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Abstract: The snakeskin gourami (Trichopodus pectoralis) has a high meat yield and is one of the top
five aquaculture freshwater fishes in Thailand. The species is not externally sexually dimorphic,
and its sex determination system is unknown. Understanding the sex determination system of this
species will contribute to its full-scale commercialization. In this study, a cytogenetic analysis did
not reveal any between-sex differences in chromosomal patterns. However, we used genotyping-by-
sequencing to identify 4 male-linked loci and 1 female-linked locus, indicating that the snakeskin
gourami tends to exhibit an XX/XY sex determination system. However, we did not find any
male-specific loci after filtering the loci for a ratio of 100:0 ratio of males:females. This suggests
that the putative Y chromosome is young and that the sex determination region is cryptic. This
approach provides solid information that can help identify the sex determination mechanism and
potential sex determination regions in the snakeskin gourami, allowing further investigation of
genetic improvements in the species.

Keywords: single nucleotide polymorphism; recombination; teleost; cryptic sex chromosome; poly-
genic sex determination; Trichopodus pectoralis; sex determination; fluorescence in situ hybridization

1. Introduction

The snakeskin gourami (Trichopodus pectoralis, Regan 1910; Anabantoidei: Osphrone-
midae) is one of the most common air-breathing freshwater fishes in the Indochina Penin-
sula [1,2]. They can survive in waters with low dissolved oxygen and high organic loads,
and are often found in rice paddies, ditches, and streams with dense vegetation [3]. The
snakeskin gourami generally feeds on zooplankton, crustaceans, and insect larvae [4]. It is
also one of the most popular and colorful species of aquarium fish and an attractive species
for commercial farming [5]. The snakeskin gourami has a high meat yield, and traditional
dried snakeskin gourami is a popular food [3]. Dried snakeskin gourami is widely con-
sumed in Southeast Asia, and recent developments in this regard have led to increasing
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costs of snakeskin gourami in the aquaculture market [6]. The commercial farming of
snakeskin gourami has developed rapidly in recent years [5]. Current farming systems
face the problem of seed supply limitations, which is exacerbated by the lack of available
information on the sex determination system of snakeskin gourami and the unavailability
of options for sex control and genetic improvements [7]. A stock assessment during the
early life stage is necessary for breeding management; however, the fish progeny take a
relatively long time (estimated to be 2–3 years) to reach sexual maturity. Moreover, this
species does not show external sexual dimorphism [2], which hinders effective commercial
breeding. Mature sex organs can be observed in snakeskin gourami at approximately
1 year of age using ultrasound imaging and evaluation of plasma vitellogenin or sex steroid
levels [8]. All of these methods can be performed on adult captive broodstock during the
period preceding the first half of the spawning season [9]. Nevertheless, understanding
the sex determination system in snakeskin gourami is an important baseline for future
research on evolutionary biology, sex development, and genetic improvements in aquacul-
ture. Sex manipulation through gynogenesis or androgenesis in breeding programs is also
of considerable economic value [10].

