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Abstract: The nucleation and dynamics of Josephson and Abrikosov vortices determine the critical
currents of layered high-Tc superconducting (HTS) thin films, grain boundaries, and coated
conductors, so understanding their mechanisms is of crucial importance. Here, we treat pair
creation of Josephson and Abrikosov vortices in layered superconductors as a secondary Josephson
effect. Each full vortex is viewed as a composite fluid of micro-vortices, such as pancake vortices,
which tunnel coherently via a tunneling matrix element. We introduce a two-terminal magnetic
(Weber) blockade effect that blocks tunneling when the applied current is below a threshold value.
We simulate vortex tunneling as a dynamic, time-correlated process when the current is above
threshold. The model shows nearly precise agreement with voltage-current (V-I) characteristics
of HTS cuprate grain boundary junctions, which become more concave rounded as temperature
decreases, and also explains the piecewise linear V-I behavior observed in iron-pnictide bicrystal
junctions and other HTS devices. When applied to either Abrikosov or Josephson pair creation, the
model explains a plateau seen in plots of critical current vs. thickness of HTS-coated conductors.
The observed correlation between theory and experiment strongly supports the proposed quantum
picture of vortex nucleation and dynamics in layered superconductors.

Keywords: layered superconductor; thin film; superconducting properties; flux vortex; Josephson
vortex; Abrikosov vortex; Josephson junction; quantum tunneling; soliton; grain boundary

1. Introduction

Both high- and low-Tc superconducting wires, cables, and Josephson devices are spurring
advances in energy, medicine, and other sectors of the economy. The critical current density, or
Jc, of a high-Tc superconducting (HTS) thin film or coated conductor is often limited by grain
boundaries, where misoriented crystallites join at an interface [1–4]. Each grain boundary acts like
a Josephson Junction (JJ) or weak link, usually with a width greater than the Josephson penetration
length, w >> λJ [5,6]. The critical current of a wide JJ is limited by nucleation and motion of Josephson
vortices. Abrikosov vortices [7], with a radius comparable to the London penetration length λL, and
Josephson vortices [6,8] of widths ~λJ and ~2λL along and perpendicular to the grain boundary,
respectively, carry quantized magnetic flux, Φ0 = h/2e. After they nucleate, they limit the Jc [1–4] by
generating a finite voltage and dissipating energy as they move, driven by the interaction between flux
and current [9].

A Josephson vortex is a topological flux soliton [10] dual to the charge soliton of a charge density
wave (CDW) [11–14]. Josephson [10] and Abrikosov [15–17] vortices can nucleate or depin, in principle,
either by either thermal activation or quantum tunneling [18]. In layered high-Tc superconductors,
the latter appears to be enabled by short HTS coherence lengths, pancake vortex structures [19],
and light vortex masses [20]. Magnetic relaxation rates of trapped flux in YBa2Cu3O7 (YBCO), for
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example, decrease with temperature and are nearly temperature-independent when normalized to
magnetization [21], suggesting non-thermally-activated depinning of Abrikosov vortices.

Quantum pair creation of Josephson vortices has been proposed for a wide JJ treated as a
sine-Gordon model [22]. Tunneling occurs when the applied current tilts the sinusoidal Josephson
coupling energy so each newly created soliton-antisoliton pair bounds a lower energy ‘bubble’ wide
enough to balance the positive energy of the solitons, as depicted in Figure 1a. Such tilted sine-Gordon
models predict a Zener-like form for the pair production rate [23], Γ ∝ F exp[F0/F], where the
force F is proportional to applied current for a JJ. This is formally identical to the rate of Schwinger
electron-positron pair production in 1D [24], or CDW soliton pair production [25], but in these latter
cases F is proportional to electric field E rather than current. Figure 1b illustrates an approach discussed
in the following sections, in which phase differences φk across HTS grain boundaries for individual
layers allow for nucleation of composite vortices consisting of many pancake vortices.

