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Abstract: Scientific methods are used to monitor fish growth and behavior and reduce the loss caused
by stress and other circumstances. Conventional techniques are time-consuming, labor-intensive, and
prone to accidents. Deep learning (DL) technology is rapidly gaining popularity in various fields,
including aquaculture. Moving towards smart fish farming necessitates the precise and accurate
identification of fish biodiversity. Observing fish behavior in real time is imperative to make better
feeding decisions. The proposed study consists of an efficient end-to-end convolutional neural
network (CNN) classifying fish behavior into the normal and starvation categories. The performance
of the CNN is evaluated by varying the number of fully connected (FC) layers with or without
applying max-pooling operation. The accuracy of the detection algorithm is increased by 10% by
incorporating three FC layers and max pooling operation. The results demonstrated that the shallow
architecture of the CNN model, which employs a max-pooling function with more FC layers, exhibits
promising performance and achieves 98% accuracy. The presented system is a novel step in laying
the foundation for an automated behavior identification system in modern fish farming.

Keywords: deep learning; advance analytics; fish farming; aquaculture

1. Introduction

Global fishing production hit a peak of 178 million tons in 2020 [1]. Humans consumed
88% of this output, which is critical for the Food and Agriculture Organization (FAO)
of the United Nations (UN) to achieve its aim of creating a world free of hunger and
malnutrition [2]. Nonetheless, as the world’s population continues to expand, the strain on
the global fisheries market will also grow [2,3].

Smart fish farming is a novel scientific area aiming to develop efficient and sustainable
aquaculture [4]. In modern fish farming, the integration of emerging technologies, such
as the Internet of Things (IoT), big data, cloud computing, and artificial intelligence (AI)
can create sustainable aquaculture and reduce the usage of conventional techniques [5,6].
Rapid aquaculture growth has also led to several problems, including water contamination,
fish malnutrition, and diseases [7]. Smart aquaculture can strive to solve the problems
of fishery development and increase aquaculture productivity as part of the third green
revolution [8]. Smart aquaculture monitors fish at various stages, reduces the risk of failure,
and increases profitability and productivity [9]. The feeding stage of fish impacts the
production efficiency and breeding cost in intensive aquaculture [10]. For some fish species,
feeding expenses make up more than 60% of the total production costs. [11,12]. The excess
amount of feeding reduces production efficiency, whereas insufficient feeding negatively
impacts fish growth. Traditional feeding decisions for assessing the hunger desire of fish is
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often impeded by high fish density and water turbidity [13]. Therefore, an affordable and
highly trustworthy monitoring system is required to observe the fish behavior [14].

In recent years, advancements in computer vision have provided a fast and non-
destructive approach to identifying fish behavior [15]. Machine learning (ML) is a break-
through in artificial intelligence (AI) that is applied in various domains, namely robotics,
medicine, information security, and especially aquaculture [16]. Machine learning tech-
nology is widely used in a variety of applications of aquaculture, including classification,
fish counting, size measurement, and behavior identification [17]. Deep learning (DL)
is a subset of machine learning and is increasingly applied in aquaculture because of its
effective ability to express features. DL is a multi-layer learning network that can extract
semantic information from the pixel level, which is suitable for fish behavior detection
through images [18].

DL-based feeding decision-making research has made outstanding progress in recent
years. As a result, accurate recognition of fish behavior can achieve optimal feed control,
lower feeding costs, and increase economic efficiency [19]. Various researchers have con-
ducted a significant amount of research on fish behavior. Zhou et al. evaluated fish feeding
behavior using near-infrared imaging technology and measured the feeding behavior index
using a support vector machine (SVM) and gray gradient symbiosis matrix. The results
through experiment and the expert manual assessment provided a correlation value of
0.945 [20,21]. Zhou continued his research in 2018 and improved the results by using an
adaptive neuro fuzzy inference system (ANFIS) to assess and analyze fish-eating behavior.
The results showed that the ANFIS accuracy was 98% [22]. In 2019, he proposed a deep con-
volutional neural network (DCNN) to categorize fish behavior into four classification levels,
namely, “none” “weak” “medium” and “strong” with 90% classification accuracy [23].
Furthermore, several other studies have also used neural network models to assess fish
behavior. Another researcher [24] used a convolutional neural network (CNN) and long
short term memory (LSTM) network to predict feeding and non-feeding behavior of salmon
species with an accuracy of 80%. In [25], authors evaluated fish escape, swimming, and
feeding behavior using Fourier discrete transform and Fourier descriptor. The model using
a Fourier descriptor distributed the fish feed precisely without any intervention, with an
accuracy of 100%.