The mechanisms of sex determination in teleosts are extremely diverse and comprise
environmental sex determination (ESD), genotypic sex determination (GSD), or a combi-
nation of the two [11–13]. For GSD, the sex chromosomes are likely well-differentiated in
several amniotes that exhibit male heterogamety (XX/XY), female heterogamety (ZW/ZZ),
or multiple sex chromosomes that determine sex; however, most teleosts do not show het-
eromorphic sex chromosomes [14,15]. A comparison of sex ratios and gonad morphology
in snakeskin gourami revealed a tendency towards GSD [16], but there is little evidence
concerning its sex determination system. The osphronemids comprise 15 genera and
46 species. Of these, most species show highly conserved karyotypes with 2n = 46 (com-
posed of only acrocentric chromosomes), some exhibit GSD, and others exhibit temperature-
dependent sex determination [17,18]. Based on the phylogenetic mapping of homomorphic
and heteromorphic patterns of sex chromosomes in this lineage, we hypothesized that
snakeskin gourami exhibits a ZZ/ZW system (Figure 1). Similar trends of diverse and
rapid evolution of sex chromosomes were previously reported in closely related teleost
species [11,14,15,18–20], suggesting that sex chromosomes and sex determination systems
have evolved independently in different lineages. The investigation of sex chromosomes
and sex-determining mechanisms is, therefore, a prerequisite for the development of an
accurate method of sex identification. Several techniques were employed to identify sex
chromosomes. Karyotype analysis is a simple and conventional cytogenetic approach to
examine heteromorphic sex chromosomes in teleosts and other animals [21–29]. However,
this method is not suitable for species with homomorphic sex chromosomes, even though
several sex chromosomes show a high accumulation of repetitive elements [25,30–34]. In
recent years, next-generation sequencing technologies have facilitated the discovery of
numerous genetic markers in almost any organism at an affordable cost, allowing the
investigation of genetic diversity within and between populations [35]. Only a fraction
of the homologous regions in the genome of non-model species can be sequenced and
genotyped for single nucleotide polymorphisms (SNPs) to identify the genomic regions of
sex-determining loci [19,20,36,37]. Diversity Arrays Technology (DArTseq), a technique
developed by Diversity Arrays Technology Pty Ltd. (Canberra, Australia), generates restric-
tion site-specific presence-absence (PA) markers and is an effective method for identifying
sex-linked loci using SNP loci.
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Figure 1. Schematic representation showing variations in chromosome numbers and sex determination method among 
different species in family Osphronemidae. The phylogeny was partially derived from Ruber et al. [38]. The chromosome 
numbers and sex determination systems of Sphaerichthys osphromenoides, Trichopodus pectoralis, T. leerii, T. trichopterus, T. 
microlepis, Colisa chuna, C. labiosa, C. lalia, C. fasciata, and Osphronemus goramy were obtained from Koref-Santibanez and 
Paepke [39]. The chromosome numbers of Trichogaster fasciata and Trichogaster labiosa were obtained from Manna and 
Prasad [40], that of Betta splendens was obtained from Grazyna et al. [41], those of Macropodus ocellatus, M. opercularis, and 
M. concolor were obtained from Koref-Santibanez et al. [42], and that of M. chinensis was obtained from Jianxun et al. [43]. 
The bullet symbols indicate a presence data. The question mark symbols indicate a hypothesis. Lack of symbol indicate 
an absence of data. 

 

Here, we address the aforementioned hypothesis using conventional and molecular 
cytogenetic approaches. We also performed DArTseq to identify a number of novel 
SNP/PA loci in captive-bred individuals with known phenotypic sex assignment and to 
determine the potential sex-determining system and associated regions in snakeskin 
gourami. Additionally, the mapped DArTseq sequences were used to search for 
homologies with other model teleosts (the Japanese rice fish: Oryzias latipes, zebrafish: 
Danio rerio, and the Japanese puffer: Takifugu rubripes) and vertebrates (chicken: Gallus 
gallus) using comparative genomic analyses. Our findings provide novel insights into the 
evolutionary history of sex chromosomes in teleosts and other vertebrates. 

2. Materials and Methods 
2.1. Specimens and DNA Extraction 

Ten male and ten female snakeskin gourami individuals from several clutches were 
donated by the Ayutthaya Farm (Ayutthaya, Thailand). The sample individuals were 
adults with a standard weight of 20–50 g and a length of 12–15 cm. Sex was determined 
based on examining internal genital anatomy [44]. After each fish had been sacrificed by 
severing the spinal cord anterior to the dorsal fin, the fins were collected for DNA 
extraction, the kidneys and the gills for mitotic chromosome preparation, and the testes 
for meiotic chromosome preparation. Molecular identification of the species was 
performed according to Kitano et al. [45], Wyneken et al. [46], Hubert et al. [47] and Rüber 

