and two-center effects. Two-hole
spin Hamiltonian (81) can be projected onto the three-center states incorporating the Cu-O charge
transfer effects.

6.2. DM Coupling

We start with the construction of the spin-singlet and spin-triplet wave functions for our
three-center two-hole system taking account of the p-d hopping, on-site hole-hole repulsion, and the
crystal field effects for excited configurations {n}= {n1, n0, n2} (011, 110, 020, 200, 002) with different
hole occupation of the Cu1, O, and Cu2 sites, respectively. In general, the on-site hole orbital basis sets
include the five 3d-functions on the Cu1 and Cu2 sites, and the three p-functions on the ligand site.
Then we introduce a standard effective spin Hamiltonian operating in a fourfold spin-degenerated
space of basic 101 configuration with two dx2−y2 holes.

The p-d hopping for Cu-O bond implies a conventional Hamiltonian

Ĥpd = ∑
αβ

tpαdβ p̂†
αd̂β + h.c. , (82)

where p̂†
α creates a hole in the α state on the ligand site, while d̂β annihilates a hole in the β state on the

copper site; tpαdβ is a pd-transfer integral.
For basic 101 configuration with two dx2−y2 holes localized on its parent sites we arrive at a

perturbed wave function as follows

Ψ101;SM = NS(Φ101;SM + ∑
{n}Γ

c{n}(
2S+1Γ)Φ{n};ΓSM) , (83)

where the summation runs both on different configurations and different orbital Γ states,

NS = [1 + | ∑
{n}Γ

c{n}(
2S+1Γ)|2]−1/2

is a normalization constant. It is important to highlight essentially different orbital functions for spin
singlet and triplet states. The probability amplitudes c{011}, c{110} ∝ tpd, c{200}, c{020}, c{002} ∝ t2

pd can
be easily calculated.

For the microscopic expression for the Dzyaloshinskii vector to derive Moriya [6] made use of
the Anderson’s formalism for the superexchange interaction [48,49] with two main contributions of
so-called kinetic and potential exchange, respectively. Then he took into account the spin–orbital
corrections to the effective d-d transfer integral and potential exchange. However, the Moriya’s
approach seems to be improper to account for purely ligand effects. In later papers (see,
e.g., refs. [34,35,107]) the authors made use of the Moriya scheme to account for spin–orbital corrections
to p-d transfer integral, however, again without any analysis of the ligand contribution. It is worth
noting that in both instances the spin–orbital renormalization of a single hole transfer integral
leads immediately to a lot of problems with a correct responsiveness of the on-site Coulomb
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hole-hole correlation effects. Anyway the effective DM spin-Hamiltonian evolves from the high-order
perturbation effects that makes its analysis rather involved and leads to many misleading conclusions.

At variance with the Moriya approach we consider the DM coupling

ĤDM = D12 · [ŝ1 × ŝ2] =
1
2
(D · T̂) (84)

to be a result of a projection of the spin–orbital operator V̂so = V̂so(Cu1) + V̂so(O) + V̂so(Cu2) on the
ground state singlet-triplet manifold [105]. Then we calculate the singlet-triplet mixing amplitude due
to the three local spin–orbital terms to find the local contributions to Dzyaloshinskii vector:

D = D(1) + D(0) + D(2). (85)

Remarkably that the net Dzyaloshinsky vector D12 has a particularly local structure to be a
superposition of partial contributions of different ions (i = 1, 0, 2) and ionic configurations {n} =

101, 110, 011, 200, 020, 002. Local spin–orbital coupling is taken as follows:

Vso = ∑
i

ξnl(li · si) =
ξnl
2
[(l̂1 + l̂2) · Ŝ + (l̂1 − l̂2) · V̂] = Λ̂S · Ŝ + Λ̂V · V̂, (86)

with a single particle constant ξnl > 0 for electrons and ξnl < 0 for holes. Here

Ŝ = ŝ1 + ŝ2 ; V̂ = ŝ1 − ŝ2 . (87)

We make use of orbital matrix elements: for the Cu 3d holes 〈dx2−y2 |lx|dyz〉 = 〈dx2−y2 |ly|dxz〉 =

i, 〈dx2−y2 |lz|dxy〉 = −2i, 〈i|lj|k〉 = −iεijk with Cu 3dyz=|1〉, 3dxz=|2〉 3dxy=|3〉, and for the ligand
np-holes 〈pi|lj|pk〉 = iεijk. Free Cu2+ ion is described by a large spin–orbital coupling with
|ξ3d| ∼= 0.1 eV (see, e.g., ref. [108]), though its value may be significantly reduced in oxides, chlorides,
etc. due to covalency effects.

Information regarding the ξnp value for the ligand np-orbitals is scant if any. Usually one
considers the spin–orbital coupling on the oxygen in oxides to be much smaller than that on the
copper [109–111]. However, even for a free oxygen atom the electron spin–orbital coupling turns out
to reach of an appreciable magnitude: ξ2p ∼= 0.02 eV [112,113], while for the oxygen O2− ion in oxides
one expects a visible enhancement of the spin–orbital coupling due to a larger compactness of the
2p wave function [114]. If to account for ξnl ∝ 〈r−3〉nl and compare these quantities for the copper
(〈r−3〉3d ≈ 6–8 a.u. [114]) and the oxygen (〈r−3〉2p ≈ 4 a.u. [41,42,114]) we arrive at a maximum factor
two difference in ξ3d and ξ2p. However, for other ligands the spin–orbital effects can be of comparable
value with that of Cu2+. For example, for a free chlorine atom the electron spin–orbital coupling
turns out to reach of an appreciable magnitude: ξ3p ∼= 0.07 eV [112,113] close to ξ3d, while for the
chlorine Cl− ion in chlorides one expects a visible enhancement of spin–orbital coupling due to a larger
compactness of the 3p wave function.

As for the DM interaction we deal with two competing contributions [105,106]. The first one
is determined by the inter-configurational mixing effect and is derived as a first order contribution
which does not take account of Cu1,2 3d-orbital fluctuations for the ground state 101 configuration.
Projecting the spin–orbital coupling (86) onto states (83) we see that Λ̂V · V̂ term is equivalent to a spin
DM coupling with local contributions to Dzyaloshinskii vector

D(m)
α = −2i〈00|Vso(m)|1α〉 = −2i ∑

{n}Γ1,Γ2

c∗{n}(
1Γ1)c{n}(

3Γ2)〈Φ{n};Γ100|ΛV
i |Φ{n};Γ21α〉 , (88)

where m = Cu1, O, Cu2, α = x, y, z. In all the instances, the nonzero contribution to the local
Dzyaloshinskii vector is determined solely by the spin–orbital singlet-triplet mixing for the on-site
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200, 020, 002 and two-site 110, 011 two-hole configurations, respectively. For the on-site two-hole
configurations we have D(200) = D(1), D(020) = D(0), D(002) = D(2).

The second, “Moriya”-type, contribution, associated with Cu1,2 3d-orbital fluctuations within the
ground state 101 configuration, is more familiar one and evolves from a second order combined effect
of Cu1,2 spin–orbital Vso(Cu1,2) and effective orbitally anisotropic Cu1-Cu2 exchange coupling

D(m)
α = −2i〈00|Vso(m)|1α〉 =

−2i ∑
Γ

〈{101}; Γs00|Λ̂V
α |{101}; Γ1α〉〈{101}; Γ1α|Ĥex|{101}; Γt1α〉
E3Γt

({101})− E3Γ({101})

−2i ∑
Γ

〈{101}; Γs00|Ĥex|{101}; Γ00〉〈{101}; Γ00|Λ̂V
α |{101}; Γt1α〉

E1Γs
({101})− E1Γ({101}) . (89)

It should be noted that at variance with the original Moriya approach [6] both spinless and
spin-dependent parts of exchange Hamiltonian contribute additively and comparably to DM coupling,
if one takes account of the same magnitude and opposite sign of the singlet–singlet and triplet–triplet
exchange matrix elements on the one hand and orbital antisymmetry of spin–orbital matrix elements
on the other hand.

