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Abstract: The fish gut microbiota plays an important role in overall health. However, few reports
have described the changes in the composition of gut microbiota following infection with pathogenic
bacteria in olive flounder (Paralichthys olivaceus). Here, we reported the changes in the gut microbiota
composition of flounder after treatment with each of the three pathogenic bacteria (Edwardsiella tarda,
Streptococcus iniae, and Vibrio harveyi). Edwardsiella tarda infection decreased the relative abundance of
Verrucomicrobia and increased Proteobacteria abundance at the phylum level of the gut microbiota
over time. Similarly, Streptococcus iniae infection reduced the relative abundance of Verrucomicrobia.
Vibrio harveyi infection caused a decrease in the relative abundance of Firmicutes and Verrucomicrobia
and increased Proteobacteria. At the genus level, infection with all three pathogens increased the
relative abundance of Ralstonia and Sphingomonas species. Conversely, this infection decreased
the relative abundances of Rubritalea, Saccharimonas, and Bacillus species. Therefore, reducing the
abundance of Ralstonia and Sphingomonas and increasing the abundance of Rubritalea, Saccharimonas,
and Bacillus in the gut microbiota composition of flounder might help maintain a healthy gut
microbiota balance. This research might be useful for future studies on improving the health of
flounder through gut microbiota regulation.

Keywords: olive flounder; microbiome; Edwardsiella tarda; Streptococcus iniae; Vibrio harveyi

Key Contribution: Few reports have described changes in the composition of gut microbiota fol-
lowing infection with pathogenic bacteria in olive flounder. Here, we reported changes in the gut
microbiota composition of olive flounder after infection with each of the three different pathogenic
bacteria, and these findings might be useful for future studies on improving the health of flounder
through gut microbiota regulation.

1. Introduction

Olive flounder (Paralichthys olivaceus) is an economically valuable fish species in the
South Korean aquaculture industry; over the last five years, it has an average annual
production of 41,480 tons, representing about 48.24% of the nation’s total finfish produc-
tion [1]. However, fish mortality caused by bacterial disease occurs every year, resulting
in considerable economic losses to the aquaculture industry [2]. Representative bacterial
diseases occurring in this farmed fish include edwardsiellosis, vibriosis, and streptococci [3].
Although antibiotics are used to treat these bacterial diseases, the ones used in flounder
aquaculture cause the emergence of antibiotic-resistant pathogens and have residual effects
on humans [4,5]. Therefore, microbial disease control strategies should be developed and
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implemented in aquaculture to eliminate the use of currently used antibiotics, ensure food
biosafety, and maintain human health [6].

The microbial community in the fish gut is altered by various factors, such as water
quality, habitat, growth stage, bacterial and viral infections, and host feeding activity, which
plays an important role in the overall health of fish [7]. The study and control of gut micro-
biome disruption are important factors in fish aquaculture [7,8]. A well-established and
balanced gut microbiota provides essential fish developmental functions while protecting
against pathogenic bacteria, which are among the leading causes of mortality in fish pro-
duction systems [7,8]. However, the composition of fish gut microbiota is poorly explored
and difficult to study because of large individual differences [9,10]. Therefore, in this study,
the intestinal microbiota composition of olive flounder was investigated by pooling fish
intestines together following controlled infection with pathogenic bacteria (Edwardsiella
tarda, Streptococcus iniae, and Vibrio harveyi) that cause edwardsiellosis, streptococci, and
vibriosis. The microbial composition and quantity were analyzed and compared between
the different pathogenic bacterial infected groups.

2. Materials and Methods
2.1. Pathogenic Bacterial Strains and Culture Conditions

Three pathogenic bacteria (Edwardsiella tarda KCTC 12267T, Streptococcus iniae KCTC
3657T, and Vibrio harveyi KCTC 12724T) were obtained from the Korean Collection for
Type Cultures (KCTC, Daejeon, Republic of Korea) and cultured at 37 ◦C in brain heart
infusion (BHI; Difco, Detroit, MI, USA) and marine broths (MB; Difco, Detroit, MI, USA),
respectively. The stock cultures were stored at−70 ◦C in each broth containing 50% glycerol
until use.

2.2. Animals, Sampling, and Infection Experiment

A total of 300 juvenile olive flounder with an average weight of 10.27 ± 0.22 g were
purchased from a commercial flounder hatchery (Jeo-Gu fish farm, Geoje, Republic of Korea)
and acclimatized in 120 L semi-recirculating tanks for 1 week. After acclimatization, 270 fish
with no visible problems were equally distributed into 3 groups (30 fish/tank, triplicates).
The intestines from the remaining 30 fish were collected for initial fish gut microbiota
analysis. Then, 0.1 mL of the prepared pathogens diluted in PBS (1.0 × 108 cfu/mL) was
injected via intraperitoneal inoculation. The intestines of the infected fish were collected on
days 2, 5, and 7 (10 fish/tank, triplicates). The water quality was regularly monitored twice
a day, and stable environmental parameters were maintained: temperature, 19.0 ± 0.5 ◦C;
pH, 7.2 ± 0.2; dissolved oxygen, 5.9 ± 0.4 mg/L; salinity, 30.5 ± 1.0 g/kg; and water flow,
1.2 L/min. Seawater was not shared between groups and was provided after pre-filtration
and UV disinfection to prevent infection with other microorganisms.