In a CDW, the internal electric field E* created by a charged soliton–antisoliton pair modifies the
smooth Zener-like current-voltage (I-V) curve to create a Coulomb blockade threshold field, ET = E*/2,
for pair production [26]. Above the threshold, soliton tunneling becomes correlated in time and exhibits
phenomena such as coherent oscillations, narrow-band noise, and mode locking [11–14]. In a similar
vein, the next sections discuss: (1) a two-terminal magnetic, or Weber, blockade mechanism leading to
a threshold current for pair creation of flux vortices; and (2) time-correlated vortex tunneling when the
applied current is above the threshold.
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Figure 1. (a) Nucleation of a soliton–antisoliton pair, showing the phase and energy vs. position
(normalized to λJ) along the JJ. The negative energy “bubble” in the middle, ideally, balances the
positive energy of a newly nucleated soliton pair; (b) Representation of each Josephson vortex and
antivortex as a composite of many pancake vortices straddling grain boundaries within individual
high-Tc superconducting (HTS) layers.

2. Results

Here we discuss the results of our model, which include the effects of energy on the
voltage-current (V-I) curve, due to the magnetic field B* inductively coupling vortices and antivortices.
This magnetostatic energy leads to a sharp threshold current for vortex pair creation, and causes
vortex tunneling to become correlated in time above threshold. Simulation results are compared with
experimental measurements of critical currents in HTS-coated conductors and with voltage-current
characteristics of cuprate HTS grain boundary junctions and iron-pnictide bicrystal junctions.

2.1. Weber Blockade Threshold Current for Vortex Pair Creation

An HTS grain boundary behaves as a JJ with a periodic Josephson coupling energy vs. φ. Since a
2π change in φ(x) generates a circulating current and vector potential encompassing one flux quantum,
Φ0, a 2π soliton (antisoliton) in φ is equivalent to a Josephson vortex (antivortex), e.g., see [6,8].
A sufficiently high applied current enables nucleation of a bubble bounded by solitons [22], as shown
in Figure 1. Once nucleated, the lower-energy bubble expands as the Lorentz-like force from the
current drives the vortex and antivortex apart. Though spatially extended, Josephson vortices are
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extremely light. Using the expression provided by Grosfeld and Stern [27], the mass of a Josephson
vortex spanning a 1-µm-thick film is estimated to be ~10−2me. If, in a layered superconductor, we view
a full vortex as a composite of pancake vortices [20] (see Figure 1b), then the mass of each pancake
vortex within a single layer is orders of magnitude smaller still.

The two-terminal Weber blockade mechanism proposed here leads to a threshold current for
vortex pair creation and is dual to the Coulomb blockade effect that blocks tunneling of electrons [28]
or charge solitons [11–14] below a threshold field (see [29] for a three-terminal Weber blockade
effect.) Figure 2 illustrates vortex pair creation in a zero externally applied field. The vortices
generate a magnetic field with an average value, B∗ ∼ βΦ0/λ2, linking the vortex and anti-vortex.
Here λ =

√
λJλL or λ = λL for a Josephson or Abrikosov vortex pair, respectively, and β is

a dimensionless factor to account for effects of non-uniform field [30], partial field penetration,
and/or any vortex overlap. When the film thickness d becomes small, λ will be replaced by the
thickness-dependent Pearl penetration length Λ, to be discussed later.

An applied current density J in a film of thickness d creates an additional self-field, BJ ∼= µ0 Jd/2,
which runs just outside the film perpendicular to J in opposite directions above and below the film, as
shown in Figure 2, and can partially cancel B*. Once nucleated, the vortices are driven apart by the
Lorentz-like force between flux and current.
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Figure 2. Vortex-antivortex pair in a thin film (end view), illustrating the self-magnetic field B*
generated by the vortices and the field BJ produced by the applied current J. The two contributions,
BJ and B*, partially cancel to reduce magnetostatic energy between the vortices.