From a detailed analysis of the existing literature related to smart aquaculture, the
application of deep learning can be divided into four categories: live fish identification,
species classification, behavioral analysis, and biomass estimation [4]. It is also revealed
from a literature review that fish identification and species classification are the most
popular areas of research. In contrast, behavior identification has been less targeted than
others [4]. The proposed model analyzes the starvation and normal condition of the fish
through their behavior. The aim of this study was to provide a quick support decision
system regarding the feeding decision in smart fish farming.

2. Materials and Methods
2.1. Fish Samples and Experimental Environment Creation

THAMNACONUS modestus (black scraper) is one of the approved ISO organisms
for experimental purposes [26]. Black scrapers of 27 ± 2 cm in length and 275 ± 25 g in
weight were chosen as the research object for this experimental study. During regular
feeding, the temperature of the water was kept at (23 ± 1) ◦C, and dissolved oxygen
was 6.3 ± 0.3 mg/L. Thamnaconus modestus was well acclimated to the environment and
received one feeding a day for 2 weeks before the experiment. Data were collected in the
presence of light. The total duration of the experiment was 12 days. At first, the fishes
were nourished on alternate days for 12 days. The following two groups describe the
state of the fish and shown in Figure 1.

Group 1: Normal behavior: the fishes were fed at a fixed time. After the feeding stage,
the excited state of fishes was also observed.
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Group 2: Starvation behavior: Under this condition, the feeding was stopped for
6 days to create a starvation environment. It was observed that the fishes were swimming
in the areas they usually do not visit, probably looking for food. Sometimes fishes came to
the water surface, which they usually would not do. During starvation, the fishes showed
aggressive behavior and quickly gobbled down food.
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Figure 1. Thamnaconus modestus (black scraper) normal and starvation behavior during the experiment
(the date in right image is 30 June 2021).

2.2. Dataset Description

The experimental data used for the proposed study were collected in the laboratory
environment at China Agricultural University, Beijing. For this study, 100 black scrapers
(Thamnaconus modestus) were selected, and their behavior was recorded. The resolution of
the captured videos was 3840× 2160, while the frame rate was 25 fps. The image sequences
were retrieved from the video data. The fish experimental setup was installed in the open
air with a water depth of approximately 2–3 m, and the brightness of the underwater
images was from natural light. One camera was placed face down, and the other was
inside the water, focusing on the fishes in a shallow pool. The dataset of 2000 images
was divided into two categories: 1265 images exhibited normal fish behavior, and the
remaining 735 images showed the starvation (hunger) behavior. Figure 2 shows the dataset
acquisition schematics.
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2.3. Training Methodology

In the proposed method, CNN models classified 2000 images into two categories
(normal and starvation). Table 1 shows the distribution of the dataset for training and
testing purposes. The maximum training accuracy and minimum training loss depend
on the learning rate adjustment in the training phase. The optimal learning rate resulted
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in a quick drop in the training loss, which reached the minimum level. The network
training parameters included a learning rate, drop rate, and batch size of 0.00001, 0.3, and
1, respectively. In order to perform synchronization between the desired and calculated
output, the optimizer stochastic gradient descent (SGD) was applied by using the gradient
derivative [27]. Proposed CNN was trained for 100 epochs, and the cross-entropy loss
function was used.

Table 1. Distribution of dataset images into training and testing for detection purposes.

