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Abstract: Some aspects of traditional aquaculture have negative impacts on the aquatic environment,
leading to pollution and disease outbreaks in farmed organisms. Biofloc technology (BFT) is a closed
aquaculture system that utilizes specific microbial communities to remove ammonia emitted from
aquaculture organisms or adds carbon to the aquaculture system to improve water quality. BFT has
benefits, such as increasing production and improving water quality, and reducing disease spread
and pollution, without the need for water exchange. However, there are disadvantages, such as
rapid changes in water quality due to accumulation of dissolved nutrients and total suspended soils
(TSS) and the requirement for expensive aeration equipment to maintain dissolved oxygen. BFT can
be enhanced in value and efficiency by combining it with other aquaculture technologies, such as
aquaponics and vertical aquaculture to overcome the disadvantages. The integration of biofloc with
technologies from the fourth industrial revolution holds potential for further development, while
aquaponics and vertical farming can eliminate geographical limitations and accelerate the urbaniza-
tion of aquaculture. The integration of aquaponics and vertical aquaculture with BFT has potential
for development, accelerating the urbanization of aquaculture and removing geographic limitations.

Keywords: biofloc system; integration of biofloc and aquaponics; integration possibilities of biofloc
and vertical aquaculture technology; sustainable aquaculture; integrated aquaculture

Key Contribution: This review discussed the positive aspects of the convergence of BFT with other
aquaculture technologies (aquaponics and vertical aquaculture). In addition, the need for future
aquaculture industry development through the development of an integrated aquaculture system
using BFT was emphasized.

1. Introduction

Aquaculture is the fastest–growing industry in the animal food sector, surpassing
captive fishing and being recognized as an alternative, efficient and sustainable food
supply [1]. In addition, the global demand for aquatic products is steadily increasing, and
it is expected to accelerate even further with the growing world population [2]. However,
the traditional aquaculture system faces limitations due to a vicious cycle where the high
density of farms pollutes the coastal environment, which in turn contaminates the farms
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themselves, leading to increased flow rates to maintain water quality and further pollution
of the coastal environment [3,4]. In addition, the traditional aquaculture methods have a low
water exchange rate and a limit to removing waste, which is likely to lessen the immunity of
aquaculture organisms and reduce overall production through frequent disease outbreaks,
resulting in increased costs [5]. Therefore, new sustainable technologies and management
strategies must be introduced to address the negative aspects of traditional aquaculture [6].