Energy conservation prevents vortex pair creation for arbitrarily small applied currents because of
the vortices’ inductive magnetic energy. Even though BJ and B* partially cancel, pair creation is blocked
when the integrated magnetic energy between vortices with the pair, ∝

(
BJ − B∗

)2/2µ0, exceeds that
without the pair, ∝ B2

J /2µ0. Equivalently, pair creation cannot occur when the energy difference,(
BJ − B∗

)2/2µ0 − B2
J /2µ0 = (B∗/µ0)

[
B∗/2− BJ

]
, is positive, i.e. if BJ < B∗/2. When the applied

current J and self-field BJ are sufficiently large that BJ > B∗/2 however, or when θ ≡ 2πBJ/B∗ > π,
the former global minimum (vs. φ) becomes a metastable state. A bubble bounded by 2π solitons
(Figure 1) can thus nucleate when θ, proportional to J below threshold, exceeds π. In the limit, d >> λ,
this yields a threshold pair creation current per unit width given by:

j0pc = B∗/µ0 = βΦ0/
(

µ0λ2
)

. (1)

When d becomes comparable to or smaller than λ, Equation (1) will be replaced by an expression
that accounts for the thickness dependence of the penetration length, to be discussed shortly. If the
nucleated vortex and antivortex are initially separated by a distance ∆x, then the pair creation critical
current between vortices can be written as:

j0pc∆x ∼ Φ0/2L, (2)
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where L ∼ µ0λ2/2β∆x is the inductance of the flux toroid coupling the vortices. This is essentially the
dual of the Coulomb blockade voltage Vc = e/2C for a small capacitance tunnel junction. Nucleation of
a vortex near one edge and antivortex near the other can be treated similarly using the image vortex
concept [31].

The critical current vs. thickness, d, of HTS-coated conductors usually shows sub-linear behavior
and often reaches a plateau, causing Jc to decrease with thickness [32–34]. This is readily explained
by the Weber blockade mechanism. For a strip of width w, the total pair creation current becomes:
I 0
pc = j 0

pcw = βΦ0w/
(
µ0λ2), which is independent of d when d >> λ. Eventually, however, it is

likely that vortex pair creation will be superseded by anisotropic ring nucleation when the film or
bulk material becomes extremely thick. As d becomes small the vortices acquire a quasi-2D character
and their diameters increase, as predicted by Pearl [35] and directly imaged by Tafuri et al. [36].
When d � λ, the size of each vortex is governed by an effective length, Λ, known as the Pearl
penetration length [35,36], Λ = 2λ2/d. Since the relevant length scale becomes Λ = λ when d� λ, we
use the approximation: Λ ∼= λ + 2λ2/d. Using Λ to replace λ in Equation (1) then yields the following
expression, as a function of d, for the pair creation critical current, Ipc = jpcw:

Ipc(d) =
I0
pc

[1 + 2λ/d]2
. (3)

Figure 3 shows a favorable comparison of Equation (3) with measured critical currents vs.
thickness of HTS-coated conductors, consistent with the observed plateau effect.
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λ = 380 nm; I 0

pc = 1030 A and I 0
pc = 398 A to fit the 2008 and 2005 data [34], respectively (see text).

The introduction of insulating CeO2 spacer layers into HTS-coated conductors has been reported
to improve the critical current [32,37] vs. thickness behavior by reducing the plateau effect. Our model
provides a straightforward interpretation consistent with [37], sufficiently thick spacer layers decouple
vortex pair nucleation events on adjacent HTS layers, enabling total critical current to scale with the
number of layers. This multi-layer approach is potentially advantageous for HTS magnets constructed
with tapes in a pancake geometry, since field lines along the ab-plane would be constrained by spacer
layers. The next section discusses the dynamics of vortex tunneling above threshold, following a
previous model of time-correlated soliton tunneling [11–14] in charge and spin density waves.