2.3. Intestinal Microbiota Analysis

The total microbial DNA was isolated from the intestines of pathogen-infected olive
flounder by using ZymoBIOMICS DNA Miniprep kits (Zymo Research Corp., Irvine, CA,
USA). The quality of the total DNA was assessed through gel electrophoresis, and the
V3-V4 region of 16S rRNA was amplified using primers containing the Illumina overhang
adapter sequence to construct a library (forward primer: 5′–TCGTC GGCAG CGTCA
GATGT GTATA AGAGA CAGCC TACGG GNGGC WGCAG–3′, reverse primer: 5′–
GTCTC GTGGG CTCGG AGATG TGTAT AAGAG ACAGG ACTAC HVGGG TATCT
AATCC–3′, Illumina, San Diego, CA, USA). The KAPA HiFi HotStart ReadyMix (KAPA
Biosystems, Woburn, MA, USA) and Agencourt AMPure XP system (Beckman Coulter
Genomics, USA) were used for PCR and purification of the PCR product, respectively. PCR
was performed with a Veriti 96-well thermal cycler (Applied Biosystems, Foster City, CA,
USA) at the Core Facility Center for Tissue Regeneration, Dong-Eui University (Busan,
South Korea). The prepared library was quantified (Qubit dsDNA HS Assay Kit, Thermo
Scientific, Waltham, MA, USA), quality controlled (Agilent 2100 bioanalyzer, Agilent Tech-
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nologies, Waldbronn, Germany), and sequenced (Illumina MiSeq system, 300 bp paired end
reads) at the Moagen (Daejeon, South Korea). The data were analyzed using the EzBioCloud
server (http://www.ezbiocloud.net/, accessed on 4 January 2023). A heatmap analysis
of genus abundance was performed using a heat mapper (http://www.heatmapper.ca/,
accessed on 24 March 2023).

2.4. Statistical Analysis

The statistical significance of the data was analyzed by one-way analysis of variance
(ANOVA) using Statistical Package for the Social Sciences (SPSS; IBM, Armonk, NY, USA),
followed by Duncan’s multiple range test. A p-value of < 0.05 was considered significant.

3. Results
3.1. Changes in Gut Microbiota Composition at the Phylum Level

Changes in the composition of the gut microbiota at the phylum level following
pathogen infection were investigated according to the pathogen species and sampling
time. The most abundant phylum in the composition of the gut microbiota of the initial
group before pathogen infection was Firmicutes (71.42 ± 6.76%), followed by Verrucomi-
crobia (14.73 ± 4.88%), Proteobacteria (7.97 ± 1.69%), Saccaribacteria (2.59 ± 0.48%), and
Bacteroidetes (1.81 ± 0.64%). E. tarda infection gradually decreased the abundance of
Verrucomicrobia and increased the abundance of Proteobacteria over time. On day 7 of
infection, the abundance of Proteobacteria increased to 23.37 ± 6.78% (Figure 1a). S.
iniae infection also reduced the abundance of Verrucomicrobia, which was 6.38 ± 0.18%,
0.45 ± 0.04%, and 0.01 ± 0.01% on days 2, 5, and 7, respectively (Figure 1b). V. harveyi infec-
tion gradually decreased the abundance of Firmicutes and Verrucomicrobia but increased
the abundance of Proteobacteria (Figure 1c).
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iniae; (c) Vibrio harveyi) at the phylum level. Intestinal bacterial communities were analyzed via
next-generation sequencing by isolating the total DNA of microorganisms present in the gut of olive
flounder on days 0 (initial), 2, 5, and 7 after artificial infection with pathogens (n = 10, triplicates). ET,
Edwardsiella tarda; SI, Streptococcus iniae; VH, Vibrio harveyi.

3.2. Changes in Gut Microbiota Composition at the Genus Level

Infection with E. tarda or S. iniae did not significantly (Duncan’s multiple range test,
p > 0.05) increase the proportion of E. tarda or S. iniae in the gut microbiome, respectively.
Conversely, V. harveyi infection increased Vibrio species abundance over time (Figure 2).
In all three groups, the infection commonly increased the proportions of Ralstonia and
Sphingomonas but decreased the proportions of Rubritalea, Saccharimonas, and Bacillus
(Figures 2 and 3).
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3.3. α-Diversity Changes with Pathogen Infection

α-Diversity changes according to pathogen infection were investigated according to
pathogen species and sampling time. Until the 7th day after infection, E. tarda infections
did not cause significant differences (Duncan’s multiple range test, p > 0.05) in richness
(ACE and Chao1) and diversity (Shannon and Simpson) estimates (Figure 4a). S. iniae
infection repeatedly decreases and increases in all estimates over time (Figure 4b). V. harveyi
infection caused a significant difference (p < 0.05) only in the richness estimate, which was
generally increased (Figure 4c).
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Figure 4. α-Diversity of the intestinal bacterial communities of olive flounder according to infection
with each of the three pathogens ((a) Edwardsiella tarda; (b) Streptococcus iniae; (c) Vibrio harveyi).
Changes in α-diversity at 0 (initial), 2, 5, and 7 days after infection with the pathogen were investigated
in terms of richness and diversity estimates (n = 10, triplicates). Measurements with statistical
differences are indicated by different letters, and measurements with no significant differences
(p > 0.05) are indicated by ns. ET, Edwardsiella tarda; SI, Streptococcus iniae; VH, Vibrio harveyi.