BFT is gaining attention as a technology that compensates for the challenges of tra-
ditional aquaculture and offers benefits related to high production yield, feed protein
recycling, water quality and bacterial infection control [7]. BFT is a closed water purifica-
tion process that improves water quality by removing ammonia emitted from aquaculture
organisms by using specific microbial communities, such as heterotrophic bacteria and
nitrifying bacteria, or by adding extra carbon to the aquaculture system through an ex-
ternal carbon source or high carbon content in feed [2,8]. BFT operates by minimizing or
eliminating water exchange while maintaining high stocking density through the principle
of decomposing ammonia derived from feces and feed waste using bacteria [9]. In addition,
effective microorganisms have a virtuous cycle structure in which they proliferate through
ammonia and form biofloc through aggregation, which is used as a food source for aqua-
culture organisms [10]. The diverse aerobic microbial community within BFT water quality
plays a major role in the nitrification process, which stabilizes water quality by converting
ammonia to nitrite and nitrite to nitrates [11]. In the BFT system, ammonia−nitrogen is
removed through three pathways: photoautotrophic removal by algae, autotrophic bacteria
that convert ammonia–nitrogen to nitrate–nitrogen, and heterotrophic bacteria that directly
convert ammonia–nitrogen to microbial biomass [12]. In particular, heterotrophic bacteria
remove ammonia–nitrogen by assimilating it into microbial biomass at high carbon and
nitrogen (C:N) ratios, so it is important to increase the C:N ratio by supplying additional
carbon sources [12–14]. The core of BFT is to increase the metabolic ability to remove
waste products, such as ammonia, by multiplying heterotrophic bacteria and microbial
flocs by adding a carbon source to the breeding water, while converting them into edible
biomass for aquaculture organisms [15]. Indeed, biofloc serves as a high–quality food
source that can be consumed by cultured organisms, resulting in significant cost reductions
in aquaculture, where feed accounts for 40–60% of operational costs [16]. In addition, the
use of biofloc as a food source for aquaculture organisms can improve feed efficiency in
aquaculture by reducing protein requirements for feed and improving the nitrogen utiliza-
tion efficiency of aquaculture organisms [17,18]. Biofloc contains not only protein, lipid,
and carbohydrate but also essential amino acids, essential fatty acids, antioxidants, and
vitamins [18,19]. This provides beneficial effects related to promoting growth, enhancing
immunity, improving survival rates, and enhancing reproductive performance in cultured
organisms [19,20]. Furthermore, the beneficial microorganisms within the biofloc system
can play a significant role in supporting the health of aquaculture organisms; they compete
with pathogenic bacteria in the environment, leading to a substantial decrease in both
the quantity and harmfulness of pathogenic bacteria [21,22]. BFT has the advantage of
not requiring water exchange, because effective microorganisms in the water naturally
purify the water quality [23]. The main advantage of BFT’s zero water exchange system
is enhancing biological security by preemptively blocking the introduction of pathogenic
bacteria from water exchange [9,24]. Additionally, the zero water exchange system has an
important meaning in environmental pollution prevention and biosecurity by effectively
controlling the spread of disease to the natural aquatic environment through aquaculture
wastewater [25]. Furthermore, since the zero water exchange system prevents the escape of
aquaculture organisms and maintains the optimal temperature required for aquaculture
with minimal energy consumption, it suggests that stable production of aquatic products
is possible through BFT [26,27]. However, some disadvantages of BFT have also been re-
ported. BFT operates as a closed aquaculture system, which has the disadvantage of water
quality being susceptible to easy fluctuations [28]. Particularly, for systems dependent
on sunlight, the performance of BFT can vary according to seasonal changes in daylight
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duration [29]. In addition, the inconsistent nitrogen cycle and reduced activity of effective
microorganisms in the water may cause water pollution due to accumulation of nitrite,
ammonia and nitrate in BFT, potentially harming the health of aquaculture organisms [30].
In order to counteract the rapid decrease in dissolved oxygen caused by the excessive
proliferation of beneficial microorganisms, BFT systems require the use of aeration devices
to maintain high levels of dissolved oxygen, which can result in higher facility costs [31].
BFT is obviously an aquaculture technique with many advantages, but many disadvantages
have also been reported. However, if BFT is combined with other aquaculture technologies
to compensate for its shortcomings, it is believed that it will be recognized as having higher
value as an aquaculture technology. This review expects that introducing plants that can
grow by absorbing dissolved nutrients, such as nitrate and phosphorus, generated by
microorganisms decomposing fish waste or feed into the biofloc system will be a way to
complement the shortcomings of biofloc [32–36]. Therefore, in this study, aquaponics tech-
nology and vertical aquaculture, which are expected to have higher value when combined
with BFT technology, are studied.

2. Aquaponics with BFT

Aquaponics, a term that combines ‘aquaculture’ and ‘hydroponics’, was developed in
the late 1970s and early 1980s by Mark McMurtry with researchers in the New Alchemy
Institute and North Carolina State University in the United States; this innovative system
was named the ‘Integrated AquaVegeculture System’ (IAVS) [37]. The historical roots of
aquaponics can be traced back to ancient civilizations including the Aztec chinampas, Egypt,
Babylon, and Far Eastern countries such as China and Thailand, where cultures combined
fish and vegetable farming [38]. The development of the first successful commercial
aquaponics system dates back to 1969, when William McLarney and Nancy and John Todd
replicated the prototype of the Aztec aquaponics system [39,40]. Most of the research
related to aquaponics started in the early 1970s, and modern commercial–scale aquaponics
was established in 1981 by Dr. James Rakocy and his team at the University of the Virgin
Islands [37,40].

