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Abstract: We investigate the ground state of strongly correlated electron systems based on an
optimization variational Monte Carlo method to clarify the mechanism of high-temperature
superconductivity. The wave function is optimized by introducing variational parameters in an
exponential-type wave function beyond the Gutzwiller function. The many-body effect plays
an important role as an origin of superconductivity in a correlated electron system. There is a
crossover between weakly correlated region and strongly correlated region, where two regions are
characterized by the strength of the on-site Coulomb interaction U. We insist that high-temperature
superconductivity occurs in the strongly correlated region.

Keywords: strongly correlated electron systems; mechanism of superconductivity; high-temperature
superconductivity; kinetic mechanism of superconductivity; optimization variational Monte Carlo
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1. Introduction

The mechanism of high-temperature superconductivity has been studied vigorously for more than
30 years since the discovery of cuprate high-temperature superconductors [1]. High-temperature cuprates
are typical strongly correlated systems since the parent materials are Mott insulators when no carriers are
doped. It is important to understand electronic properties of strongly correlated electron systems.

The CuO2 plane is commonly contained in high-temperature cuprates, where the CuO2 plane
consists of oxygen atoms and copper atoms. The electronic model for this plane is called the d-p model
(or three-band Hubbard model) [2–18]. It appears very hard to elucidate the phase diagram of the d-p
model because of strong correlation between electrons. We often examine simplified models such as
the two-dimensional single-band Hubbard model [19–38] or ladder model [39–43] as an attempt to
make clear the phase diagram of correlated electron systems.

The Hubbard model is one of the fundamental models in the study of condensed matter
physics. The Hubbard model is employed to understand the metal-insulator transition [44] and
magnetic properties of various compounds [45,46]. The Hubbard model and also the d-p model
have the potential to explain various phenomena. By employing the Hubbard model, we can
understand the appearance of inhomogeneous states, reported for cuprates, such as stripes [47–54]
and checkerboard-like density wave states [55–58].

It is important to clarify whether high-temperature superconductivity can be explained based on
the Hubbard model (and the three-band d-p model). Previous works on the ladder Hubbard model
supported the existence of superconducting phase [39–43,59]. Recent studies on the two-dimensional
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(2D) Hubbard model show positive results on superconductivity (SC) [38]. We show the order
parameters of antiferromagnetic (AF) state and SC state as a function of the interaction parameter
U in Figure 1. We think that the result strongly supports the existence of SC and shows a possibility of
high-temperature superconductivity in the strongly correlated region.
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Figure 1. AF and SC order parameters as a function of U/t on a 10× 10 lattice with the periodic
boundary condition in one direction and antiperiodic one in the other direction [38]. In Reference [38]
∆ was shown as a function of U in the range 0 < U < 20. We modified the figure to include the range
20 < U < 25. ∆AF has a peak when U is of the order of the bandwidth U/t ∼ 10. AF(G) in the figure
shows the result obtainee for the simple Gutzwiller function.

A variational Monte Carlo method is a useful method to investigate electronic properties of strongly
correlated electron systems by calculating the expectation values numerically [26–31]. A variational
wave function can be improved by introducing new variational parameters to control the electron
correlation. We have proposed wave functions that are optimized by multiplying an initial function by
exp(−S)-type operators [38,60,61], where S is a suitable correlation operator. The Gutzwiller function
is also written in this form. An optimization process is performed in a systematic way by multiplying
by the exponential-type operators repeatedly [60]. The ground-state energy is lowered considerably by
using this type of wave functions [38]. This paper can be viewed as an extension of the paper published
in proceeding of conference on superconductivity (ISS2017) [62].

2. Model Hamiltonians

The Hubbard model is written as

H = ∑
ijσ

tijc†
iσcjσ + U ∑

i
ni↑ni↓, (1)

where tij indicates the transfer integral and U is the strength of the on-site Coulomb interaction. We set
tij = −t when i and j are nearest-neighbor pairs 〈ij〉 and tij = −t′ when i and j are next-nearest
neighbor pairs. We consider this model in two dimensions, and N and Ne denote the number of lattice
sites and the number of electrons, respectively.
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We also consider the three-band model that explicitly contains oxygen p and copper d electrons.
The Hamiltonian is

Hdp = εd ∑
iσ

d†
iσdiσ + εp ∑

iσ
(p†

i+x̂/2σ pi+x̂/2σ + p†
i+ŷ/2σ pi+ŷ/2σ)

+ tdp ∑
iσ
[d†

iσ(pi+x̂/2σ + pi+ŷ/2σ − pi−x̂/2σ − pi−ŷ/2σ) + h.c.]