Figure 1. Schematic representation showing variations in chromosome numbers and sex determination method among
different species in family Osphronemidae. The phylogeny was partially derived from Ruber et al. [38]. The chromosome
numbers and sex determination systems of Sphaerichthys osphromenoides, Trichopodus pectoralis, T. leerii, T. trichopterus,
T. microlepis, Colisa chuna, C. labiosa, C. lalia, C. fasciata, and Osphronemus goramy were obtained from Koref-Santibanez and
Paepke [39]. The chromosome numbers of Trichogaster fasciata and Trichogaster labiosa were obtained from Manna and
Prasad [40], that of Betta splendens was obtained from Grazyna et al. [41], those of Macropodus ocellatus, M. opercularis, and
M. concolor were obtained from Koref-Santibanez et al. [42], and that of M. chinensis was obtained from Jianxun et al. [43].
The bullet symbols indicate a presence data. The question mark symbols indicate a hypothesis. Lack of symbol indicate an
absence of data.

Here, we address the aforementioned hypothesis using conventional and molecu-
lar cytogenetic approaches. We also performed DArTseq to identify a number of novel
SNP/PA loci in captive-bred individuals with known phenotypic sex assignment and
to determine the potential sex-determining system and associated regions in snakeskin
gourami. Additionally, the mapped DArTseq sequences were used to search for homolo-
gies with other model teleosts (the Japanese rice fish: Oryzias latipes, zebrafish: Danio rerio,
and the Japanese puffer: Takifugu rubripes) and vertebrates (chicken: Gallus gallus) using
comparative genomic analyses. Our findings provide novel insights into the evolutionary
history of sex chromosomes in teleosts and other vertebrates.

2. Materials and Methods
2.1. Specimens and DNA Extraction

Ten male and ten female snakeskin gourami individuals from several clutches were
donated by the Ayutthaya Farm (Ayutthaya, Thailand). The sample individuals were
adults with a standard weight of 20–50 g and a length of 12–15 cm. Sex was determined
based on examining internal genital anatomy [44]. After each fish had been sacrificed
by severing the spinal cord anterior to the dorsal fin, the fins were collected for DNA
extraction, the kidneys and the gills for mitotic chromosome preparation, and the testes for
meiotic chromosome preparation. Molecular identification of the species was performed
according to Kitano et al. [45], Wyneken et al. [46], Hubert et al. [47] and Rüber et al. [48],
and all experimental procedures were approved (approval no. ACKU63-SCI-010) by the
Animal Experiment Committee of Kasetsart University and conducted in accordance
with the Regulations on Animal Experiments at Kasetsart University. Genomic DNA
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was extracted following the standard salting-out protocol with slight modifications for
different tissues, as described previously [49]. The high-molecular-weight DNA samples
were stored at −20 ◦C until they were used for DArTseq library construction, as described
previously [19,20,37,50].

