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Abstract: X-ray Absorption Fine Structure Spectroscopy (XAFS) is a powerful technique to investigate
the local atomic geometry and the chemical state of atoms in different types of materials, especially if
lacking a long-range order, such as nanomaterials, liquids, amorphous and highly disordered systems,
and polymers containing metallic atoms. The INFN-LNF DAΦNE-Light DXR1 beam line is mainly
dedicated to soft X-ray absorption spectroscopy; it collects the radiation of a wiggler insertion device
and covers the energy range from 0.9 to 3.0 keV or the range going from the K-edge of Na through
to the K-edge of Cl. The characteristics of the beamline are reported here together with the XAFS
spectra of reference compounds, in order to show some of the information achievable with this X-ray
spectroscopy. Additionally, some examples of XAFS spectroscopy applications are also reported.
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1. Introduction

Soft X-rays ranging from 0.9 to 3.0 keV cover an important energy range because they can be
used in the study of materials containing atoms like magnesium, aluminum, silicon, sulfur, and many
others. These atomic elements have an important role in fields like biology, medicine, catalysis,
cultural heritage, materials, and space science. Furthermore, soft X-ray beamlines can be used for
the characterization of samples using X-ray spectroscopies, but also for tests of optics and detectors
needed for soft X-ray applications in other fields like space science.

X-ray Absorption Fine Structure (XAFS) spectroscopy is particularly useful to investigate the
electronic structure and local environment of specific atoms in quite different samples like solids,
liquids, and gasses. XAFS spectra come from the X-ray induced transition of electrons from inner-shell
orbitals to unoccupied electronic states, and from the scattering of the photo-emitted core electrons by
all the neighboring atoms. For samples containing light elements, in the soft X-ray region, K absorption
edges can be studied, due to the excitation of 1s electrons; however for the ones containing heavier
elements like Mo, Au, and so on, L or M absorption edges can be used to achieve important information
on their valence band structures.

The DXR1 soft X-ray beamline is one of the beamlines of the DAΦNE-Light [1] Instituto Nazionale
di Fisica Nucleare (INFN) Laboratori Nazionali di Frascati (LNF) synchrotron radiation facility.
The Double Annular Φ-factory for Nice Experiments (DAΦNE) [2] storage ring is a high-luminosity,
0.51 GeV, e+-e− collider, designed for a broad high-energy physics program. Due to its low-energy
and high-electron current (higher than 1.5 A), DAΦNE provides high-flux synchrotron radiation (SR)
beams in the energy range from IR to soft X-rays, and for this reason it is being used, in both dedicated
and parasitic mode, as well as for SR applications.

In this paper, the characteristics of the DXR1 beamline, together with some XAFS measurements
to show its performance, will be reported.
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2. The DXR1 Beamline

The DAΦNE DXR1 soft X-ray beamline, mainly dedicated to X-ray absorption spectroscopy,
started delivering beamtime to users at the end of 2004. The radiation source of the DXR1 beamline is
one of the four planar wigglers (6-poles equivalent) installed on the DAΦNE electron storage ring to
control the beam emittance [3]. The wiggler forces the accelerated electrons to emit a wide, intense,
and polarized fan of electromagnetic radiation. Due to the wiggler higher magnetic field, the critical
energy of the emitted synchrotron radiation spectrum of the DXR1 beamline (296 eV) is higher than
the one of the bending magnet beamlines (219 eV). The 6 poles of the wiggler and the high storage
ring current >1.5 A of DAΦNE, give a useful X-ray flux (Figure 1) for measurements well beyond ten
times the critical energy.
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2.1. The Beamline Layout

A schematic view of the soft X-ray beamline is shown in Figure 2. The front end of the beamline
is placed at about 4 m from the wiggler and its optical axis is geometrically aligned to the insertion
device. The exit flange was designed to accept the entire vertical SR divergence (1 mrad), and about
12 mrad in the horizontal plane.

A gold-coated silicon mirror, at a grazing angle of about 2.2 degrees, deflects, in the horizontal
plane, half of the beam into the UV-VIS DXR2 branch line. A removable thin high-transmittance
window (8 µm Be) separates the Ultra High Vacuum (UHV) of the machine from the HV of the rest of
the beamline. A double wire beam monitor can be used to control the beam position. To define the
beam shape and dimensions, remotely controlled vertical and horizontal slits were installed before
and after the soft X-ray monochromator, very near to the experimental chamber. The beam size used
clearly depends on the dimensions of the samples to be measured; a standard one is about 2 mm in the
vertical length and 8 mm in horizontal length.