2.2. Time-Correlated, Coherent Tunneling of Josephson Vortices

In time-correlated single-electron tunneling [28], an applied voltage V across a capacitive tunnel
junction increases the displacement charge, Q = CV, until it reaches the critical value, Q = e/2,
needed to overcome the Coulomb barrier, (Q± e)2/2C−Q2/2C. This enables an electron to tunnel
through the junction, causing a drop in voltage followed by another increase, and the process repeats
many times to cause jerky flow of electric current, I = dQ/dt. After n tunneling events, the total
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displacement charge, driven across and through the junction, becomes: Q = CV + ne. Time-correlated
soliton tunneling in CDWs [12–14] is similar, except that the soliton charge Q0 replaces the electron
charge e. The model combines a sine-Gordon potential, representing CDW pinning, with the solitons’
electrostatic energy [26,38]. Following a classic paper on the massive Schwinger model [38], the soliton
tunneling model also relates the ‘vacuum angle’ θ(t) to the total displacement charge Q(t) and soliton
charge Q0 using: θ = 2π(Q/Q0).

In the model proposed here, θ scales with the applied current J and the resulting self-field BJ,
when J is below threshold, and is proportional to displaced flux when J is above threshold. We define
the total displacement flux Φ, after n vortex tunneling/nucleation events, using Φ = λ2BJ/β + nΦ0.
The relation between θ and Φ then becomes, θ = 2π(Φ/Φ0), which highlights the duality between
flux and charge. We take φk to represent phase differences across a junction for individual layers
(e.g., Figure 1b), as well as incorporating spatial degrees of freedom. The potential energy for each
microscopic degree of freedom k can then be written as:

u[φk] = uJ [1− cos φk(x)] + uM(θ − φk(x))2, (4)

where the first term is the Josephson coupling energy and the second, quadratic term is the
magnetostatic contribution. Figure 4a,b shows how the global minimum for the phases switches
from the potential well near φ ~ 0 to the one at φ ~ π when θ crosses above the critical value of π.
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Figure 4. Potential energy plots vs. φ and θ. (a) The phases φk(x) are trapped in the lowest potential
well when θ < π; (b) The original well is no longer a global minimum so the phases begin to tunnel
coherently into the new minimum when θ > π; (c) Piecewise parabolic potential energy vs. θ for the
various branches representing φ ~ 2πn.

In Figure 4c, Equation (4) is minimized by setting φ ∼ 2πn (dropping the subscript k) so that
φ is sitting in a potential well (assuming uM � uJ). This leads to a series of piecewise parabolic
magnetostatic energy plots, u(θ) ∝ (θ − 2πn)2 ∝ (Φ− nΦ0)

2/2L, as shown in Figure 4c. These are
dual to the piecewise charging Coulomb energy curves in time-correlated soliton tunneling in
CDWs [11–14], and should not be confused with the Josephson coupling energy. The ‘vacuum
angle’ θ continually increases with time as the system evolves. Each time a parabola in Figure 4c
crosses the next, at an instability point θ = 2π(n + 1

2 ), the phases φk tunnel coherently into the next well,
causing the overall phase to advance by 2π.

This process repeats itself many times, leading to Josephson-like oscillations and Shapiro steps due
to mode-locking with a microwave source. In this picture, although the overall behavior is somewhat
jerky, the microscopic degrees of freedom nonetheless flow through the barrier in a continuous fashion,
as discussed in [12–14]. The advance with time, of θ(t) and the phase expectation value 〈φ(t)〉, are
closely related. Although they only approximately track within a cycle, their correlation becomes
precise when time-averaged. Regardless of the detailed shape of the periodic Josephson coupling
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energy, which may or may not be sinusoidal and may include disorder, the emergent behavior as θ(t)
that evolves is often non-sinusoidal.

We now follow [12–14] to model dynamics. We hypothesize that the amplitudes ψn and ψn + 1

for the system to be on branches n and n + 1 in Figure 4c, respectively, are coupled via coherent,
Josephson-like tunneling of microscopic quantum solitons [39,40]. We use a matrix element Tϕ

to represent this coupling, motivated by Feynman’s intuitive derivation [41] of the dc and ac
Josephson effects. Advancing φk(x) by 2π within a finite ‘bubble’ is equivalent to creating a pair of
microscopic solitons. These can either be pancake Josephson vortices [20] with very small masses [27]
or even deformations of the Cooper pair wavefunctions within the condensate (see Discussion).
We treat the phases φk as comprising a quantum fluid, within which they are capable of coherent,
Josephson-like tunneling. This picture can presumably be extended to coherent tunneling of Abrikosov
pancake vortices [42], which also have small masses [19], or to deformations of their resulting
pair wavefunctions.