Aquaponics is an integrated polytrophic system that combines elements of aqua-
culture with circulating aquaculture, such as BFT and recirculating aquaculture systems
(RAS) [41]. Water rich in nitrogen sources, such as ammonia and nitrite, that nurture aquatic
organisms are used as nutrients for plants to grow, and the water from which the nitrogen
source has been removed through the plants goes back into the tank and helps the stable
growth of aquatic animals (Figures 1 and 2). The interconnection between aquaculture
and hydroponics can effectively solve the problems of each system, which can be used as
a promising sustainable food production technique in the agricultural and fishery indus-
try [42]. Today, commercial aquaponics production takes place in an environment that is
easy to control, such as a greenhouse or an outdoor location with a good climate, using
the facilities and equipment required for aquaculture and agriculture, and the application
of most aquaponics focuses on aquaculture, hydroponics, engineering, microbiology and
water quality [37,43]. Depending on the purpose of the aquaponics system, various sizes
and designs of have been developed in many European countries, and the aquaponics tech-
nology can be an innovative alternative to solve the food and environmental problems the
world is facing, and has thus become a rapidly evolving technology in recent years [44,45].
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Aquaponics supplies a very suitable function for urban environments, land scarce or
polluted areas, and rural areas, and it will be possible to produce fresh and high–quality
aquatic products and agricultural products due to its characteristics of intensive produc-
tion in a small space, which also helps alleviate the urban heat island phenomenon [48].
Aquaponics is being proposed as a sustainable aquaculture concept because high yields
of aquatic life and plants can be expected by diversifying food production, saving water
consumption, and substantially utilizing aquaculture feed in a small space [49]. In fact,
production through aquaponics has been shown to yield six times more than traditional
outdoor farming and aquaculture facilities while utilizing only one–sixth of the space and
water [40]. It is also possible to provide sustainable and high value–added food, including
fruits, flowers and herbs, without the use of antibiotics for aquatic animals and pesticides
for plants, in nearby large cities and dry areas [34]. Tokunaga et al. [50] established a
combined aquaponics system of tilapia and lettuce in Honolulu, Hawaii, USA, and they
reported that plants contributed 80% of the total production. Quagrainie et al. [51] analyzed
aquaponics farms of various scales in the Midwest of the United States, and they found that
plants accounted for 80% of production, regardless of investment level and size. Various
types of plants, including fruits (tomatoes, strawberry, cantaloupe watermelon, dwarf citrus
tree, etc.), vegetables (lettuce, broccoli, onion, carrots, cucumbers, beans, squash, radish,
peas, Swiss chard, zucchini, asparagus, beets, spinach, peppers, etc.) and herbs (basil,
thyme, grafted rose, orchid, sage, tulip, parsley, lemongrass, violas, pansy, wheatgrass,
cilantro, oregano, aloe vera, etc.) are grown through aquaponics systems [52]. In addition,
selection of fish species with high disease resistance and environmental resistance is impor-
tant in aquaponics, and species such as tilapia, carp, catfish, goldfish and largemouth bass
can be utilized for the successful application of the aquaponics system [52].

Aquaponics is a system that combines two technologies, a closed circulation aquacul-
ture systems and hydroponics (plant production from water without soil) in a closed loop
system, and the most important challenge for this technology is to control the conversion of
ammonia generated during the rearing process of aquatic animals to nitrate and to balance
the concentration in the aquatic animal tank and plant growth layer (Figures 3–5) [48]. BFT
promotes the growth of a diverse microbial community consisting of bacteria, microalgae,
protozoans, and other invertebrates [53]. These communities play an important role in
natural productivity, water quality and nutrient cycling, and also serve as a food source for
aquaculture organisms [54]. However, BFT can lead to high nutrient content in effluents
due to low water exchange and high stocking densities [34]. To address this issue, water
reuse or nutrient recycling in aquaponics systems can be considered [55,56].