To select the soft X-ray energies, the beamline is equipped with a Toyama double-crystal
monochromator (Figure 3) in ‘boomerang’ geometry, that ensures a fixed beam exit at all achievable
energies and can cover Bragg angles from 15◦ to 75◦. The monochromator is at about 30 m from the
exit flange of the front end. Different sets of crystals (see Table 1) can be used to cover the available
photon energy range (0.9–3 keV). To change the crystals, the UHV chamber of the monochromator
must be opened and the operation normally takes several hours.
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Table 1. Available sets of X-ray crystals.

Crystal 2d Spacing (Å) Energy Range (eV) Absorption Edges

Beryl (10-10) 15.954 900–1560 Na K, Mg K
KTP (011) 10.950 1200–2200 Al K
InSb (111) 7.481 1800–3000 Si K–Cl K
Ge (111) 6.532 2100–3000 P K–Cl K
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The typical energy resolution (E/∆E) of the monochromator is about 1500 for Beryl and InSb,
while the flux measured at 1300 eV using the Beryl crystal is 6 × 108 ph/s and 3 × 108 ph/s at 2500 eV
using the InSb crystals. In both cases, the first ionization chamber was filled with N2 gas, the gas
pressure was chosen to have 10% efficiency, and the beam dimensions were (2 × 8) mm2.

2.2. The Beamline Experimental Setup

A multipurpose experimental HV chamber (Figure 3), placed at about 1 m from the
monochromator, was realized to allocate several samples to be measured in transmission, fluorescence,
and total electron yield mode. At the moment, the only allowed mode is the transmission one where
the incoming and outgoing X-ray beams are monitored using two ionization chambers. The sample
holder normally used at RT can host up to ten samples. The experimental chamber can also host other
kinds of sample holders, but only with a maximum dimension of about 10 × 10 cm2.

From 2019 onwards, it will also be possible to perform XAFS measurements in fluorescence
mode. A new 4-channel array of Silicon Drift Detectors (SDDs), called ARDESIA and developed by
INFN and the Politecnico di Milano [4], has been tested on the beamline in February 2018 and will
be definitively installed by the end of the year. The ARDESIA detector, having a finger-like structure,
can be introduced in the experimental chamber using a specific vacuum-tight translating system and
uses as an entrance window an AP5 MOXTEK thin polymer with high transmission in the soft X-ray
region. In Figure 4, the first XAFS spectrum of a Pyrex thin glass, taken in fluorescence mode at the Si
K-edge, is shown. The values reported for the fluorescence mode are the average values of the data
measured by the four ARDESIA SDD detectors and are compared with the data taken on a Pyrex
powder sample measured in transmission mode. This new detector will open the possibility to also
accept experimental proposals on diluted and supported samples.
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Figure 4. Comparison between the XAFS spectra of Pyrex samples measured at the DXR1 beamline in
absorption and fluorescence mode.

In order to control the sample temperature and open the beamline to experimental proposals
requiring low temperatures, one can use an OXFORD Instruments cryostat, which can work from
4 K up to room temperature, giving the possibility to perform XAFS measurements as a function of
temperature. The sample holder for measurements from RT to 77 K can host six samples, while the
one for lower temperatures can only host three.

At the end of the DXR1 experimental hutch, there is a small hutch where a tungsten micro-focus
conventional X-ray tube has been installed together with an experimental chamber; this can be used to
make tests on samples or devices connected to optical or detection systems.
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3. XAFS Spectroscopy and Measurements

3.1. XAFS Spectroscopy

XAFS [5,6] can help understand the physical properties of materials, giving information on their
local structure. XAFS is element-selective because choosing the energy of the X-rays means choosing
the atomic number, Z, of the atom whose surroundings have to be characterized. XAFS is considered
core level spectroscopy, because the X-ray energies used are the ones of the deep-core electrons and not
of the valence ones. As a function of energy, XAFS measures the modulations of the X-ray absorption
coefficient, near and above the core-level binding energies of a specific atom (Figure 5). XAFS spectra
are sensitive to the oxidation state, coordination chemistry, and to the distances, coordination numbers,
and species of the atoms surrounding the selected atomic element. XAFS can be used to study ordered
and disordered systems, even if very diluted. XAFS can help measure 2D interatomic distances with
high resolution, but also has 3D structural sensitivity. XAFS spectroscopy can be applied in the study
of nanostructures, thin films, interfaces, alloys, dopants, liquids and many other very important fields,
such as life-science, catalysis, cultural heritage, material, and space science.
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at room temperature.