Behavior Analysis Test Train Total

Starvation 175 560 735
Normal 425 840 1265

Total 600 1400 2000

2.4. Software and Hardware System Description

The research implementation used the Anaconda platform TensorFlow 1.14 and Keras
2.0.0 with Python 3.7.4. The training phase was completed on a hardware unit with a Core
i7- 9750H@2.6 GHz processor with 16 GB DDR4 RAM. The graphics card used was an
NVIDIA RTX 2080ti with 24GB.

2.5. Proposed Convolutional Neural Network (CNN) Model

The proposed research methodology used a convolutional neural network (CNN),
made from scratch in our implementation. The CNN model consisted of six convolution
layers, two pool layers, two fully connected (FC) layers in model-1, and three FC layers in
model-2. In the first part of the experiment, the CNN models were implemented without
applying the max-pooling function and observed in the testing phase. In the second phase
of the experiment, the max-pooling function was applied to both CNN models. Figure 3
depicts the general architecture of both models. Using the proposed framework, the
starvation and normal stages of fish were quickly identified. The detailed information
about the architecture of model-1 and -2, their convolutional layers, number of filters,
kernel, and stride size can be seen in the Supplementary Materials section.
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3. Results

This section details the testing and validation performance of the proposed CNN
model based on the classification matrices.

3.1. Evaluation Matrices

To evaluate the effectiveness of the proposed framework and to compare it to other
applicable techniques, some standard classification matrices, such as Accuracy, Recall, True
Positive Rate (TPR), F1—score, and many others are used, as follows:

Accuracy (Acc) =
TP + TN

TP + TN + FP + FN
× 100% (1)

Sensitivity or Recall (TPR) =
TP

TP + FN
× 100% = 1− (FNR)× 100% (2)

peci f icity, Selectivity (TNR) =
TN

TN + FP
× 100% = 1− (FPR)× 100% (3)

Fall −Out (FPR) =
FP

FP + TN
× 100% = 1− (TNR)× 100% (4)

Miss− Rate (FNR) =
FN

FN + TP
× 100% = 1− (TPR)× 100% (5)

F1− Score = 2× Precision× recall
Precision + recall

× 100% =
2TP

2TP + FP + FN
× 100% (6)

Error rate = (1− Acc)× 100% =
FP + FN

TP + TN + FP + FN
× 100 % (7)

Matthews Corelation Coe f f icient (MCC)
= TP×TN−FP×FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
× 100% (8)

TP is True Positive and TN is True negative, whereas FP and FN are False-positive and
False-negative, respectively.

3.2. Quantitative Evaluation with Statistical Analysis

The objective of the study was to provide an alternative pathway for the initial screen-
ing of the fish hunger stage by using deep learning. The performance evaluation parameters
such as accuracy, precision, recall, etc., were used to compare results derived from the
confusion matrix [28]. The dataset was divided into 80% for training and 20% for testing
purposes. In this study, the validation and test sets were the same.

3.2.1. Experiment 1: CNN Model-1

The testing results showed that the CNN model-1 attained an overall accuracy of 88.9%.
Table 2 outlines the performance parameters. The performance parameters also showed that
model-1 could distinguish between two classification categories with reasonable accuracy
in the test dataset.

3.2.2. Experiment 2: CNN Model-2

The CNN model-2 indicated an overall diagnostic accuracy of 98%. The experimental
results showed that the CNN model-2 outperformed model-1 and significantly improved
all performance factors. Table 3 outlines the performance parameters. The accuracy was
improved after increasing the number of FC layers. The sensitivity value of 98% indicated
that the total number of false negatives was low. In comparison, the specificity value of
98% shows that the total number of true negatives was high.
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Table 2. Performance Evaluation of Proposed CNN Model-1.

Parameters (%) Model-1
(Max-Pooling)

Model-1
(Without Max-Pooling)

Accuracy 88.9 86.02
Error rate 11.1 13.98

Recall 90.09 79
Selectivity 85.71 90

Fall out 14.28 85
Miss rate 9.9 21

MCC 73.92 66.3
F1-score 91.91 85

Table 3. Performance Evaluation of Proposed CNN Model-2.