We use a slightly modified resistively shunted junction (RSJ) model [6], shown in Figure 5, to
simulate voltage-current characteristics of an HTS grain boundary junction. This is discussed in
Materials and Methods, which also defines the parameters used. Figure 6 shows resulting theoretical
voltage vs. current plots for various parameter values. Some of the V-I plots exhibit piecewise linear
behavior, which fits neither the classical RSJ model nor a straightforward thermally activated flux flow
model. Piecewise quasi-linear behavior is often seen in HTS grain boundary junctions and has largely
eluded explanation. Here this behavior is readily explained via the proposed model and two-terminal
Weber blockade mechanism. In Figure 6b the main effect of increasing q0, which corresponds to
increasing barrier height and decreasing λJ as temperature goes down, is to increase the degree of
rounding in the V-I curve.
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Figure 7 shows comparisons between theory and measured V-I characteristics of an YBa2Cu3O7

(YBCO) [43] grain boundary junction at several temperatures. The simulated 86 K plot in Figure 7
(top) is obtained using the classical resistively shunted junction (RSJ) model in the overdamped

limit: V/(IcRn) =
√
(I/Ic)

2 − 1, without invoking thermal activation. The fact that the 86 K data
fit the classical RSJ model almost perfectly suggests that the effective Josephson penetration length
is comparable to or longer than the junction width (short junction limit) due to the small Josephson
coupling energy at this temperature. Even at this high temperature there is little or no evidence for
concave rounding caused by thermal activation.
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Figure 7. Experiment vs. theory for an YBa2Cu3O7 (YBCO) bicrystal junction [43]. Top curves
(black): V-I curve at 86 K (dotted line) vs. classical resistively shunted junction (RSJ) model (solid
line). Remaining curves: time-correlated vortex tunneling model (solid lines) vs. measured V-I curves
(dotted lines) at (top to bottom): 82.5 K (red), 77.2 K (green), 75.0 K (dark blue), and 70.0 K (magenta).
(See Materials and Methods, Table 1.)

The theoretical plots for the remaining temperatures in Figure 7, as well as for Figure 8a,b, are
obtained via the time-correlated vortex tunneling model (see Materials and Methods), using parameters
in Table 1. The theoretical plots (solid lines) show nearly precise quantitative agreement with the
experimental data (open symbols). As the temperature is reduced, from 82.5 K down to 70.0 K, both the
experimental and theoretical V-I curves show more concave rounding, providing convincing evidence
that this is not due to a thermally activated process. The Josephson coupling energy increases with
decreasing temperature, causing the characteristic force F0 (proportional to q0) to increase. This increase
in F0 affects the matrix element Tϕ (Equation (11) of Materials and Methods), and leads to rounded,
Zener-like theoretical plots at lower temperatures, in agreement with experiment. Similar quantum
fluidic effects may play a role in magnetic relaxation of Abrikosov vortices in bulk YBCO [21], for
which V-I plots also tend to be quite rounded at low temperatures.

Table 1. Parameters used to generate the simulated V-I curves in Figures 7 and 8.

Figure Plot Ic/I∗ w/` γ q0

Figure 7—82.5 K 0.55 1.15 50 0.5
Figure 7—77.2 K 0.72 1.09 45 1.7
Figure 7—75.0 K 1.25 1.16 40 6.5
Figure 7—70.0 K 1.80 1.16 30 12