It is easy to see that the contributions of 002 and 200 configurations to Dzyaloshinskii vector bear
a similarity to the respective second type (∝ Vso Hex) contributions, however, in the former we deal
with spin–orbital coupling for the two-hole Cu1,2 configurations, while in the latter with that of the
one-hole Cu1,2 configurations.

6.2.1. Copper Contribution

First, we address a relatively simple example of a strong rhombic crystal field for the intermediate
ligand ion with the crystal field axes oriented along global coordinate x, y, z-axes, respectively. It is
worth noting that in such a case the ligand npz orbital does not play an active role both in symmetric
and antisymmetric (DM) exchange interaction as well as Cu 3dyz orbital appears to be inactive in the
DM coupling due to a zero overlap/transfer with ligand np orbitals.

For illustration, hereafter we address the first contribution (88) of the two-hole on-site 200,
002 d2

x2−y2 , dx2−y2 dxy, and dx2−y2 dxz configurations, which do covalently mix with the ground state
configuration [105,106]. Calculating the singlet–triplet mixing matrix elements in the global coordinate
system we find all the components of the local Dzyaloshinskii vectors. The Cu1 contribution turns out
to be nonzero only for the 200 configurations and may be written as a sum of several terms. First, we
present the contribution of the singlet (d2

x2−y2)
1 A1g state:

D(1)
x = −2i〈00|Vso(Cu1)|1x〉 = D(1)(θ, δ1) cos θ

2 ; D(1)
y = −2i〈00|Vso(Cu1)|1y〉 = −D(1)(θ, δ1) sin θ

2 ;

D(1)
z = −2i〈00|Vso(Cu1)|1z〉 = −

√
2ξ3d c200(

1 A1g)[c200(
3Eg) sin δ1 − 2c200(

3 A2g) cos δ1] , (90)

where

D(1)(θ, δ1) =
√

2ξ3d c200(
1 A1g)[c200(

3Eg) cos δ1 − 2c200(
3 A2g) sin δ1] ∝

[
sin2 θ

2
εx
− cos2 θ

2
εy

]
sin θ sin 2δ1 , (91)

where εx,y are the ligand px,y-hole energies. In a vector form we arrive at

D(1)(θ, δ1) = D(1)(θ, δ1)[r1 × z] + D(1)
z (θ, δ1)z , (92)

where r1 is the unit vector directed along Cu1-O bond, z is the unit vector in xyz system. Taking into
account that c002(

1 A1g) = c200(
1 A1g), c002(

3 A2g) = c200(
3 A2g), c002(

3E2g) = c200(
3Eg) [115] we see
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that the Cu2 contribution to the Dzyaloshinskii vector can be obtained from Exps. (90), if θ, δ1 replace
by −θ, δ2, respectively.

Both collinear (θ = π) and rectangular (θ = π/2) superexchange geometries appear to be
unfavorable for copper contribution to antisymmetric exchange, though in the latter the result depends
strongly on the relation between the energies of the ligand npx and npy orbitals. Contribution of the
singlet (dx2−y2 dxy)1 A2g and (dx2−y2 dxz)1Eg states to the Dzyaloshinskii vector yields

d(1)x = d(1) sin
θ

2
, d(1)y = d(1) cos

θ

2
, d(1)z = 0 ,

where
d(1) = ξ3d(c200(

1 A2g)c200(
3Eg)− c200(

1Eg)c200(
3 A2g)) ∝ sin2 θ sin 2δ1 . (93)

Here we deal with a vector
d(1) = d(1)r1, (94)

directed along the Cu1-O bond whose magnitude is determined by a partial cancellation of the
two terms.

It is easy to see that the copper Vso(1) contribution to the Dzyaloshinskii vector for the two-site
110 and 011 configurations is determined by the dp-exchange.

6.2.2. Ligand Contribution

In frames of the same assumption regarding the orientation of the rhombic crystal field axes for
the intermediate ion the local ligand contribution to the Dzyaloshinskii vector for the one-site 020
configuration appears to be oriented along the local Oz axis and may be written as follows [105,106]

D(0)
z = −2i〈00|Vso(O)|1z〉 =

√
2ξ2p ct(px py)[c(p2

x) + c(p2
y)] . (95)

This vector can be written as
D(0) = DO(θ)[r1 × r2] , (96)

where r1,2 are unit radius-vectors along the Cu1-O, Cu2-O bonds, respectively, and

DO(θ) =
9ξ2pt4

pdσ

16
1

Et(px py)

(
1
εx

+
1
εy

)[
cos2 θ

2
εxEs(p2

x)
−

sin2 θ
2

εyEs(p2
y)

]
, (97)

where Es(p2
x,y) are the two-hole singlet energies. It is worth noting that D(0) does not depend on the

δ1, δ2 angles. The DO(θ) dependence is expected to be rather smooth without any singularities for the
collinear and rectangular superexchange geometries.

The local ligand contribution to the Dzyaloshinskii vector for the two-site 110 and 011
configurations is determined by the direct dp-exchange and may be written similarly to (96) with

DO(θ) =
3ξ2pt2

pdσ

8
1

εxεy

( Idpx

εx
−

Idpy

εy

)
≈

3ξ2pt2
pdσ

8
1

εxεy

(
sin2 θ

2
εx
−

cos2 θ
2

εy

)
Idpσ, (98)

where we take account only of the dpσ exchange (Idpσ ∝ t2
pdσ).

6.2.3. DM Coupling in La2CuO4 and Related Cuprates

The DM coupling and magnetic anisotropy in La2CuO4 and related copper oxides has attracted
considerable interest in 90-ths (see, e.g., refs. [31–37]), and is still debated in the literature [39,40]. In the
low-temperature tetragonal (LTT) and orthorhombic (LTO) phases of La2CuO4, the oxygen octahedra
surrounding each copper ion rotate by a small tilting angle (δLTT ≈ 30, δLTO ≈ 50) relative to their
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location in the high-temperature tetragonal (HTT) phase. The structural distortion allows for the
appearance of the antisymmetric DM coupling. In terms of our choice for structural parameters to
describe the Cu1-O-Cu2 bond we have for LTT phase: θ = π; δ1 = δ2 = π

2 ± δLTT for bonds oriented
perpendicular to the tilting plane, and θ = ±(π − 2δLTT); δ1 = δ2 = π

2 for bonds oriented parallel
to the tilting plane. It means that all the local Dzyaloshinskii vectors turn into zero for the former
bonds, and turn out to be perpendicular to the tilting plane for the latter bonds. For LTO phase:
θ = ±(π −

√
2δLTO); δ1 = δ2 = π

2 ± δLTO. The largest (∝ δLTO) component of the local Dzyaloshinskii
vectors (z-component in our notation) turns out to be oriented perpendicular to the Cu1-O-Cu2

bond plane. Other two components of the local Dzyaloshinskii vectors are fairly small: that of the
perpendicular one to CuO2 plane (y-component in our notation) is of the order of δ2

LTO, while that of
the oriented along Cu1-Cu2 bond axis (x-components in our notation) is of the order of δ3

LTO.
Comparative analysis of Exps. (90), (97), and (98) given estimations for different parameters

typical for cuprates [116] (tpdσ ≈ 1.5 eV, tpdπ ≈ 0.7 eV, A = 6.5 eV, B = 0.15 eV, C = 0.58 eV, F0 = 5 eV,
F2 = 6 eV) evidences that the copper and oxygen Dzyaloshinskii vectors can be of a comparable
magnitude, however, in fact it strongly depends on the Cu1-O-Cu2 bond geometry, correlation energies,
and crystal field effects. The latter determines the single hole energies both for O 2p- and Cu 3d-holes
such as εx,y and εxy,xz, whose values are usually of the order of 1 eV and 1–3 eV, respectively. It is worth
noting that for two limiting bond geometries: θ ∼ π and θ ∼ π/2 (near collinear and near rectangular
bonding, respectively) we deal with a strong “geometry reduction” of the DM coupling due to the

sin θ factor for the former and the factor like
[

sin2 θ
2

εx
− cos2 θ

2
εy

]
for the latter. Really, the resulting effect

for the near rectangular Cu1-O-Cu2 bonding appears to be very sensitive to the local oxygen crystal
field. A critical angle θCu to turn the Cu-contribution to the Dzyaloshinskii vector into zero is defined
as follows:

tan2 θCu
2

= εx/εy ,

while for the oxygen contribution (97) we arrive at another critical angle:

tan2 θO
2

= εyEs(p2
y)/εxEs(p2

x).