When an X-ray beam passes through a sample, normally its intensity decreases by an amount
related to the absorption characteristics of the sample itself, especially for photon energies between
1 keV and 50 keV, mainly used in XAFS spectroscopy. The mechanism contributing to the X-ray
attenuation is the photoelectric absorption, resulting in the absorption of photons and emission of
photoelectrons. The intensity of the transmitted X-ray beam (I1) is related to the intensity of the
incoming beam (I0) by the Beer’s Law:

I1 = I0 exp[−µ(E)x], (1)

where µ(E) is the linear absorption coefficient as a function of energy, and x is the thickness of
the sample; a typical XAFS setup is shown in Figure 6. I0 and I1 are the signals measured by the
ion chambers positioned before (incoming flux) and after the sample (transmitted flux) working in
transmission mode (µ(E)x = ln(I0/I1). In the presence of supported or very diluted/thin samples,
the transmission mode cannot be used. In this case, a fluorescence detector must be used to measure
the fluorescence flux IF (µ(E)x = IF/I0) [5].
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Figure 6. Schematic view of a typical XAFS experimental setup, where in transmission mode, I0 and
IT are measured using two ionization chambers, while in fluorescence mode, a fluorescence detector
needs to be used.

As clearly visible in Figure 5, where the µ(E)x, evaluated using Equation (1), is reported in the
low energy side of the spectrum, as the X-ray energies increase, the absorption coefficient decreases.
This behavior changes at the absorption edge when the energy value of the incoming X-rays becomes
enough to extract electrons from a deeper level. As shown in Figure 5, a fine structure (XAFS) starts
appearing at the edge and is also present well above it. In XAFS spectra, three different regions [5] can
be evidenced: the pre-edge and edge region, the near edge region or XANES (X-ray Absorption Near
Edge Structure) up to about 50 eV (information on the local electronic and geometric 3D structure),
and the extended region or EXAFS (Extended X-ray Absorption Fine Structure) [6], that can reach
thousands of eV above the edge and can give information on the local geometric structure surrounding
the absorbing atoms.

3.2. XANES and EXAFS Spectra

Even if XANES modeling [5] is very complex, important information like the oxidation state,
three dimensional geometry, and coordination environment of elements under investigation can be
achieved by also comparing the measured spectra with those of well-known model compounds.
In Figure 7, the normalized XANES spectra measured on crystalline samples with known crystal
structures, containing sulfur at different valence states, are reported.
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The shape of the edge and the pre-edge resonances are characteristic of the local symmetry of the
investigated atom sites and can be used as fingerprints in the identification of the local structure of
unknown samples. The binding energies of the valence orbitals and therefore the energy position of the
sulfur edge are correlated with the valence state of the absorbing atom. As the oxidation state increases,
the absorption edges in the XANES spectra move to higher energies. Energy shifts vary linearly with
the valence of the absorbing atom [5], and in particular, as a function of the sulfur oxidation state,
large energy differences up to 12 eV can be found between S2− and S6+ [7].

XANES spectra can give chemical and structural information and can be very important in many
different fields. In the field of cultural heritage, X-ray elemental micro mapping can give information
on the atomic elements present in paintings; but when using XAFS spectroscopy, it becomes also
possible to achieve information on the chemical composition in the presence of trace elements as
well [8]. Due to the very different features present in the XANES spectra of elements in metallic
or different oxide phases (see Figure 8), sometimes XANES spectra can directly give the required
information on the chemical state of the materials being studied [9].
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oxide Al2O3.

From the analysis of the EXAFS data, quantitative information on the short-range order structure
can be achieved. EXAFS oscillations are usually indicated as χ(k):

χ(k) =
µ(k)− µ0(k)

µ0(k)
, (2)

where µ0(k) is the monotonically decreasing atomic absorption coefficient, µ(k) is the effective
absorption coefficient oscillating around it, and k is the photoelectron wave vector [10] given by
Equation (3)

k =

√
2m(E − E0)

}2 , (3)

where E is the incoming photon energy, and E0 is the absorption edge energy calculated as the energy
of the maximum derivative of µ(E). EXAFS oscillations can be well approximated by Equation (4):