Figure 8a 0.71 1.04 60 1.9
Figure 8b 1.00 1.00 12 6.0

Figure 8a shows excellent agreement between our quantum model and the V-I curve of an iron
pnictide superconducting bicrystal [44], consisting of coupled SrFe1.74Co0.26As2 and Ba0.23K0.77Fe2As2
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crystals, each ~300 µm wide, and thus in the long junction limit. The piecewise linear V-I behavior in
Figure 8a also occurs frequently in cuprate grain boundary junctions (e.g., Figure 7, 77.2 K data, and
references [1,45]). This behavior is analogous to the piecewise linear I-V curve of an ideal Coulomb
blockade tunnel junction. Figure 8b plots our simulation as compared to the measured V-I characteristic
of a thallium-based cuprate grain boundary [46], showing good agreement with the data. Table 1 in
Materials and Methods shows the parameters used for the simulations and plots.
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Figure 8. Further comparisons of model predictions with experimental V-I curves. (a) Comparison
between time-correlated tunneling model (solid line) vs. V-I characteristic (diamonds) of an iron
pnictide superconductor bicrystal at 4.2 K [44]. (b) Model simulations vs. experiment for V-I curve of
grain boundary junction in a thallium-based cuprate superconducting film at 77 K [46]. (See Materials
and Methods, Table 1.)

The time-dependent Schrödinger equation (Materials and Methods) and generalized tunneling
matrix element Tϕ, coupled with the Weber blockade mechanism, provides a simple, yet powerful
approach to modeling the dynamics of vortex tunneling. For a uniform junction, the piecewise
parabolic curves in Figure 4 and simulations discussed above often predict non-sinusoidal voltage
oscillations. The top plot in Figure 9 shows such non-sinusoidal voltage oscillations for a uniform
junction. In the remaining plots of Figure 9, we model non-uniformities by representing the junction
as 100 domains with a spread in parameters related to coupling energy (see Materials and Methods).
The bottom three plots in Figure 9 represent various levels of disorder. The middle two plots show
reduced voltage amplitudes and an apparent amplitude modulation effect, consistent with reported
subharmonic Shapiro steps [47]. The bottom plot, depicting the most disorder for this series, shows
further reduced amplitudes. Voltage oscillations and Shapiro steps are thus expected to become
immeasurably small in a sufficiently non-uniform junction.
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Figure 9. Simulated non-sinusoidal voltage oscillations vs. time (taking f = I/I* = 2.5) for: (top) a
uniform junction with γ = 40 and q0 = 6.5; and three nonuniform junctions represented by 100 junctions
in parallel. These use the same average γ and q0 (see Materials and Methods), but with (second from
top-to-bottom): δ = 0.1, k = 0.05; δ = 0.1, k = 0.1; and δ = 0.5, k = 0.1.
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3. Discussion and Conclusions

This paper considers tunneling of Josephson vortices and, to a lesser extent, Abrikosov vortices.
The model, which includes a magnetic Weber blockade effect, shows good quantitative agreement
with measured critical current vs. film thickness of HTS-coated conductors, providing a fundamental
explanation for the observed critical current plateau. A multilayer approach [32,37] might potentially
improve engineering critical currents by decoupling vortex pair creation events in different HTS layers.
The spacer layers would also enable flux trapping along the ab-plane, which would be especially useful
for pancake coil magnets made from HTS tapes. Further work is needed to consider anisotropic vortex
ring nucleation in thick films or bulk materials, and to extend the model to include finite external
fields. Creation of a dislocation pair [48], for example, may be the energetically least costly process for
depinning a vortex lattice in a finite external field. We have also simulated time-correlated tunneling
of Josephson vortices. We find nearly precise agreement with measured voltage-current characteristics
of HTS grain boundary junctions, which are important for thin film device applications.

A key premise of this paper is that the concept of coherent Josephson-like tunneling should be
generalized to include other phenomena with quantum fluidic properties. We view the system
as a quantum fluid in which Josephson-like tunneling couples different topological states [49].
While we previously considered tunneling of pancake vortices (Figure 2), an even more microscopic
picture is obtained by examining the Bardeen-Cooper-Schrieffer (BCS) ground state [50]: ψ0 =
_
Aϕ0(r1 − r2)χ12 . . . ϕ0(rN−1 − rN)χN−1,N . In this real-space version, ϕ0 is the wavefunction for each

pair of electrons or holes, χ is the spin wavefunction, and
_
A is the antisymmetrization operator.