Maximal value of the scalar parameter DO(θ) which determines the oxygen contribution to
Dzyaloshinskii vector can be estimated to be of≤1 meV given the above mentioned typical parameters,
however, the unfavorable geometry of the Cu-O-Cu bonds in the corner-shared cuprates leads to a
small value of the resulting Dzyaloshinskii vector and canting angles [16,17]. As a whole, our model
microscopic theory is believed to provide a reasonable estimation of the direction, sense, and numerical
value of the Dzyaloshinskii vectors. Seemingly more important result concerns the elucidation of the
role played by the Cu1-O-Cu2 bond geometry, crystal field, and correlation effects.

6.3. DM Coupled Cu1-O-Cu2 Bond in External Fields

Application of an uniform external magnetic field hS will produce a net staggered spin
polarization in the antiferromagnetically coupled Cu1-Cu2 pair

〈V12〉 = L = − 1
J2
12
[∑

i
D(i)

12 × hS] = χVShS, (99)

with antisymmetric VS-susceptibility tensor: χVS
αβ = −χVS

βα . It is worth noting that only in a
classical representation the net contribution of the three local spin–orbital couplings does reduce
to a conventional antiferromagnetic spin order:

〈V12〉 = L12 = S1 − S2 ,
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while in quantum representation one should say about the emergence of some nonequivalence of
spins for the holes formally numbered as 1 and 2 on different sites. Puzzlingly, we arrive at a very
unusual effect of the on-site staggered spin order to be a result of the on-site spin–orbital coupling
and the cation-ligand spin density transfer. One sees that the sense of staggered spin polarization,
or antiferromagnetic vector, depends on that of the Dzyaloshinskii vector. The VS coupling results in
many interesting effects for the DM systems, in particular, the “field-induced gap” phenomena in the
1D s = 1/2 antiferromagnetic Heisenberg system with alternating DM coupling [29,30]. Approximately,
the phenomenon is described by a so-called staggered s = 1/2 antiferromagnetic Heisenberg model
with the Hamiltonian

Ĥ = J ∑
i
(ŝi · ŝi+1)− hu ŝiz − (−1)ihs ŝix , (100)

which includes the effective uniform field hu and the induced staggered field hs ∝ hu perpendicular
both to the applied uniform magnetic field and the Dzyaloshinskii vector.

The DM copling for the ferromagnetically coupled Cu1-Cu2 pair does also produce a net staggered
spin polarization

〈V12〉 =
1

2J12
[∑

i
D(i)

12 × S] , (101)

oriented perpendicular both to the net magnetic moment and Dzyaloshinskii vector. It should
be noted that all the partial contributions to the net staggered spin polarization can, in general,
have distinct orientations.

Application of a staggered field hV for an antiferromagnetically coupled Cu1-Cu2 pair will
produce a local spin polarization both on copper and oxygen sites

〈Si〉 =
1

J2
12
[D(i)

12 × hV ] = χSV(i)hV , (102)

which can be detected by different site-sensitive methods including neutron diffraction and, mainly,
by nuclear magnetic resonance. It should be noted that SV-susceptibility tensor is the antisymmetric
one: χSV

αβ = −χSV
βα . Strictly speaking, both Formulas (99) and (102) work well only in a paramagnetic

regime and for relatively weak external fields.
Above we addressed a single Cu1-O-Cu2 bond, where, despite a site location, the direction

and magnitude of the Dzyaloshinskii vector depend strongly on the bond strength and geometry.
It is clear that a site rather than a bond location of the Dzyaloshinskii vectors would result in a
revisit of conventional symmetry considerations and of the magnetic structure in weak ferro- and
antiferromagnets. Interestingly that the expression (102) predicts the effects of a constructive or
destructive (frustration) interference of the copper spin polarizations in 1D, 2D, and 3D lattices
depending on the relative sign of the Dzyaloshinskii vectors and staggered fields for nearest neighbors.
It should be noted that with the destructive interference the local copper spin polarization may turn
into zero and the DM coupling will manifest itself only through the oxygen spin polarization.

Another interesting manifestation of the ligand DM antisymmetric exchange coupling concerns
the edge-shared CuO2 chains (see Figure 10), ubiquitous for many cuprates, where we deal with an
exact compensation of copper contributions to Dzyaloshinskii vectors and the unique possibility to
observe the effects of uncompensated though oppositely directed local oxygen contributions. It is
worth noting that for purely antiferromagnetic in-chain ordering the oxygen spin polarization induced
due to the dp-covalency by the two neighboring Cu ions is really compensated. In other words,
the oxygen ions are expected to be nonmagnetic. However, the situation varies, if one accounts for a
nonzero oxygen DM coupling. Indeed, applying the staggered field, for instance, along chain direction
(Ox) we arrive in accordance with Exp. (102) at a staggered spin polarization of the oxygen ions in an
orthogonal Oy direction whose magnitude is expected to be strongly enhanced due to usually small
magnitudes of the 90◦ symmetric superexchange. In general, the direction of the oxygen staggered
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spin polarization is to be perpendicular both to the main chain antiferromagnetic vector and the CuO2

chain normal.

Figure 10. The fragment of a typical edge-shared CuO2 chain with copper and oxygen spin
orientation under staggered field applied along x-direction. Note the antiparallel orientation of oxygen
Dzyaloshinskii vectors.

It should be emphasized that the net in-chain Dzyaloshinskii vector D = D(1) + D(OI) + D(OI I) +

D(2) turns into zero hence in terms of a conventional approach to DM theory we miss the anomalous
oxygen spin polarization effect. In this connection, it is worth noting the neutron diffraction data by
Chung et al. [117] which unambiguously evidence the oxygen momentum formation and canting in
the edge shared CuO2 chain cuprate Li2CuO2. Anyhow, we predict an interesting possibility to find
out the purely oxygen contribution to the DM coupling.

7. The 17O NMR in La2CuO4: Field-Induced Staggered Magnetization

The effect of the field-induced staggered magnetization was firstly discussed by
Ozhogin et al. [118] by means of the 57Fe Mössbauer measurements in the orthoferrite YFeO3 in
a paramagnetic region near TN . Earlier on we pointed to the ligand NMR as, probably, the only
experimental technique to measure both staggered spin polarization, or antiferromagnetic vector in
weak 3d ferromagnets and the value, direction, and the sense of Dzyaloshinskii vector. The latter
possibility was realized with the 19F NMR for the weak ferromagnet FeF3 [22]. Hereafter we address
the problem for the generic weak ferromagnetic cuprate La2CuO4 making use of the ligand 17O NMR
as a unique local probe to study the charge and spin densities on the oxygen sites.