4. Discussion

The gut of fish contains 21 bacterial phyla, with 3 dominant phyla (Proteobacteria,
Firmicutes, and Cyanobacteria) accounting for over 70% [11]. These gut microbes provide
their host with various beneficial effects, including pathways for energy harvesting, essen-
tial vitamin production, intestinal maturation, and immune system development [12–14].
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When the host is healthy, the gut microbiome is stable, but diseases related to metabolism
and immune response cause an imbalance of the microbiome [12–14]. Therefore, controlling
the gut microbiome is important because maintaining its balance can protect the host from
disease and provide essential developmental functions [8].

Many Gram-negative fish pathogenic bacteria, such as E. tarda, E. ictaruli, V. harveyi, V.
anguillarum, V. parahaemolyticus, V. ordalii, Aeromonas hydrophila, A. veronii, and Pseudomonas
anguilliseptica, have been reported to belong to Proteobacteria [15]. Zhao et al. (2022)
showed that the abundance of Proteobacteria increases because of an energy imbalance in
the intestinal microbial composition of the Songpu mirror carp (Cyprinus carpio L.) when
subjected to starvation stress [16]. Similarly, Tran et al. (2018) reported that Proteobacteria
are associated with unstable gut microbiota, and their increase is a potential diagnostic
criterion for dysbiosis and disease [17,18]. In the present study, infection with each of
the three pathogens commonly increased the abundance of Proteobacteria in the gut
microbiota. In particular, infection with V. harveyi showed an increasing trend over time.
Thus, starvation stress and pathogen infections cause unstable gut microbiota and lead
to an increase in the abundance of Proteobacteria [16]. According to previous studies,
members of Verrucomicrobia can process decaying organic matter and polysaccharides
and participate in the digestion of plant cellulose in fish intestines [19,20]. The reduction
of the abundance of these microorganisms following antibiotic treatment determines the
decrease in the carp’s cellulase activity [21], which can adversely affect digestion as a result.
In this regard, in this study, pathogenic infection reduced Verrucomicrobia, leading to the
reduced digestibility of fish, which could result in an imbalanced health status.

Ralstonia is a Gram-negative bacterial genus, and the most common member, R. pickettii,
is an important human pathogen that causes infections such as osteomyelitis and meningitis
and can pose a threat to seafood safety [22]. This genus has been found in fish such as sea
bass (Dicentrarchus labrax) [23], yellow catfish (Pelteobagrus fulvidraco) [24], and rainbow
trout (Oncorhynchus mykiss) [25], but its fish pathogenicity has not yet been reported. In
a previous study, cases of infection with Spingomonas echinoides were identified in the
intestines of moribund rainbow trout with typical symptoms of bacterial hemorrhagic
sepsis [26]. Some Spingomonas species may be beneficial to fish, but other species may be
pathogenic to other organisms [26]. In the present study, pathogen infection increased the
abundance of Ralstonia and Sphingomonas in the gut microbial composition of olive flounder.
Our results indicated that these genera might be associated with unhealthy conditions
that disrupt the intestinal microbial balance; particularly, Spingomonas is the representative
infection-associated genus. However, further research is needed to determine if these
bacteria actually have detrimental effects on fish health.

The abundance of Rubritalea, Saccharimonas, and Bacillus species decreased because
of pathogen infection. Among them, Bacillus is found in the intestines of healthy fish;
because it exerts beneficial effects such as controlling the growth of opportunistic pathogens
and producing antiviral compounds on hosts, many studies have been conducted on its
biotechnological uses, such as probiotics [12]. Although few studies have been performed
on the relationship between fish and other microorganisms (Rubritalea and Saccharimonas)
that decrease with pathogen infection, at least Bacillus appears to be an important strain
that must be present to maintain the balance of intestinal microbiota in fish [12].

5. Conclusions

In conclusion, changes in the intestinal microbiota composition of olive flounder
were observed through controlled infection with each of the three pathogens. At the
phylum level, Proteobacteria increased, and Verrucomicrobia decreased. At the genus level,
Ralstonia and Sphingomonas increased, and Rubritalea, Saccharimonas, and Bacillus decreased.
This result is attributed to an imbalance of intestinal microbes caused by infection with
pathogens. However, additional studies are needed to determine whether the change in
microbial abundance shown in this study actually has a significant effect on fish immunity
and viability, and what mechanism works.
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