+ tpp ∑
iσ
[p†

i+ŷ/2σ pi+x̂/2σ − p†
i+ŷ/2σ pi−x̂/2σ

− p†
i−ŷ/2σ pi+x̂/2σ + p†

i−ŷ/2σ pi−x̂/2σ + h.c.]

+ t′d ∑
〈〈ij〉〉σ

εij(d†
iσdjσ + h.c.) + Ud ∑

i
d†

i↑di↑d†
i↓di↓

+ Up ∑
i
(np

i+x̂/2↑n
p
i+x̂/2↓ + np

i+ŷ/2↑n
p
i+ŷ/2↓). (2)

We use the hole picture in this paper. diσ and d†
iσ represent the operators for the d hole. pi±x̂/2σ

and p†
i±x̂/2σ denote the operators for the p holes at the site Ri±x̂/2, and in a similar way pi±ŷ/2σ and

p†
i±ŷ/2σ are defined. np

i+x̂/2σ and np
i+ŷ/2σ denote the number operators of p holes at Ri+x̂/2 and Ri+ŷ/2,

respectively. tdp is the transfer integral between adjacent Cu and O orbitals and tpp is that between
nearest p orbitals. t′d indicates that between d orbitals where 〈〈ij〉〉 denotes a next nearest-neighbor
pair of copper sites. cuprate superconductors such as Bi2Sr2CaCu2O8+δ [63] and Tl2ba2CuO6+δ [64].
εij takes the values ±1 according to the sign of the transfer integral between next nearest-neighbor d
orbitals. Ud is the strength of the on-site Coulomb repulsion between d holes and Up is that between p
holes. We can reproduce the Fermi surface by using parameters tdp, tpp and t′d. The values of band
parameters have been estimated [65–69]; for example, Ud = 10.5, Up = 4.0 and Udp = 1.2 in eV [66]
where Udp is the nearest-neighbor Coulomb interaction between holes on adjacent Cu and O orbitals.
We neglect Udp because Udp is small compared to Ud. We use the notation ∆dp = εp − εd. The number
of sites is denoted as N, and the total number of atoms is Na = 3N. The energy unit is given by tdp.

3. Optimization Variational Monte Carlo Method

In a variational Monte Carlo method, we employ a wave function that is suitable for the system
which we consider and evaluate the expectation values by using a Monte Carlo procedure. To take into
account electron correlation between electrons, we start from the Gutzwiller wave function given by

ψG = PGψ0, (3)

where PG is the Gutzwiller operator PG = ∏j(1− (1− g)nj↑nj↓) where g is the variational parameter
in the range of 0 ≤ g ≤ 1. ψ0 indicates a trial one-particle state.

Because the Gutzwiller function is very simple and is not enough to take account of electron
correlation, we should improve the wave function. There are several methods to optimize the wave
function. One method is to multiply the Gutzwiller function by an exponential-type operator. The wave
function is written as [38,60,70–74]

ψλ = exp(−λK)ψG, (4)

where K is the kinetic part of the Hamiltonian and λ is a real variational operator [31,60,71].
The expectation values are calculated by using the auxiliary field method [60,75]. The other method
to improve the Gutzwiller function is to introduce a Jastrow-type operator [33]. We can control
nearest-neighbor correlation by multiplying by the operator

PJdh = ∏
j

(
1− (1− η)∏

τ

[
dj(1− ej+τ) + ej(1− dj+τ)

])
, (5)
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where dj is the operator for the doubly-occupied site given as dj = nj↑nj↓ and ej is that for the empty
site given by ej = (1− nj↑)(1− nj↓). η is the variational parameter in the range 0 ≤ η ≤ 1. With this
operator we can include the doublon-holon correlation:

ψη = PJdhψG. (6)

It is possible to generalize the Jastrow operator to consider long-range electron correlation by
introducing new variational parameters [76].

In this paper we use the wave function of exponential type in Equation (4). We call this
type of wave function the off-diagonal wave function since the off-diagonal correlation in the site
representation is taken into account in this wave function. We believe that it is more important to
consider off-diagonal electron correlation than diagonal electron correlation. In fact, the energy is
further lowered when we employ the off-diagonal wave function [38].