Additionally, aquaponics can be more efficient when there is a diverse microbial com-
munity, known as BFT [57]. A nitrogen cycle must be established for the stable operation of
the aquaponics system, and ammonia released during fish breeding is converted to nitrite
by ammonia oxidizing bacteria (AOB), which is then oxidized to nitrate by nitrite oxidizing
bacteria (NOB, mainly Nitrobacter spp. and Nitrospira spp.) [8,58]. Nitrates generated in
fish tanks act as nutrients for plants and promote growth, and effective circulation can
be achieved only when there is a good balance between nitrate production by aquatic
animals and plant biomass [52]. Moreover, in contrast to the traditional aquaponics system,
integrated systems have the advantage of being able to meet the nutritional needs of plants
without relying on chemical fertilizers because the plants are supplied with a variety of
nutrients (N, P, K, S, Ca, Mg, Fe, Mn, Cu, Zn, B, Mo, Al) by utilizing the food and excrement
of cultured organisms [59,60]. Tetra et al. [61] reported that plant yellowing due to lack of
nutrients did not occur in the integrated system of BFT and aquaponics, suggesting that
the integrated system can support the growth and survival of both cultured organisms
and plants.

The integrated system with BFT and aquaponics is an environmentally–friendly
method of food production due to its focus on nutrient recycling and water conserva-
tion. Pinho et al. [2] named this integrated aquaculture system ‘FLOCponics’ and intro-
duced it as a new type of aquaponics system that replaced RAS with the BFT system.



Fishes 2023, 8, 543 6 of 14

This integrated system has the potential to enhance economic diversity by producing
value–added plant products and mitigate the accumulation of nitrate and phosphorus in
the management of the BFT system [35]. The integrated system of BFT and aquaponics
maintains low nitrate levels through continuous absorption by plants, as well as keeping
phosphate levels either unchanged or within the recommended range for plant growth.
Saseendran et al. [35] employed an integrated system of biofloc and aquaponics, using
bell pepper, Capsicum annum L. and GIFT tilapia. Under the condition of 150 fish/m2, the
nitrate level in this system was 2.86 ± 0.51 mg/L, while the only aquaponics system had a
nitrate level of 5.26 ± 0.49 mg/L. This significant difference was attributed to the enhanced
nitrate absorption by plants in the integrated system. However, under the same conditions,
there was no significant difference in phosphate levels between the integrated system and
the standalone aquaponics systems. Pinheiro et al. [33] employed an integrated system
of biofloc and aquaponics, using halophytes, Sarcocornia ambigua, and shrimp, Litopenaeus
vannamei. The presence of plants did not result in significant differences in nitrate lev-
els, but the nitrate levels were consistently low. Furthermore, there were no significant
differences in orthophosphate levels. Pinho et al. [34] employed an integrated system of
biofloc and aquaponics, using seedlings of red lettuce, butter lettuce, and crispy lettuce
as the plants, and Nile tilapia as the fish, Oreochromis niloticus. This integrated system
maintained low levels of nitrogen compounds (ammonium nitrogen, nitrite, and nitrate),
with concentrations of 1.5, 0.0, and 0.1 mg/L, respectively, as a result of plant absorption.
However, orthophosphate levels were observed to be at 20.6 mg/L, but still within the
recommended values for leafy vegetables. Several studies have shown the sustainability of
the integrated system by maintaining the aquaculture environment rather than promoting
the growth performance of animals and plants. For instance, this system showed that water
quality parameters, such as dissolved oxygen, temperature, pH, and salinity, remained
within the appropriate environment for Nile tilapia (Oreochrimis niloticus) and shrimp
(L. vannamei) [1]. Furthermore, the aquaponics system regulates the levels of TSS, which
accumulate due to organic waste, by utilizing them to promote the growth of plants [62].
The halophyte plant (S. ambigua) in the integrated system effectively reduced the nitrate
level and TSS, while promoting microbial growth through root exudation and biofilm
formation [1]. The appropriate consumption of nitrogen and phosphate compounds by
S. ambigua, was confirmed at a salinity range of 16 to 24 psu. It was also observed that
this system had no adverse effects on the performance of L. vannamei, including survival,
feed conversion ratio, and productivity [63]. The integrated system of aquaponics and BFT
provided appropriate aquaculture environment for O. niloticus and shrimp (Macrobrachium
rosenbergii) without adverse impacts. In this system, vegetables such as curly lettuce (Lac-
tuca sativa) and watercress (Rorippa nasturtium–aquaticum) played a crucial role in regulating
nitrate levels produced by chemoautotrophic bacteria [64].