The ground state ψ0 evolves into a new state, ψvp, containing a vortex-antivortex pair. Each individual
pair state evolves into its corresponding vortex-pair-deformed state, ϕvp. Further work is needed to
develop a complete microscopic picture. One could, for example, use a representation of operators [51]
that operate on the original ground state to create a coherent state description of the vortex pair state.

Beyond improving our understanding of superconductivity and other correlated electron systems,
the concepts proposed here could have broad scientific impact in other areas. These include tunneling
in quantum cosmology [52–54], perhaps treating the universe as a quantum fluid [55], the theta = pi
instability in spontaneous charge-parity (CP) violation [56], and tunneling of atomic bright solitons [57].
Finally, understanding of the quantum behavior of flux solitons could potentially lead to topologically
robust forms of quantum information processing or superconducting digital electronics.

4. Materials and Methods

Here we discuss simulation of time-correlated vortex tunneling. The voltage across the junction
in Figure 5 is:

V = dΦ/dt = (Φ0/2π)dθ/dt, (5)

yielding a normal current through the shunt resistance:

In = V/R = (Φ0/2πR)dθ/dt (6)

For a grain boundary junction with total current I, we define: ω = (2πR/Φ0)I. For each ‘bubble’
nucleation event in which the average phase advances toward the next potential well, the applied
current splits into a supercurrent Is and a normal shunt current given by Equation (6). Many such
events advance the average phase by 〈φ〉 to yield a net supercurrent:

Is = (I∗/2π)[θ − 〈φ〉]. (7)

Here I∗ = 2jpc` within a grain boundary region of width `, comparable to but slightly smaller
than w due to the finite width of the vortices. Each time 〈φ〉 advances by 2π, the supercurrent returns
close to its previous value, thus preventing it from increasing ad infinitum as θ evolves with time.
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Using In = I − Is and introducing the time constant τ = L/R, yields the following equation (also
see [12]) for the time rate of change of θ, which is proportional to voltage:

dθ

dt
= ω− 1

τ
[θ − 〈φ〉]. (8)

If the system starts out on branch 0 in Figure 4c, then 〈φ〉 will initially be zero. The expectation
value 〈φ〉 will begin to increase once microscopic degrees of freedom φk start tunneling coherently
into the next well (Figure 4b) representing branch 1. Our model represents the amplitudes ψ0,1 for the
system to be on branches 0 and 1 (or n and n + 1) in terms of coherent amplitudes:

ψ0,1 =
√

ρ0,1 exp[iδ0,1]. (9)

Here ρ0,1 represents the fraction of phases φk in the left or right wells, respectively (Figure 4b),
corresponding to branches 0 and 1 in Figure 4c. In this picture, ψ0,1 are not the superconducting order
parameters on opposite sides of the junction but, rather, represent the amplitudes for the phases φk
to be in either of the two wells in Figure 4b. The phases δ0,1 are related to Berry phases for vortices,
which would, for example, lead to an Aharanov–Casher effect [58].

The expectation value 〈φ〉 in Equation (8) is computed by solving the time-dependent
Schrödinger equation:

i}∂ψ0,1

∂t
= U0ψ0,1 + Tϕψ1,0 (10)

Advancing φk(x) by 2π within a given region, taking φk from one branch to the next, is equivalent
to creating a pair of 2π-solitons. The driving force is the energy difference per unit length between
potential minima at φ ∼ 2πn and φ ∼ 2π(n + 1). When uM/uJ � 1, this force is: F = 4πuMθ′n, where
θn
′ ≡ θ − 2π(n + 1/2). Using the analogy to pair production [24] and following Bardeen [59,60], the

effective matrix element for Zener tunneling through the soliton energy gap is estimated to be:

Tϕ(F) = −4Fλ exp[−F0/F]. (11)

Here λ−1 ∼ ∆ϕ/}c0 + λ−1
m , λm is a mean free path length, ∆φ is the soliton energy for a

microscopic (e.g., pancake) Josephson vortex, c0 is the phase (Swihart) velocity [61], and F0 ∼ ∆2
ϕ/}c0.