4. Antiferromagnetic Crossover

The AF one-particle state ψAF is given by the eigenfunction of the AF trial Hamiltonian given by

HAF = ∑
ijσ

tijc†
iσcjσ − ∆AF ∑

iσ
(−1)xi+yi σniσ, (7)

where ∆AF is the AF order parameter and (xi, yi) represents the coordinates of the site i. With ψAF,
the wave function is given as

ψλ,AF = exp(−λK)PGψAF. (8)

In general, the AF state is very stable in the Hubbard model near half-filling. Thus, it is important
to control AF magnetic order so that the superconducting state is realized. The 2D Hubbard model
and the three-band d-p model have similarity with respect to magnetic order. We found that the AF
state is more stable in the d-p model than in the single-band Hubbard model.

The stability of the AF state depends mainly on the electron density ne, the interaction strength U,
and the transfer integral t′ and long-range transfers in the single-band Hubbard model. The AF
correlation is induced as U increases from zero in weakly correlated region and is maximized when
U is of the order of the bandwidth, say at U = Uc, when carriers are doped. When U becomes
larger than Uc, the AF correlation turns to decrease. In the region where U is extremely large, the AF
correlation is suppressed to a small value by large fluctuation. This is shown in Figure 1. Thus, there is
a crossover between weakly correlated region and strongly correlated region.

The transfer integral t′ also shows non-trivial effect on the stability of AF magnetic order. As −t′

increases, the AF correlation increases. (We adopt that t′ is negative in this paper.) We show ∆AF as a
function of 1− ne in Figure 2 for t′ = 0 and Figure 3 for t′ = −0.2. When t′ is negative, the AF region
expands up to about 20 percent doping where 1− ne ∼ 0.2.

In the three-band d-p model, the AF correlation is stronger than that in the single-band Hubbard
model. We introduced the transfer integral t′d to control the strength of antiferromagnetism. We found
that the AF correlation is reduced when t′d increases, which is in contrast to the role of t′ for the
Hubbard model. The Figure 4 shows the phase diagram of the ground state in the half-filled case in the
tpp − t′d plane where AFI and PI indicate antiferromagnetic insulator state and paramagnetic insulator
state, respectively. A phase transition occurs from the antiferromagnetic insulator to the paramagnetic
insulator as parameters tpp and t′d increase. A copper oxide which ia an insulator without hole doping
may be in the AFI region of thia figure. For such copper oxides, |t′d| may not be very large and we
expect that the value of t′d may be in the range |t′d| ≤ −0.2td. As the density of holes increases, the role
of t′d and tpp will become important.
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Figure 2. Antiferromagnetic order parameters as a function of the hole density 1− ne on a 10× 10
lattice for t′ = 0. We put U/t = 12, 14 and 18.
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Figure 3. Antiferromagnetic order parameters as a function of the hole density 1− ne on a 10× 10
lattice for t′ = −0.2t. We put U/t = 12, 14 and 18.
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Figure 4. Antiferromagnetic and paramagnetic insulator states in the plane of tpp and |t′d| for the d-p
model. We put Ud = 8, Up = 0, εp − εd = 1 and t′d < 0 on a 6× 6 lattice with 108 atoms in total.
The energy unit is given by tdp.
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5. Correlated Superconductivity

The superconducting state is represented by the BCS wave function

ψBCS = ∏
k
(uk + vkc†

k↑c
†
−k↓)|0〉, (9)

with coefficients uk and vk that appear in the ratio uk/vk = ∆k/(ξk +
√

ξ2
k + ∆2

k), where ∆k is the
gap function with k dependence and ξk = εk − µ is the dispersion relation of conduction electrons.
We assume the d-wave symmetry for ∆k: ∆k = ∆SC(cos kx − cos ky). The Gutzwiller BCS state is
formulated as

ψG−BCS = PNe PGψBCS, (10)

where PNe indicates the operator to extract the state with Ne electrons. In this wave function the
electron number is fixed and thus the chemical potential in ξk is regarded as a variational parameter.
In the formulation of ψλ, we use the BCS wave function without fixing the total electron number,
namely, without the operator PNe . The chemical potential µ in ξk is not a variational parameter and is
used to adjust the total electron number. The wave function is given as

ψλ = e−λKPGψBCS. (11)

We perform the electron-hole transformation for down-spin electrons:

dk = c†
−k↓, d†

k = c−k↓, (12)

and not for up-spin electrons: ck = ck↑. The electron pair operator c†
k↑c

†
−k↓ denotes the hybridization

operator c†
k dk in this formulation.