Parameters (%) Model-2
(Max-Pooling)

Model-2
(Without Max-Pooling)

Accuracy 98 93
Error rate 2 7

Recall 98 93.94
Selectivity 98 90.90

Fall out 2 9.09
Miss rate 2 9.06

MCC 93 83.83
F1-score 98 94.89

The receiver operating characteristics (ROC) curve with area under the curve (AUC) is
another crucial factor to consider when analyzing a model’s behavior. This graph depicts
the relationship between the true positive rate (TPR) and the false positive rate (FPR). When
a model’s AUC value is close to one, it is said to be cost-effective. This study used Origin
Pro 8.5 to create ROC curves. AUC was calculated using the trapezoid formula. Figure 4
displays ROC curves with AUC values of the proposed models.
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4. Discussion

The development of intelligent aquaculture is necessary for determining the appropri-
ate behavior of the fish. The accurate classification of fish behavior as normal and hungry
is essential for productivity and profitability. The primary goal of this study was to ob-
tain satisfactory results in terms of behavior recognition. After analyzing the results, the
proposed approach substantially improved progress in identifying and classifying fish
feeding behavior. To establish the relationship between fully connected (FC) layers with the
architecture of a convolutional neural network (CNN), the study evaluated the effects on
deeper/shallower architectures of CNN by varying the number of FC layers in the context
of image classification. The CNN model was initially trained using a single FC (output)
layer. Then, another FC layer was manually inserted before the output (FC) layer to track
any performance gains or losses brought on by the new FC layer. The experiments were
conducted with the newly added FC layer by varying 10, 16, 32, 64, . . . 4096 neurons. The
model’s performance was then evaluated by adding another FC layer and changing the
number of neurons up to 4096. Finally, the addition of a third FC layer with 1024 neurons
improved the model’s performance. According to Bansal et al. [29] and Basha S. et al. [30], for
the training of CNN models with deeper datasets, deeper architectures are more preferred
than shallow architectures. However, the opposite is valid for wider datasets. Furthermore,
the shallow architecture of a CNN requires more FC layers than the deeper architecture for
better performance of any dataset. If two datasets have about the same number of images,
one dataset is said to be deeper than the other if the number of images per class in the
training set is high. The other dataset, which is called the wider dataset, consists of fewer
images per class in the training set. The requirement for the increased number of FC layers
for a shallow architecture is related to the features learned by the convolutional layer. This
study showed that the final convolutional layer of the proposed shallow architecture of the
CNN produced fewer abstract features than the deeper architecture; thus, more FC layers
were needed for better performance.

5. Conclusions

Early detection of fish behavior is essential in increasing the efficiency of modern
aquaculture. This research examined and evaluated fish feeding behavior to optimize
real-time feed control. By using deep learning-based frameworks, accurate and precise
behavior identification can become more accessible. This paper presented a novel technique
for detecting the fish’s normal and starvation stages. The key contributions of our work are
as follows:

1. Proposed a state-of-the-art convolutional neural network with an additional fully
connected layer for a high-performance detection and classification system.

2. Due to the correlation between environmental complexity and uncertainty of fish
behavior, the behavior recognition accuracy is generally low. The proposed method
achieved excellent accuracy with these substantial challenges.

3. The proposed model addressed the problem of poor generalization ability with the
shallow neural network and classified the fish images into two categories with an
accuracy of 98%.

This proposed methodology can be adapted for large datasets because it can provide
scalable performance. The future steps are to perform classification, detection, and recog-
nition tasks with more challenging datasets. In addition, a combination of deep learning
and data fusion techniques can be employed for behavior detection, which can aid in
developing an intelligent feeder system and its application in modern aquaculture.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/fishes7040201/s1. Supplementary Convolutional Neural Network
Architecture Description.

https://www.mdpi.com/article/10.3390/fishes7040201/s1
https://www.mdpi.com/article/10.3390/fishes7040201/s1
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