The research on an integrated system of BFT and aquaponics is currently in its initial
phase with a limited number of published papers and a lack of standardization in system
design and experimental methodologies. Several factors need to be considered for the
sustainability and optimization of this system. In marine aquaculture and hydroponics,
the use of salt–tolerant or halophyte plants is essential [65]. It is necessary to consider the
appropriate salinity for ideal growth, as the degree of salt tolerance varies among different
plant species [63]. The yield of aquatic organisms and plants is affected by the water quality
of the integrated system. Water quality indicators, such as dissolved oxygen, turbidity,
nitrate, phosphate, calcium and potassium, depend on the stocking density of fish and
plants, which can affect their growth performance [1,35]. For example, when the amount of
nutrients required for plant growth is exceeded, the absorption of nitrate can be stopped,
leading to an increase in nitrate concentration in the water [62]. In addition, changes in the
water quality environment can induce oxidative stress in fish and plants, thereby changing
their metabolic activities and inhibiting their growth performance [1,35]. Most studies have
used Nile tilapia and whiteleg shrimp, which are relatively tolerant to high concentrations
of suspended solids and nitrogen compounds, while studies on other species with high



Fishes 2023, 8, 543 7 of 14

market value are limited [2]. In addition, biofloc present in the roots interferes with the
plant’s absorption of nutrients, which may inhibit plant growth or even cause the plant
to weaken or die [2]. Therefore, applying decoupled aquaponics systems (DAPS) to BFT,
which are more convenient for nutrient concentration control and solids management by
separating plant and fish production units, is proposed as a promising alternative [66,67].
In conclusion, the integration of BFT and aquaponics offers an environmentally–friendly
approach to food production, but further research and standardization are necessary to
fully explore the potential and optimize the sustainability of this system.
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3. Vertical Aquaculture Technology with BFT

Vertical aquaculture is an innovative system developed by Columbia University Pro-
fessor Dickson Despomeer in 1999 to solve the problem of shortage of food and agricultural
land, which utilizes land vertically; it is possible to produce many aquatic animals in a
limited space by using the space vertically (Figure 6) [70,71]. Vertical aquaculture can be
operated in multiple stages using shallow raceway systems (SRS), and SRS has character-
istics such as (1) operating at low water levels ranging from 0.7 to 25 cm, depending on
the size of the fish, (2) made of high density using 200–300% of the available bottom area
and (3) characterized by the presence of turbulent and plug flow patterns [72]. Vertical
aquaculture can be defined as artificially creating optimal environmental and economic con-
ditions in urban buildings, which are consumption areas, for social and economic benefits,
and cultivating aquatic life using aquaculture water recycling and aquaculture automation
systems; in addition, the vertical aquaculture industry is a complex industry that cultivates
aquatic animals in a building farm, processes and sells them, and pursues leisure tourism
and commercial profits using aquaculture buildings [73]. Vertical aquafarms are being de-
veloped in various shapes and sizes from a simple two–story to a few stories high (Norway
four floor vertical breeding tank, Portugal five floor vertical breeding tank, Spain six floor
vertical water tank, Netherlands seven floor vertical water tank) [74]. The need to develop
vertical aquaculture is being strengthened due to (1) global response to climate change,
(2) the rise of aquaculture as a future life industry, (3) marine aquaculture environmental
pollution and limitations in suitable sites, (4) provision of high–cost and low–efficiency
land aquaculture alternatives, and (5) conversion to low–carbon, environmentally–friendly
aquaculture [75].
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In applying the vertical structure, various considerations such as humidity control,
natural ventilation, building envelope materials, energy efficiency, water heating, space
heating and lighting requirements, should be considered along with the combination
with natural hydroponic systems, aquaponics systems and biofloc systems for nutrient
circulation through closed systems [74,76]. As a process of water circulation within a
building, part of the circulating water is absorbed by plants or discharged out of the
building as wastewater due to the metabolic activities of aquaculture organisms, and the
remaining water is recirculated around the building by a system responsible for water
recycling [77]. Furthermore, by filtering rainwater collected on the rooftop of the building or
single–use water, such as from showers or handwashing, it is possible to increase the rate of
water reuse [77,78]. Vertical aquaculture has many advantages in raising organisms. It has
an advantage over aquaculture in that it is easy to maintain the temperature of the breeding
water through LEDs and heating and cooling systems in a closed space; in addition, it is
advantageous for plant growth through appropriate photoperiod and spectrum settings
using LEDs [77,79].