This expression for Tϕ is similar to the rate of soliton pair production, Zener tunneling of electrons
across a bandgap, or Schwinger electron–positron pair production in 1D [24]. Since any negative
energy difference within the lower energy ‘bubble’ is balanced by the positive flux soliton pair
energy, the matrix element couples states of equal energy, U0 = U1 = U. Thus, defining ψ0,1 =

χ0,1(t) exp[−iUt/}], the Schrödinger equation (Equation (10)) reduces to:

i}∂χ0,1/∂t = Tϕχ1,0. (12)

Below the pair creation threshold, we can write: θ = 2π I/I∗. In the computer simulations, the
variables are put into dimensionless form: t′ ≡ t/τ, f ≡ ωτ/2π (proportional to total current I),
q ≡ θ/2π, q0 ≡ θ0/2π = F0/(4πuM), and qn

′ ≡ θn
′/2π = q − n − 1

2 . Additionally, is ≡ Is/I∗ =

q− p− n is the normalized supercurrent, while the normalized voltage is: v ≡ dq
dt′ = f − is. Finally,

setting χ0(t) = c0(t) and χ1(t) = ic1(t) in Equation (12), taking c0 and c1 to be real, yields the following
coupled differential equations:

dc1

dt′
=
[
γqn

′ exp
(
−q0/qn

′)]c0, (13)

and
dc0

dt′
= −

[
γqn

′ exp
(
−q0/qn

′)]c1. (14)
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for qn
′ > 0, where γ = 32π2uMλ. These are integrated numerically, taking the initial values to be c0 = 1

and c1 = 0. The phase expectation value is then given by: 〈φ〉 = 2π[n + p], where p = |c1|2, and the
transition is considered complete when p exceeds a cutoff close to one. This process repeats each time
the system makes a transition from one branch to the next in Figure 1c. For each current, or value of
f = I/I∗, a time average over several complete cycles is performed to compute v = (`/w)(V/I∗R).
A similar approach was used previously to compute current-voltage characteristics due to soliton pair
production in density waves [12–14]. As in the density wave case, the transition from one branch to
the next takes place over a relatively long time interval, suggesting that the phases φk ‘flow’ through
the barrier like a quantum fluid rather than tunneling abruptly as a single massive object.

Figures 6–8 show various simulated V-I plots, which are compared with experiment in Figures 7
and 8. Figure 6b represents a fixed value of γ = 20 and several values of q0. Here, the main effect of
increasing q0, which corresponds to increasing the energy required to nucleate each vortex-antivortex
pair, is to increase the degree of rounding in the V-I curve. As q0 becomes significantly greater than
one, this rounding causes the ‘measured’ critical current Ic to exceed the nominal Coulomb blockade
pair creation critical current, Ipc ∼= I∗/2 . For example, when q0 = 20, from Figure 6b one can estimate
a ‘measured’ critical current Ic given by: Ic/I∗ ∼ 3, about a factor of six greater than Ipc/I∗ ∼= 0.5,
but still much smaller than the classical RSJ critical current [6]. Since λJ ∼ 1/√uJ , as the Josephson
coupling energy increases, the vortex sizes, ~λJ, decrease until they become comparable to λL, the
London penetration length. Thus, the rounded behavior seen for large q0 is also expected for Abrikosov
vortex pair creation (provided one minimizes heating effects above the critical current).

Table 1 above shows the parameters used for the simulations that were compared to the
experimental results.

The top plot in Figure 9 shows non-sinusoidal voltage oscillations in a uniform junction for a
fixed driving current f = I/I∗ = 2.5. In the remaining plots of Figure 9 we model non-uniformities
by representing the junction as 100 domains in parallel, for which γ and q0 are pseudo-randomly
varied with a uniform distribution within the ranges γ[1± δ] and q0[1± δ], respectively. The phases in
adjacent domains i are coupled by spring-like terms that add to the net force acting on each domain,
k
[
〈φ〉i+1 − 2〈φ〉i + 〈φ〉i−1

]
, and we apply periodic boundary conditions. The bottom three plots in

Figure 9 represent various levels of disorder.
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