χ(k) = ∑
j

S2
0Nj f j(k)e

−2k2σ2
j

kR2
j

sin(2kRj + δj(k)). (4)

In χ(k), the backscattering atoms around the absorbing one are grouped in coordination shells [5,6],
each one containing a number, Nj of atoms, of the same species, at the same distance Rj from the
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absorbing atom. χ(k) is formally given by the sum over the index j of the contributions coming from
the j coordination shells [5,6]. In Equation (4), fj(k) and dj(k) are scattering properties of the atoms
around the absorbing one and in particular fj(k) is the backscattering amplitude of the Nj neighbors,
while dj(k) is a k-dependent phase shift [5,6]. As shown in Figure 9, EXAFS data can be extracted using
programs like the ATHENA program [11], after the linear subtraction of the pre-edge background and
the removal of the atomic absorption.
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Since the EXAFS signal contains the contributions of all of the j coordination shells and each
contribution can be approximated by a damped sinusoidal function in k-space whose frequency is
proportional to a specific absorber-backscatterer distance, Fourier transforming (FT) the EXAFS data
enables the separation of the different frequencies. This operation transforms each EXAFS sinusoidal
component in a FT modulus peak, going from the k(Å−1) space to an R(Å) space. The height of the
peaks depends on the amplitude parameters of the EXAFS equation, while their position depends on
the phase parameters. In Figure 10 the FT of the EXAFS spectrum of an Aluminum foil is reported:
the first and second peaks represent the first and second coordination shells. Having aluminum a face
centered cubic (fcc) structure [12], the coordination number of the nearest neighbors is 12, while the
second shell coordination number is 6.
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A fitting procedure can be used to determine the coordination numbers (Nj), the interatomic
distances (Rj) and Debye–Waller thermal and static disorder factors (σ2) of the coordination shells
around the absorbing atom.

The least-square fitting of the structural parameters can be performed using a program
like ARTEMIS [11] that—together with the ATHENA program—is implemented in the IFEFFIT
package [13]. In the fitting procedures, the scattering contributions can be calculated by software
packages like FEFF [14,15], and depend on the coordination shells around the absorbing atom that must
be studied. In all cases, an estimation of the accuracy of the obtained structural parameters, compatible
with data quality and range used [16] is also normally evaluated. In Table 2, the results achieved in the
fitting procedure of the first two Al coordination shells are reported. The results achieved by the XAFS
data taken at room temperature, are in good agreement with the fcc Al values [17].

Table 2. Results achieved in the fitting procedure of the first two Al coordination shells.

Shell N R (Å) σ2 (Å2)

First 12 2.85(1) 0.014(3)
Second 6 4.04(1) 0.027(4)

3.3. Using the Beamline for XAFS Applications

Twice a year, a call for proposals is open to EU, Italian, and other external users coming from
Universities or Research Centers. The transnational access to all the DAFNE-Light beamlines open to
users is nowadays supported by the EU CALIPSOplus project [18]. In recent years, the soft X-ray line
has successfully delivered beamtime to many different experimental proposals. The X-ray Absorption
Near Edge Spectroscopy (XANES) technique has been routinely applied in transmission mode on
different samples within the energy range 1.0–3.0 keV. XANES spectra were acquired in parasitic and in
dedicated beamtime days. During the parasitic mode days, tests of new samples and experiments not
requiring long acquisition times, like studies of diamond detectors, soft X-ray multi-layers, and imaging
of metal impurities in leaves were performed. Dedicated beamtime was normally used for selected
experimental proposals chosen by the INFN-LNF DAFNE-Light User Selection Panel.

In the last year, some interesting experiments on silicate and lapis lazuli pigments at the Si and S
K-edges that can have applications in the cultural heritage field have been performed and XANES
data are being analyzed.

The possibility to perform measurements at low temperatures was used in experiments requiring
tests of systems needed for space applications. In particular, the thermal characterization of the
X-ray transmission of thin aluminum filters, needed to protect X-ray detectors for space missions,
was performed at the DXR1 beamline. These measurements are important to characterize the effects
induced on the detector by the aluminum filters. As shown in Figure 11 (left panel), where the EXAFS
spectra of an aluminum foil as a function of temperature are reported, X-ray transmission measures
the presence of a fine structure, but also of thermal effects that affect the phase and amplitude of the
EXAFS oscillations. Both effects are probably more evident in Figure 11 (right panel), where the Fourier
transforms of these spectra, calculated in the k range (2–7) Å−1, are reported. The reduction of the
intensity of the peaks corresponding to the different coordination shells and the shift of their positions
in R space, as a function of temperature, are now clearly more visible.