Vertical aquaculture shows many differences from traditional aquaculture in various
aspects, such as aquaculture location, aquaculture method and business type. Vertical
aquaculture creates an artificial aquaculture environment of a double–story shelf type in
a high–rise building in the city, while conventional aquaculture is carried out at sea level
and at inland water level. Vertical aquaculture has the characteristics of (1) saving space
for producing aquatic organisms, (2) efficiently producing aquatic products using this
technology, and (3) completely controlling the environment for aquaculture production,
and it is therefore ideal for construction in urban areas where space can be an issue [80].
Additionally, vertical aquaculture has the potential to play a key role in local food produc-
tion because by locating a grocery store or restaurant on the ground floor of a building,
fresh, inexpensive produce can be provided directly to customers without the need for
distribution [78,81]. Vertical aquaculture has a very short distance from the consumption
area, and it has a very high possibility of automation and technology convergence, in-
cluding cooperating with mobile applications and image processing to control the module
remotely with mobile application software, which can also be expanded into various busi-
ness types, such as aquaculture product sales, processing and leisure tourism, as well as
aquaculture [73]. Recently, research has been reported on the development of an intelligent
system that can control environmental factors within the vertical aquaculture system, and
efforts are being made to increase aquaculture production through the integration of the
vertical aquaculture system and other technologies [82]. However, the vertical aquaculture
system requires a high–cost waste management system to remove waste generated from
aquaculture organisms or convert it into beneficial resources, such as liquid fertilizers or
biofuels [83]. In addition, when installing a vertical farm, the waste management system
has the disadvantage of taking up a lot of space because it requires about two floors in
the building [77]. Therefore, vertical aquaculture technology, which has potential through
its various advantages, needs to be integrated with the biofloc system, which can actively
manage waste by using effective microorganisms to decompose fish waste without the
need for separate facilities The integration of the two aquaculture technologies is expected
to develop into a sustainable and efficient aquaculture technology by complementing each
other’s shortcomings. However, there is no research on the integrated system of biofloc
and vertical aquaculture technology. Therefore, it is necessary to establish indicators for the
applicable biological range and limitations through standardized integrated system design
and biological application research, and to evaluate the effectiveness of this integrated
system through research on changes in aquaculture organisms through system application.

4. Conclusions and Future Direction

Traditional aquaculture, characterized by high–density aquaculture, leads to coastal
environmental pollution, resulting in deteriorating farm health and reduced production.
BFT is attracting attention as an aquaculture technology that can solve the problems of
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traditional aquaculture. BFT is a closed water purification process that effectively manages
water quality, controls pathogen infection, and promotes high production yield through
a zero water exchange system. BFT not only reduces operating costs, but also improves
the overall health and growth of aquatic organisms. However, BFT faces challenges such
as vulnerability to water quality fluctuations, changing seasons, and the need for aeration
to maintain oxygen levels. In order to overcome the disadvantages of BFT, development
through a combination with other aquaculture technologies, such as aquaponics and vertical
aquaculture, is needed. Aquaponics is a technology that combines two technologies, a
closed circulation aquaculture system and hydroponics, into a closed loop system. Vertical
aquaculture utilizes the vertical space of a high–rise building to efficiently produce aquatic
organisms while controlling the environment. Aquaponics and vertical aquaculture are
advantageous for urban environments due to their space efficiency and potential to mitigate
environmental problems. Furthermore, it is expected that when these two technologies
are combined with BFT, they will be able to compensate for the shortcomings of BFT. The
fusion of BFT with aquaponics and vertical aquaculture is expected to provide innovative
solutions to the challenges facing the aquaculture industry. These integrated systems not
only enhance efficiency and sustainability of aquaculture but also have the potential to
reshape the way we produce and consume aquatic products in urban environments. The
development of these innovative aquaculture technologies is predicted to play an important
role in a world that needs more food in the future. The development of sustainable
and safe aquaculture systems will play a crucial role in supporting the food supply of
rapidly growing populations. Therefore, continuous research and standardization efforts
on integrated systems using BFT are essential for the future aquaculture industry.
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