A detailed study of the ligand 17O hyperfine couplings in the weak ferromagnetic La2CuO4

for temperatures ranging from 285 to 800 K, undertaken by R. Walstedt et al. [41,42] has uncovered
puzzling anomalies of the 17O Knight shift. When approaching to the ordered magnetic phase,
the authors observed anomalously large negative 17O Knight shift for the planar oxygens whose
anisotropy resembled that of weak ferromagnetism in this cuprate. The giant shift was observed only
when the external field was parallel to the local Cu-O-Cu bond axis (PL1 lines) or perpendicular to
CuO2 plane. The effect was not observed for PL2 lines which correspond to the oxygens in the local
Cu-O-Cu bonds whose axis is perpendicular to the in-plane external field. It is worth noting once more,
that the most part of experimental data was collected in the paramagnetic state for temperatures well
above TN where there are no frozen moments! The data were first interpreted as an indication of a direct
oxygen spin polarization due to a local DM antisymmetric exchange coupling. However, it demands
unphysically large values for such polarization, hence the puzzle remained to be unsolved [41,42].

Our interpretation of the ligand NMR data in the low-symmetry systems as La2CuO4 implies a
thorough analysis of both of the spin canting effects and of the transferred hyperfine interactions with
a revisit of some textbook results being typical for the model high-symmetry systems [106]. First, we
start with the spin-dipole hyperfine interactions for the O 2p-holes which are the main participants
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of the Cu1-O-Cu2 bonding. Making use of a conventional formula for the spin-dipole contribution
to the local field and calculating appropriate matrix elements on the oxygen 2p-functions we present
the local field on the 17O nucleus in the Cu1-O-Cu2 system as a sum of ferro- and antiferromagnetic
contributions as follows [106]

Hn =
↔
A

S
· 〈Ŝ〉+

↔
A

V
· 〈V̂〉 , (103)

where along with a conventional textbook ferromagnetic (∝ 〈Ŝ〉) transferred hyperfine contribution
to local field which simply mirrors a sum total of the two Cu-O bonds, we arrive at an additional
unconventional antiferromagnetic (∝ 〈V̂〉) contribution whose symmetry and magnitude strongly
depend on the orientation of the oxygen crystal field axes and the Cu1-O-Cu2 bonding angle. In the

case of the Cu1–O–Cu2 geometry shown in Figure 9 we arrive at a diagonal
↔
A

S
tensor:

AS
xx = 2Ap(3 sin2 θ

2
− 1); AS

yy = 2Ap(3 cos2 θ

2
− 1);

AS
zz = −2Ap, (104)

and the only nonzero components of
↔
A

V
tensor:

AV
xy = AV

yx = 3Ap sin θ (105)

with

Ap =
3
4

( tdpσ

εp

)2
A0

p = fσ A0
p, (106)

where fσ is the parameter of a transferred spin density and we made use of a simple approximation
Es,t(dpx,y) ≈ εp. Thus, the ligand 17O NMR provides an effective tool to inspect the spin canting effects
in oxides with the DM coupling both in the paramagnetic and ordered phases.

The two-term structure of the oxygen local field (103) implies a two-term S–V structure of the 17O
Knight shift

17K =
↔
A

S
χSS +

↔
A

V
χVS. (107)

that points to Knight shift as an effective tool to inspect both the uniform and staggered spin
polarization. Existence of the antiferromagnetic term in the oxygen hyperfine interactions yields
a rather simple explanation of the 17O Knight shift anomalies in La2CuO4 [41,42] as a result of the
external field-induced staggered spin polarization 〈V̂〉= L = χVSHext. Indeed, “our” local y axis for
Cu1-O-Cu2 bond corresponds to the crystal tetragonal c-axis oriented perpendicular to the CuO2

planes both in the LTO and LTT phases of La2CuO4 while the x-axis does to the local Cu-O-Cu bond
axis. It means that for the geometry of the experiment by Walstedt et al. [41,42] (the crystal is oriented
so that the external uniform field is either ‖ or ⊥ to the local Cu-O-Cu bond axis) the antiferromagnetic
contribution to 17O Knight shift will be observed only (a) for oxygens in the Cu1-O-Cu2 bonds oriented
along external field or (b) for external field along the tetragonal c-axis. Experimental data [41,42] agree
with the staggered magnetization along the tetragonal c-axis in the former and along the rhombic
c-axis (tetragonal ab-axis) in the latter. Given L = 1, A(0)

p ≈ 100 kG/spin [41,42], | sin θ| ≈ 0.1,
and fσ ≈ 20% we obtain ≈ 6 kG as a maximal value of the low-temperature antiferromagnetic
contribution to the hyperfine field which is equivalent to a giant 17O Knight shift of the order of almost
∼10%. Nevertheless, this value agrees with the low-temperature extrapolation of the high-temperature
experimental data by Walstedt et al. [41,42]. Interestingly, the sizeable effect of the anomalous negative
contribution to 17O Knight shift has been observed in La2CuO4 well inside the paramagnetic state
for temperatures T ∼ 500 K that is essentially higher than TN ≈ 300 K. It points to the close relation
between the magnitude of the field-induced staggered magnetization and the spin-correlation length
which goes up as one approaches TN .
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The ferro–antiferromagnetic S-V structure of the local field on the nucleus of the intermediate
oxygen ion in the Cu1-O-Cu2 triad points to the 17O NMR as, probably, the only experimental technique
to measure both the value, direction, and the sense of the Dzyaloshinskii vector. For instance,
the negative sign of 17O Knight shift in La2CuO4 [41,42] points to a negative sign of χVS for Cu1-O-Cu2

triad with AV
xy > 0, hence to a positive sense of the z-component of the net Dzyaloshinskii vector in

the Cu1-O-Cu2 triad with the geometry shown in Figure 9 given θ ≤ π, δ1 = δ2 ≈ π/2. It should be
emphasized that the above effect is determined by the net Dzyaloshinskii vector in the Cu1-O-Cu2

triad rather than by local oxygen “weak-ferromagnetic” polarization as it was firstly proposed by
Walstedt et al. [41,42].

A similar effect of the anomalous ligand 13C Knight shift has recently been observed in the
copper pyrimidine dinitrate [CuPM(NO3)2(H2O)2]n, a one-dimensional S = 1/2 antiferromagnet
with alternating local symmetry, and was also interpreted in terms of the field-induced staggered
magnetization [119]. However, the authors did take into account only the inter-site magneto-dipole

contribution to the
↔
A

V
tensor that questions their quantitative conclusions regarding the “giant”

spin canting.

8. DM Coupling in Helimagnetic CsCuCl3

All the systems described above were somehow or other connected with weak ferromagnets
where DM coupling manifests itself in the canting of a basic antiferromagnetic structure. Cesium cupric
chloride, CsCuCl3 is a unique screw antiferroelectric crystal with a low-temperature helimagnetically
distorted ferromagnetic order. CsCuCl3 possesses the hexagonal CsNiCl3-type D4

6h(P63/mmc)
structure [120] above the transition temperature Tc (≈423 K) and is distorted through a first-order phase
transition to low symmetry by a cooperative Jahn-Teller effect below Tc [121]. In the high-temperature
phase CuCl6 octahedra are linked together by sharing faces, thus forming a one-dimensional chain
structure along the c axis. The octahedra are not regular but trigonally compressed along the c axis,
with all Cu-Cl distances remaining equal. At Tc all of the constituent atoms are displaced from the
normal position along the c-axis to form a helix whose period is three times the lattice constant c of the
high-temperature phase. The room-temperature structure was determined by X-ray diffraction [122].
The space group is one of two enantiomorphous groups D2

6(P6122) or D3
6(P6522) without a center of

symmetry, corresponding to the right and left helixes, respectively, with six formula units in a unit cell.
Deformation of each CuCl6 octahedron associated with the transition at Tc is the Cu2+ displacement
and tetragonal elongation with the directions of their longest axes alternating by 120◦ in adjacent
octahedra lying along the chain.