We show the phase diagram in Figure 5 where the condensation energies for SC and AF states are
shown as a function of the hole density 1− ne for U/t = 18 and t′ = 0. The condensation energy ∆E is
defined as the energy lowering due to the inclusion of the order parameter:

∆E = E(∆ = 0)− E(∆opt), (13)

where ∆ is the SC or AF order parameter and ∆opt is its optimized value. We set t′ = 0 because t′ = 0 is
the most optimal parameter value for superconductivity. In the optimum range for superconductivity,
a pure d-wave superconducting state is realized.
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Figure 5. The condensation energy per site as a function of the hole density x = 1− ne on a 10× 10
lattice for the 2D Hubbard model. The SC and AF condensation energies are shown. We set t′ = 0 and
U/t = 18.
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As shown in Figure 5, there is a coexistence of superconductivity and antiferroamgnetism when
the doping rate x < 0.09. There is a possibility of coexistence in the underdoped region. This may be
related to unusual metallic properties of cuprate superconductors in the underdiped region. We expect
that the area of coexistence phase becomes smaller as the wave function is improved and optimized
further by multiplying by exponential correlation operators.

6. Phase Separation

We discuss the phase separation in the 2D Hubbard model here. An existence of the phase separation
has been pointed out recently. The ground-state energy E(Ne), where Ne is the number of electrons,
may exhibit a singular behavior near half-filling when the ground-state energy at half-filling is lowered
extremely due to the AF order. The quantity δ2E(Ne) ≡ [E(Ne + δNe)− 2E(Ne) + E(Ne − δNe)]/(δNe)2,
being proportional to the second derivative of the energy E(Ne) with respect to the electron number, has a
possibility to be negative for low hole doping. The phase separation occurs when δ2E(Ne) is negative.
In our optimized wave function, the phase separation is restricted to the range x ≡ 1− ne ≤ 0.06 for
t′ = 0 and the phase separation disappears for negative t′ = −0.2. We think that there is a possibility
that the phase separation will disappear as the wave function is optimized further by multiplying by
operators PG and exp(−λ′K).

7. Summary

We investigated the ground-state properties of the two-dimensional Hubbard model by using
the optimization variational Monte Carlo method. We used the exponential type wave function given
in the form exp(−λS) with an appropriate operator S and a variational parameter λ. With our wave
function, the ground-state energy is lowered greatly and the energy expectation value is lower than
that obtained by any other wave function such as the Gutzwiller wave function and also several
proposed wave functions with many variational parameters. The ground-state energy is lowered due
to the kinetic-energy gain coming from exp(−λK).

The antiferromagnetic state is very stable near half-filling (with no carriers) in the 2D Hubbard
model the also the three-band d-p model. The AF correlation is suppressed as the doping rate of holes
increases. As the strength of the on-site Coulomb interaction U changes, the crossover occurs between
weakly correlated region and strongly correlated region. In the strongly correlated region, where U is
larger than Uc which is of the order of the bandwidth, the AF correlation is suppressed. A decrease
of AF correlation indicates an increase in spin and charge fluctuation. This fluctuation is caused by
an increase in kinetic energy and would induce electron pairing. We expect that this would cause
high-temperature superconductivity.

Lastly we supplement the crossover. We expect that the crossover behavior is a universal phenomenon.
The s-d model shows a crossover from weakly coupling to strongly coupling regions as the temperature
decreases [77–79]. The logarithmic dependence of the resistivity appears due to an anomaly associated
with the crossover [80–85]. The two-impurity Kondo problem also shows a crossover [86–88]. There may
be a universal class that includes the Kondo effect, QCD [89], BCS-BEC crossover [90], Superconductivity,
sine-Gordon model [91–93]. Fluctuations associated with the crossover may be represented by excitation
modes that occur near a phase transition [94].
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Abbreviations

The following abbreviations are used in this manuscript:

VMC variational Monte Carlo method
AF antiferromagnetic
SC superconductivity or superconducting
2D two-dimensional
AFI antiferromagnetic insulator
PI paramagnetic insulator
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