Just to give an idea of other kind of measurements that can be performed at the DXR1 beamline,
some interesting applications will be reported concerning hydrogen storage materials [19], thiol-capped
gold nanoparticles [20], and anticancer metallodrugs [21].

Concerning hydrogen storage materials, tetrahydroaluminates or alanates, complex hydrides
containing AlH4 groups, were studied [19] for the development of higher-efficiency hydrogen storage
materials, since it was discovered that the hydrogen de- and absorption can be catalyzed by doping
with titanium and other transition metal and rare earth metal species. The aim of the experiments at
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the Al K edge was to investigate the local structure around Al atoms studying the alanate phase at
different stages of the reaction after the material has been cycled under hydrogen. The study allowed
showing the presence of modification within the alanate structure during cycling under hydrogen.
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Moving to nanomaterials, it is well-known that the study on their size dependent structural and
electronic properties asks, as ideal condition, nearly monodisperse particles. One way to achieve
this is by capping nanoparticles with molecular species that interact with the surface preventing the
nucleation or aggregation of single clusters. Capping molecules generally contain functional groups
such as amine, alcohol, thiol, and phosphine, providing a wide range of interactions. Thiol-capping
molecules are particularly suitable in preparative methods based on the chemical synthesis of
nanoparticles, such as SMAD [20]. In general, thiols interact strongly with a gold surface, inducing
meaningful charge redistribution. A thiol–Au interaction is quite important because it exhibits the
interesting property of self-assembly. In principle, alkanethiolates are dissociatively chemisorbed
to a gold surface via the sulfur atom after cleavage of S–H bonds. When interacting with a gold
surface, different structural phases occur at increasing coverage; in particular, high coverage results
in a formation of ordered structures. To better understand the gold–sulfur interactions, the XAFS
sulfur K-edge measurements were performed at the DXR1 beamline (Figure 12), while the Au L3

measurements were performed elsewhere.
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Moving to a totally different field, an important study has been performed on adducts of
ruthenium anticancer metallodrugs with serum proteins and fragments of proteins [21]. There is
a great interest in the analysis of the interactions of metal-based drugs with serum proteins in view of
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their relevant biological and pharmacological implications. Specifically, great attention has been given
to ruthenium complexes that seem to be very promising.

The mechanisms through which the metal complexes produce their biological and
pharmacological effects are still largely unexplored and it seems that ruthenium complexes act on
different targets, most likely on proteins.

The reaction of bovine serum albumin (BSA) with [trans-RuCl4 (Im)(dimethylsulfoxide)][ImH]
(Im = imidazole) (NAMI-A), an experimental ruthenium(III) anticancer drug, and the formation
of the respective NAMI-A/BSA adduct have been investigated at the DXR1 beamline by XAFS
measurements at the sulfur and chlorine K-edges and at the ruthenium L3 edge. Ruthenium XAFS data
proved unambiguously that the ruthenium remains in the oxidation state, Ru(III), after protein binding.
Comparative analysis of the chlorine K-edge XAS spectra of NAMI-A and NAMI-A/BSA revealed
that the chlorine environment was greatly perturbed upon protein binding (Figure 13). Only small
changes were observed in the sulfur K-edge spectra (Figure 13), probably because it was dominated by
several protein sulfur groups. Valuable information on the nature of this metallodrug/protein adduct
and on the mechanism of its formation was gained, and XAFS spectroscopy turned out to be a very
suitable method for the study of this kind of systems.
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4. Conclusions

The INFN-LNF soft X-ray DXR1 beamline started delivering beamtime to users at the end of
2004, but during the last few years, several improvements have been made concerning the sample
environment. XAFS measurements can now be performed at low temperatures and, starting from
2019, in fluorescence mode as well, opening the possibility to study diluted and supported samples.
The DXR1 beamline is mainly used for XAFS spectroscopy measurements but has also been used to test
detectors and optical elements. As mentioned, XAFS spectroscopy can help achieving a complete local
structural characterization of different kinds of samples, being very sensitive to the formal oxidation
states, coordination chemistry, distances, coordination number, and species of the atoms immediately
surrounding the selected atomic elements. At the DXR1 soft X-ray beamline, XAFS spectroscopy has
been applied in many different fields, some examples of which have been reported here.
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