In addition, CsCuCl3 has a peculiar magnetic property. It is a quantum frustrated magnetic
system with a triangular lattice of antiferromagnetically coupled s = 1/2 spins of Cu2+ in the ab
plane. In the magnetically ordered state, below TN (10.5–10.7 K) spins lie in the basal plane and
form the 120◦-structure, while along the c-direction, a long period (about 71 triangular layers) helical
incommensurate arrangement (Dzyaloshinskii helix [123]) with a slow spin spiraling (pitch angle of
about 5◦) is realized [124], due to the competition between the dominant ferromagnetic interaction and
the additional DM coupling along the chain. The DM coupling forces the spins to lie almost flat in the
ab plane, so this spin system is approximately an XY-system. In fact, from the structure determination,
the spins are known to be slightly canted out of the ab plane [124]. CsCuCl3 is the first example of
having a helical magnetic structure due to the antisymmetric exchange interaction. The reduction
(to 0.58 µB) of the ordered moment of the s = 1/2 spin of the Cu2+ ion is not uncommon in frustrated
triangular-lattice antiferromagnetic systems. It is worth noting that Plakhty et al. [123] have revealed a
modulation of the CsCuCl3 crystal structure with the periodicity of the incommensurate long-period
Dzyaloshinskii helix.

Despite numerous experimental and theoretical studies many details of spin structure in CsCuCl3
remain to be answered. The NMR data do not support incommensurability in CsCuCl3, the 63,65Cu
NMR spectra clearly indicate that the Cu2+ moments refer regularly to a local symmetry axis rather
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than to a spin spiral arrangement [125], or the in-plane spin projection forms a commensurate spiral
with the pitch angle 60◦ [126]. According to Ref. [124] the Dzyaloshinskii vector appears to be parallel
to the vector between the nearest along c helically displaced Cu2+ ions. However, Plakhty et al. [123]
argued that the vector should be directed perpendicular to a plane formed by the Cu-Cl-Cu triad.
Another point of great importance for a detailed spin structure determination in CsCuCl3 is a nonzero
chlorine spin polarization whose accounting can strongly influence the interpretation of magnetic,
neutron, and NMR data. To the best of our knowledge the neutron diffraction data for chain cuprate
Li2CuO2 by Chung et al. [117] provided the first unambiguous evidence of the ligand (oxygen)
magnetic momentum formation and canting.

The change of the CsCuCl3 crystal structure occurring at the transition at Tc due to a cooperative
Jahn-Teller (JT) effect [121] consists of helical displacements of all the constituent atoms. The period of
the helices is three times the lattice constant c of the high-temperature phase, thus the c axis is tripled
below Tc. The Cu atoms displace by u = 0.06136 from the c axis with the directions of the displacements
alternating by 60◦ in adjacent Cu-Cu pairs lying along the chain. The three equivalent Cl ions forming a
regular triangle in the c plane in the high-temperature phase form two types of chlorine atoms below Tc

labelled as Cl(1) and Cl(2). The Cl(1) atom moves along the symmetrical line Y = 2X, while two Cl(2)
atoms move into general positions. The main local deformation of each CuCl6 octahedron associated
with the JT transition is a tetragonal elongation along the Cu-Cl(2) direction. When viewed along the c
axis, the directions of the elongated axes alternate by 120◦ in adjacent octahedra lying along the chain.
The Cu ion displaces from the tetragonal axis along the edge of nearly square CuCl2(1)Cl2(2) plaquette
with two Cu-Cl separations of 2.3525 Å and two of 2.2837 Å which are sizeably shorter than the
Cu-Cl(2) separations of 2.7758 Å along the tetragonal axis. The JT effect results in a strong distortion
of the CuCl6 edge-sharing. Instead of three equivalent Cu-Cl-Cu bonds we arrive at two Cu-Cl(2)-Cu
bonds with bonding angle of 73.74◦ and with the shortest (2.2837 Å ) and longest (2.7758 Å ) Cu-Cl(2)
separations, respectively, and the Cu-Cl(1)-Cu bond with bonding angle of 81.17◦ and equal Cu-Cl(1)
separations of 2.3525 Å. Namely, the latter Cu-Cl(1)-Cu bond should be addressed to be the main
contributor to Cu-Cu exchange coupling. Indeed, the longest (2.7758 Å ) Cu-Cl(2) separation is too
long to provide a meaningful exchange coupling and will take into account only the Cu-Cl(1)-Cu bond.
From the other hand, the anticipated dx2−y2 -type hole ground state of the CuCl4 plaquette typical for
Cu2+ squarely coordinated with four ligands cannot provide meaningful Cu-Cl(2) coupling along
the tetragonal axis which is required for enabling the efficient Cu-Cl(2)-Cu coupling. The almost
rectangular Cu-Cl(1)-Cu superexchange with rather long Cu-Cl(1) separation of 2.3525 Å ought to be
small ferromagnetic that explains the rather low temperature of magnetic ordering.

To make a semiquantitative analysis of the Cu-Cl(1)-Cu DM coupling, hereafter we assume
a tetragonal symmetry at Cu sites with local coordinate systems as shown in Figure 9. The net
Dzyaloshinskii vector D for the Cu1-Cl(1)-Cu2 superexchange is a superposition of three contributions
D = D(1) + D(O) + D(2) attached to the respective sites. In general, all the vectors are oriented
differently. In other words, the direction of the net Dzyaloshinskii vector Dnn+1 seems to be more
complicated than it is suggested in refs. [123,124]. Interestingly, the x-component of the Dzyaloshinskii
vector, or its projection onto the Cun-Cun+1 direction gives rise to a helical spin ordering along c-axis
with spins in ab-plane, while y and z components compete for the spin canting upward and downward
from the ab-plane with a periodicity of six Cu2+ ion spacings along the c-axis.

Comparative analysis of Exps. (90), (97), and (98) given estimations for different parameters typical
for cuprates [116] evidences that copper and chlorine Dzyaloshinskii vectors can be of comparable
magnitude, however, in fact, it strongly depends on the Cu1-Cl-Cu2 bond geometry, correlation
energies, and crystal field effects. Maximal value of the scalar parameter DO(θ) which determines
the chlorine contribution to the Dzyaloshinskii vector can be estimated to be ∼1 meV given the above
mentioned typical parameters. As a whole, our model microscopic theory is believed to provide a
reasonable estimation of the direction, sense, and numerical value of the Dzyaloshinskii vectors and
the role of the Cu1-Cl-Cu2 bond geometry, crystal field, and correlation effects.
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9. Effective Two-Ion Symmetric Spin Anisotropy Due to DM Coupling

When one says about an effective spin anisotropy due to DM coupling one usually addresses a
simple classical two-sublattice weak ferromagnet where the free energy has a minimum when both
ferro- (∝ 〈Ŝ〉, Ŝ = Ŝ1 + Ŝ2) and antiferromagnetic (∝ 〈V̂〉, V̂ = Ŝ1 − Ŝ2) vectors, being perpendicular
to each other, lie in the plane perpendicular to the Dzyaloshinskii vector D. However, the issue is
rather involved and appeared for a long time to be hotly debated. In our opinion, first of all we should
define what the spin anisotropy is. Indeed, the description of any spin system implies the free energy
Φ depends on a set of vector order parameters (e.g., 〈Ŝ〉, 〈V̂〉) under kinematic constraint, rather than
a single magnetic moment as in a simple ferromagnet, that can make the orientational dependence of
the free energy Φ extremely involved. Such a situation needs in a careful analysis of respective spin
Hamiltonian with a choice of proper approximations.

Effective symmetric spin anisotropy due to DM interaction can be easily derived as a second-order
perturbation correction due to DM coupling. For antiferromagnetically coupled spin 1/2 pair ĤDM

an
may be written as follows [105,106]:

ĤDM
an = ∑

ij
∆KV

ij V̂iV̂j

with ∆KV
ij =

1
8J DiDj provided |D| � J. We see that in frames of a simple MFA approach this anisotropy

stabilizes a Néel state with 〈V̂〉 ⊥ D. However, in fact we deal with a MFA artefact. Indeed, let examine
the second order perturbation correction to the ground state energy of an antiferromagnetically coupled
spin 1/2 pair in a Néel-like staggered field hV ‖ n (Ψα,0 = cos α|00〉+ sin α|1n〉, tan 2α = 2hV

J ):

EDM
an = − |D · n|2

4(E‖ − Eg)
− |D× n|2

4(E⊥ − Eg)
cos2 α , (108)

where E⊥ = J; E‖ = J cos2 α + hV sin 2α; Eg = J sin2 α− hV sin 2α. First term in (108) stabilizes n ‖ D
configuration while the second one does the n ⊥ D configuration. Interestingly that (E‖ − Eg) cos2 α =

(E⊥ − Eg), that is for any staggered field EDM
an does not depend on its orientation, if to account

for: |D · n|2 + |D× n|2 = |D|2. In other words, at variance with a simple MFA approach, the DM
contribution to the energy of anisotropy for an exchange coupled spin 1/2 pair in a staggered field
turns into zero. Anyway, the ĤDM

an term has not to be included into an effective spin anisotropy
Hamiltonian for quantum 1/2 spins. However, for large spins S� 1/2 the MFA, or classical approach
to anisotropy induced by the DM coupling can be more justified.

10. “First-Principles” Calculations of the DM Coupling

The electronic states in strongly correlated 3d oxides manifest both significant localization and
dispersion features. One strategy to deal with this dilemma is to restrict oneself to small many-electron
clusters embedded to a whole crystal, then creating model effective lattice Hamiltonians whose spectra
may reasonably well represent the energy and dispersion of the important excitations of the full
problem. Despite some shortcomings, the method did provide a clear physical picture of the complex
electronic structure and the energy spectrum, as well as the possibility of a quantitative modeling.

However, last decades the condensed matter community faced an expanding flurry of papers with
ab initio calculations of electronic structure and physical properties for strongly correlated systems
such as 3d compounds based on density functional theory (DFT). The modern formulation of the
DFT originated in the work of Hohenberg and Kohn [127], on which based the other classic work
in this field by Kohn and Sham [128]. The Kohn–Sham equation, has become a basic mathematical
model of much of present-day methods for treating electrons in atoms, molecules, condensed matter,
solid surfaces, nanomaterials, and man-made structures [129].
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However, DFT still remains, in some sense, ill-defined: many of the DFT statements were
ill-posed or not rigorously proved. The most widely used DFT computational schemes start with a
“metallic-like” approaches making use of approximate energy functionals, firstly LDA (local density
approximation) scheme, which are constructed as expansions around the homogeneous electron gas
limit and fail quite dramatically in capturing the properties of strongly correlated systems. The LDA+U
and LDA+DMFT (DMFT, dynamical mean-field theory) [130] methods are believed to correct the
inaccuracies of approximate DFT exchange-correlation functionals, however, these preserve many
shortcomings of the DFT-LDA approach. All efforts to account for the correlations beyond LDA
encounter an insoluble problem of double counting (DC) of interaction terms which had just included
into Kohn–Sham single-particle potential. In a certain sense the cluster-based calculations seem to
provide a better description of the overall electronic structure of insulating 3d oxides and its optical
response than the DFT based band structure calculations, mainly due to a clear physics and a better
account for correlation effects (see, e.g., refs. [116,131]).

The basic drawback of the spin-polarized DFT approaches is that these start with a local density
functional in the form (see, e.g., Ref. [132,133])

v(r) = v0[n(r)] + ∆v[n(r), m(r)](σ · m(r)
|m(r)| ) , (109)

where n(r), m(r) are the electron and spin magnetic density, respectively, σ is the Pauli matrix, that is
these approaches imply presence of a large fictitious local one-electron spin-magnetic field ∝ (v↑ − v↓),
where v↑,↓ are the on-site LSDA spin-up and spin-down potentials. The magnitude of the field is
considered to be governed by the intra-atomic Hund exchange, while its orientation does by the
effective molecular, or inter-atomic exchange fields. Despite the supposedly spin nature of the field,
it produces an unphysically giant spin-dependent rearrangement of the charge density that cannot
be reproduced within any conventional technique operating with spin Hamiltonians. Furthermore,
a direct link with the orientation of the field makes the effect of the spin configuration onto the
charge distribution to be unphysically large. However, magnetic long-range order has no significant
influence on the redistribution of the charge density. The DFT-LSDA community needed many years
to understand such a physically clear point.

In general, the LSDA method to handle a spin degree of freedom is absolutely incompatible with
a conventional approach based on the spin Hamiltonian concept. There are some intractable problems
with a matchmaking between the conventional formalism of a spin Hamiltonian and LSDA approach to
the exchange and exchange-relativistic effects. Visibly plausible numerical results for different exchange
and exchange-relativistic parameters reported in many LSDA investigations (see, e.g., refs. [134])
evidence only a potential capacity of the LSDA based models for semiquantitative estimations, rather
than for reliable quantitative data. It is worth noting that for all of these “advantageous” instances the
matter concerns the handling of certain classical Néel-like spin configurations (ferro-, antiferro-, spiral,
...) and search for compatibility with a mapping made with a conventional quantum spin Hamiltonian.
It’s quite another matter when one addresses the search of the charge density redistribution induced
by a spin configuration as, for instance, in multiferroics. In such a case the straightforward application
of the LSDA scheme can lead to an unphysical overestimation of the effects or even to qualitatively
incorrect results due to an unphysically strong effect of breaking of spatial symmetry induced by a
spin configuration (see, e.g., refs. [135–137] and references therein).

As a typical starting point for the “first-principles” calculation of the exchange interactions and
DM coupling one makes use of a predetermined classical spin configuration and classical Hamiltonian
as follows

H = Hex + HDM = ∑
i 6=j

Jij(ei · ej) + ∑
i 6=j

Dij · [ei × ej] , (110)

where ei is a unit vector in the direction of the ith site magnetization, Jij is the exchange interaction,
and Dij is the Dzyaloshinskii vector. It should be noted that this oversimplification together with an
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exceptionally one-particle nature of the LDA approach bounds all the efforts to account for intricate
quantum effects that perturbatively define the DM coupling for many-electron ions, though it keeps
a possibility of a plausible estimation. We’d like to remind that classical approximation for the
singlet–triplet exchange splitting in the pair of quantum s = 1/2 spins yields the three times smaller
value than the quantum result.

Obviously, the LDA based approaches cannot provide a comprehensive description of the DM
coupling and other anisotropic interactions that are derived from the higher than the isotropic
exchange perturbation orders and imply an intricate interplay of different many-electron quantum
fluctuations. It is worth noting that at variance with isotropic exchange the DM coupling does
mix spin multiplicity that cannot be distinctly reproduced in the classical approach. The so-called
LDA+U+SO approach that attempts (and fails) to incorporate spin–orbit coupling within LDA+U
scheme leads to unphysical results such as an “intra-atomic noncollinear magnetic ordering” when
the spins of different orbitals appear to be noncollinear to each other or an appearance of the single-ion
anisotropy for s = 1/2 ions (Cu2+) [138]. The LDA+U+SO calculations [134] show the appearance
of unphysical on-site contribution in the magnetic torque and DM coupling, moreover, this false
term gives the main contribution to Dzyaloshinskii vector (!?). Recently a distinct approach for
calculations of DM coupling and other anisotropic interactions in molecules and crystals has been
proposed [139–141]. The authors derive a set of equations expressing the parameters of the magnetic
interactions characterizing a strongly correlated electronic system in terms of single-electron Green’s
functions and self-energies. This allows establishing a mapping between the initial electronic system
and a classical spin model (110) including up to quadratic interactions between the effective spins,
with a general interaction (exchange) tensor that accounts for DM coupling, single- and two-ion
anisotropy. As they argue, the scheme leads to a simple and transparent analytical expression for the
Dzyaloshinskii vector with a natural separation into the spin and orbital contributions, though they do
not present a physical explanation for such a separation. However, the mere possibility of such
a mapping seems to be unacceptable, as any ions with a bare spin and orbital degeneracy are
characterized by a number of multicomponent spins and orbital order parameters that cannot be
reduced to the only vector order parameter. The application of inappropriate techniques makes it often
hard to compare results obtained by different “first-principles” calculations even for the same weak
ferromagnet. For instance, for the spin canting angle in La2CuO4 one obtains 0.7× 10−3 [134] and
5 × 10−3 [139] as compared with experimental value of (2–3) ×10−3.

In our opinion, any comprehensive physically valid description of the exchange and
exchange-relativistic effects for strongly correlated systems should combine simple physically clear
cluster ligand-field analysis with a numerical calculation technique such as LDA+MLFT [142] with a
regular appeal to experimental data.

11. Conclusions

We performed an overview of the microscopic theory of the Dzyaloshinskii–Moriya coupling
in strongly correlated 3d compounds. Most attention in the paper focused on the derivation of the
Dzyaloshinskii vector, its value, orientation, and sense both for different types of 3d ions and under
different types of the (super)exchange interaction and crystal field.

We considered both the Moriya mechanism of the antisymmetric interaction and novel
contributions, in particular, that of spin–orbital coupling on the intermediate ligand ions.
The microscopically derived expression for the dependence of the Dzyaloshinskii vector on the
superexchange geometry allows us to find all the overt and hidden canting angles in orthoferrites
RFeO3. Being based on the theoretical predictions regarding the sign of the Dzyaloshinskii vector we
have predicted a novel magnetic phenomenon, weak ferrimagnetism in mixed weak ferromagnets with
competing signs of the Dzyaloshinskii vectors. Weak ferrimagnets can exhibit the tunable exchange
bias effect. We revisited the problem of the DM antisymmetric exchange coupling for a single bond in
cuprates specifying the local spin–orbital contributions to the Dzyaloshinskii vector focusing on the
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oxygen term. The Dzyaloshinskii vector and respective weak ferromagnetic moment is shown to be a
superposition of comparable and, sometimes, competing local Cu and O contributions. We predict a
novel puzzling effect of the on-site staggered spin polarization to be a result of the on-site spin–orbital
coupling and the cation-ligand spin density transfer. The ligand NMR measurements are shown to be
an effective tool to inspect the effects of the DM coupling in an external magnetic field. We predict the
effect of strong oxygen weak antiferromagnetism in edge-shared CuO2 chains due to uncompensated
oxygen Dzyaloshinskii vectors. We revisited the effects of symmetric spin anisotropy directly induced
by the DM coupling and demonstrated the specific feature of the quantum s = 1/2 magnets. Theoretical
results are applied to different classes of 3d compounds from conventional weak ferromagnets (FeF3,
α-Fe2O3, RFeO3, RCrO3,.. ) to unconventional systems such as weak ferrimagnets (RFe1−xCrxO3,
Fe1−xCrxBO3, Mn1−xNixCO3), helimagnets (CsCuCl3) and parent cuprates (La2CuO4, ...).

In all cases, the magnitude of the Dzyaloshinskii vector d12 is anticorrelated with the magnitude of
the superexchange integral J12 in the sense that the superexchange geometry, favorable for the former,
is unfavorable for the latter. As a typical example, parent cuprates can be cited, where the small value
of the Dzyaloshinsky vector is determined by only a small tilting of the CuO6 octahedra from the CuO2

planes, which practically does not affect the large value of the exchange integral, J12 ≥ 0.1 eV [16,17].
The specific supersensitivity of the DM coupling to the superexchange geometry and the energy of
orbital excitations for Cu and O ions allows us to consider this interaction, first of all, the value and
orientation of the Dzyaloshinskii vector, as one of the most important indicators determining the
role of structural factors, in particular, the tilts and bond disproportions in the CuO2 lattice network
associated with “lattice strain” [143–147], and different orbital excitations [148,149] in the formation of
an unusual electronic structure of the normal and superconducting state of HTS cuprates.

The work clearly shows advantages of the cluster method as compared with the DFT-based
technique to provide an adequate description of the DM coupling and related exchange-relativistic
effects in strongly correlated 3d compounds such as exchange anisotropy [150], spin-other-orbit
interaction [151–157], antisymmetric magnetoelectric coupling [135–137], and electron-nuclear
antisymmetric super transferred hyperfine interactions [158,159]. However, it should be noted that the
DFT with functionals more advanced than LDA can be effective in calculating correctly the sign and
strength of the DM coupling in non-correlated materials [160–162].
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114. Renold, S.; Pliberŝek, S.; Stoll, E.P.; Claxton, T.A.; Meier, P.F. First-principles calculation of electric field
gradients and hyperfine couplings in YBa2Cu3O7. Eur. Phys. J. B 2001, 23, 3–15. [CrossRef]

115. These equalities are true to within a replacement δ1 ↔ δ2. It should be noted that the probability
amplitudes for triplet 200 and 002 configurations are of the same sign due to double-minus effect: (1)
θ ↔ −θ replacement, and (2) the antisymmetry of orbital functions: 200-function ∝ dx2−y2 (1)dxy(2), while
002-function ∝ dx2−y2 (2)dxy(1).

116. Eskes, H.; Tjeng, L.H.; Sawatzky, G.A. Cluster-model calculation of the electronic structure of CuO: A model
material for the high-Tc superconductors. Phys. Rev. B 1990, 41, 288. [CrossRef]

117. Chung, E.M.L.; McIntyre, G.J.; Paul, D.M.; Balakrishnan, G.; Lees, M.R. Oxygen moment formation and
canting in Li2CuO2. Phys. Rev. B 2003, 68, 144410. [CrossRef]

118. Ozhogin, V.I.; Cherepanov, V.M.; Yakimov, S.S. Effect of anisotropy on field-induced antiferromagnetism in
YFeO3. JETP 1975, 40, 517–520.

119. Wolter, A.U.B.; Wzietek, P.; Sullow, S.; Litterst, F.J.; Honecker, A.; Brenig, W.; Feyerherm, R.; Klauss, H.-H.
Giant Spin Canting in the S=1/2 Antiferromagnetic Chain [CuPM(NO3)2(H2O)2]n Observed by 13C-NMR.
Phys. Rev. Lett. 2005, 94, 057204. [CrossRef]

120. Achiwa, N. Linear Antiferromagnetic Chains in Hexagonal ABCl3-Type Compounds (A; Cs, or Rb, B; Cu,
Ni, Co, or Fe). J. Phys. Soc. Jpn. 1969, 27, 561–574. [CrossRef]

121. Hirotsu, S. Jahn-Teller induced phase transition in CsCuCl3: Structural phase transition with helical atomic
displacements. J. Phys. C Solid State Phys. 1977, 10, 967–986. [CrossRef]

122. Schlueter, A.W.; Jacobson, R.A.; Rundle, R.E. A Redetermination of the Crystal Structure of CsCuCl3.
Inorg. Chem. 1966, 5, 277–280. [CrossRef]

123. Plakhty, V.P.; Wosnitza, J.; Kulda, J.; Brückel, T.; Schweika, W.; Visser, D.; Gavrilov, S.V.; Moskvin, E.V.;
Kremer, R.K.; Banks, M.G. Polarized neutron scattering studies of chiral criticality, and new universality
classes of phase transitions. Physica B 2006, 385, 288–294. [CrossRef]

124. Adachi, K.; Achiwa, N.; Mekata, M. Helical Magnetic Structure in CsCuCl3. J. Phys. Soc. Jpn. 1980, 49,
545–553. [CrossRef]

125. Kubo, H.; Yahara, I.; Hirakawa, K. Nuclear Magnetic Resonance of Cu Nuclei in CsCuCl3—A Screw Spin
Arrangement in the Ordered State. J. Phys. Soc. Jpn. 1976, 40, 591–592. [CrossRef]

126. Dang, K.L.; Vefflet, P.; Renard, J.-P. NMR study in a single crystal of the one-dimensional antiferromagnet
CsCuCl3. Solid State Commun. 1977, 24, 313–316. [CrossRef]

127. Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, 864. [CrossRef]
128. Kohn, W.; Sham, J.L. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965,

140, A1133. [CrossRef]
129. Kryachko, E.S.; Ludena, E.V. Density functional theory: Foundations reviewed. Phys. Rep. 2014, 544, 123–239.

[CrossRef]
130. Anisimov, V.I.; Izyumov, Y.A. Electronic Structure of Strongly Correlated Materials; Springer: Berlin,

Germany, 2010.
131. Ghijsen, J.; Tjeng, L.H.; van Elp, J.; Eskes, H.; Westerink, J.; Sawatzky, G.A.; Czyzyk, M.T. Electronic structure

of Cu2O and CuO. Phys. Rev. B 1988, 38, 11322–11330. [CrossRef]
132. Sandratskii, L.M. Symmetry analysis of electronic states for crystals with spiral magnetic order. II. Connection

with limiting cases. J. Phys. Condens. Matter 1991, 3, 8565–8585. [CrossRef]

http://dx.doi.org/10.1103/PhysRevLett.73.2919
http://dx.doi.org/10.1103/PhysRevB.52.10239
http://dx.doi.org/10.1103/PhysRevB.60.10206
http://dx.doi.org/10.1088/0022-3700/16/16/011
http://dx.doi.org/10.1007/s100510170077
http://dx.doi.org/10.1103/PhysRevB.41.288
http://dx.doi.org/10.1103/PhysRevB.68.144410
http://dx.doi.org/10.1103/PhysRevLett.94.057204
http://dx.doi.org/10.1143/JPSJ.27.561
http://dx.doi.org/10.1088/0022-3719/10/7/008
http://dx.doi.org/10.1021/ic50036a025
http://dx.doi.org/10.1016/j.physb.2006.05.019
http://dx.doi.org/10.1143/JPSJ.49.545
http://dx.doi.org/10.1143/JPSJ.40.591
http://dx.doi.org/10.1016/0038-1098(77)90215-0
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1016/j.physrep.2014.06.002
http://dx.doi.org/10.1103/PhysRevB.38.11322
http://dx.doi.org/10.1088/0953-8984/3/44/004


Condens. Matter 2019, 4, 84 45 of 46

133. Sandratskii, L.M. Magnetic structure of relativistic systems with low symmetry. Phys. Rev. B 2001, 64, 134402.
[CrossRef]

134. Mazurenko, V.V.; Anisimov, V.I. Weak ferromagnetism in antiferromagnets: α-Fe2O3 and La2CuO4. Phys. Rev.
B 2005, 71, 184434. [CrossRef]

135. Moskvin, A.S.; Drechsler, S.-L. Multiferroicity due to nonstoichiometry in the chain cuprate LiVCuO4.
Europhys. Lett. 2008, 81, 57004. [CrossRef]

136. Moskvin, A.S.; Panov, Y.D.; Drechsler, S.-L. Nonrelativistic multiferrocity in the nonstoichiometric spin-1/2
spiral-chain cuprate LiCu2O2. Phys. Rev. B 2009, 79, 104112. [CrossRef]

137. Panov, Y.D.; Moskvin, A.S.; Fedorova, N.S.; Drechsler, S.-L. Nonstoichiometry Effect on Magnetoelectric
Coupling in Cuprate Multiferroics. Ferroelectrics 2013, 442, 27–41. [CrossRef]

138. Liu, J.; Koo, H.; Xiang, H.; Kremer, R.K.; Whangbo, M. Most spin-1/2 transition-metal ions do have single
ion anisotropy. J. Chem. Phys. 2014, 141, 124113. [CrossRef]

139. Katsnelson, M.I.; Kvashnin, Y.O.; Mazurenko, V.V.; Lichtenstein, A.I. Correlated band theory of spin and
orbital contributions to Dzyaloshinskii-Moriya interactions. Phys. Rev. B 2010, 82, 100403R. [CrossRef]

140. Secchi, A.; Lichtenstein, A.I.; Katsnelson, M.I. Magnetic interactions in strongly correlated systems: Spin and
orbital contributions. Ann. Phys. 2015, 360, 61–97. [CrossRef]

141. Secchi, A.; Lichtenstein, A.I.; Katsnelson, M.I. Spin and orbital exchange interactions from Dynamical Mean
Field Theory. J. Magn. Magn. Mater. 2016, 400, 112–116. [CrossRef]

142. Haverkort, M.W.; Zwierzycki, M.; Andersen, O.K. Multiplet ligand-field theory using Wannier orbitals. Phys.
Rev. B 2012, 85, 165113. [CrossRef]

143. Agrestini, S.; Saini, N.L.; Bianconi, G.; Bianconi, A. The strain of CuO2 lattice: The second variable for the
phase diagram of cuprate perovskites. J. Phys. A Math. Gener. 2003, 36, 9133. [CrossRef]

144. Gavrichkov, V.A.; Shan’ko, Y.; Zamkova, N.G.; Bianconi, A. Is there any hidden symmetry in the stripe
structure of perovskite high temperature superconductors? J. Phys. Chem. Lett. 2019, 10, 1840–1844.
[CrossRef] [PubMed]

145. Ivashko, O.; Horio, M.; Wan, W.; Christensen, N.B.; McNally, D.E.; Paris, E.; Tseng, Y.; Shaik, N.E.;
Rønnow, H.M.; Wei, H.I.; et al. Strain-engineering Mott-insulating La2CuO4. Nat. Commun. 2019, 10, 786.
[CrossRef] [PubMed]

146. Liao, Z.; Skoropata, E.; Freeland, J.W.; Guo, E.-J.; Desautels, R.; Gao, X.; Sohn, C.; Rastogi, A.; Ward, T.Z.;
Zou, T.; et al. Large orbital polarization in nickelate-cuprate heterostructures by dimensional control of
oxygen coordination. Nat. Commun. 2019, 10, 589. [CrossRef] [PubMed]

147. Campi, G.; Bianconi, A.; Poccia, N.; Bianconi, G.; Barba, L.; Arrighetti, G.; Innocenti, D.; Karpinski, J.;
Zhigadlo, N.D.; Kazakov, S.M.; et al. Inhomogeneity of charge-density-wave order and quenched disorder
in a high-Tc superconductor. Nature 2015, 525, 359. [CrossRef] [PubMed]

148. Seino, Y.; Kotani, A.; Bianconi, A. Effect of Rhombic Distortion on the Polarized X-Ray Absorption Spectra in
High Tc Superconductors. J. Phys. Soc. Jpn. 1990, 59, 815–818. [CrossRef]
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