2.2. Development of DArTseq Arrays

A detailed description of the DArTseq methodology can be found in Jaccoud et al. (2001) [51].
Multiple loci were genotyped using Diversity Arrays Technology Pty Ltd. (DArTseq,
Canberra, ACT, Australia), to identify the SNP loci and in silico DArT markers (also
called the PA markers, as any variability in the SNP loci generates presence/absence (PA)
polymorphisms in restriction sites). These data were used to determine candidate sex-
specific loci in male and female individuals. Approximately 100 ng of DNA was used from
each sample to develop the DArTseq arrays. The DNA samples were subjected to digestion
and ligation reactions, as described previously [19,20,37,50,52] and were digested with the
restriction enzymes PstI and SphI. Ligation reactions were performed using two adaptors:
a PstI-compatible adaptor consisting of an Illumina flow-cell attachment sequence, primer
sequence, and a unique barcode sequence; and an SphI-compatible adaptor consisting of
an Illumina flow-cell attachment region. The ligated fragments were PCR-amplified by the
initial denaturation at 94 ◦C for 1 min, followed by 30 cycles of 94 ◦C for 20 s, 58 ◦C for
30 s, and 72 ◦C for 45 s, with a final extension step at 72 ◦C for 7 min. Equimolar amounts
of amplification products from each individual were pooled and subjected to Illumina’s
proprietary cBot (http://www.illumina.com/products/cbot.html, accessed on 15 August
2020) Bridge PCR, followed by sequencing on the Illumina HiSeq 2000 platform. Single-
read sequencing was performed for 77 cycles and the sequences were processed using
proprietary DArTseq analytical pipelines [53]. The outputs generated by DArTsoft14 were
filtered based on reproducibility values, the average count for each sequence (sequencing
depth), the average SNPs in each allele, and call rate (proportion of samples for which
the marker was scored), as described previously [19,20,37,50]. Sex-specific or sex-linked
loci were obtained from the SNPs and PA marker analyses as follows. For loci with an
XX/XY sex determination system, the SNPs and PA loci sequenced in 70%, 80%, 90%,
and 100% of males included in a separate data set. The SNP and PA loci were filtered
using different proportions of males and females. Loci that passed the 100% filtering
criterion were designated as perfectly sex-linked or sex-specific, whereas those passing at
70–90% were considered moderately sex-linked loci, as described previously [19,20,37,50].
Equivalent modifications of this approach were used to target loci with a ZZ/ZW system.
The Hamming distance was calculated to determine the number of common loci between
male and female individuals, so as to calculate pairwise differences in SNP and PA loci
using the “rdist” function in the “rdist” package in R version 3.6.2. The Hamming distance,
Cochran–Armitage trend test (CATT), and polymorphism information content (PIC) were
used as indices to evaluate the informativeness of the calculated SNP and PA loci, as
described previously [19,20,37,50,54,55]. The probability of candidate sex-linked and sex-
specific loci showing random associations with sex in a small sample size was estimated
using the formula Pi = 0.5n, where P is the probability for a given locus, i is sex-linked,
0.5 is the probability that either a female is homozygous or a male is heterozygous at
a given locus, and n is the number of individuals sequenced at the locus, as described
previously [19,20,37].

2.3. Comparison of Potential Sex-Linked Loci

Significant differences among the three groups of moderately sex-linked loci (90:10,
80:20, and 70:30) were analyzed using the chi-square test and Kruskal–Wallis test for PA loci
and the Nemenyi test for SNP loci, as implemented in the PMCMR package in R [54]. These
analyses were based on the mean heterozygosity and standard deviation of the loci. All
candidate loci were plotted for each individual using the “glPlot” function in the “dartR”
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R package. A principal coordinate analysis based on all groups of moderately sex-linked
loci was used to visualize the relatedness between males and females [19,20,37,50,54,56].

2.4. Homology Searching

All sex-linked loci that met our criteria and showed a statistically significant asso-
ciation with the known sex phenotype were BLAST-searched within the National Cen-
ter for Biotechnology Information (NCBI) database. The results were used to investi-
gate the homologies between the sex-linked SNP/PA loci and the available reference
genomes of teleosts, including those of the Japanese rice fish, O. latipes (accession no.
GCF_002234675.1) [57]; the zebrafish, D. rerio (accession no. GCA_000002035.4) [58]; the
Japanese puffer fish, T. rubripes (accession no. GCA_901000725.2) [59]; and the chicken:
G. gallus (accession no. AADN00000000.5) [60]. Using the BLASTn program, all loci
were then used to search the NCBI database (http://blast.ncbi.nlm.nih.gov/Blast.cgi, ac-
cessed on 30 August 2020)) and RepBase version 19.11 [61] (Genetic Information Research
Institute, http://www.girinst.org/repbase/, accessed on 30 August 2020), which is a spe-
cialized database of repeated or other significant sequences that only reports results with
E-values < 0.005 and query coverage > 55% similarity [19,20,37,50].

2.5. Chromosome Preparations and Mapping the Chromosomal Locations of Microsatellite Repeat
Motifs, Telomeric (TTAGGG)n Sequences, and Major Ribosomal RNA Genes with Fluorescence In
Situ Hybridization

Mitotic chromosome spreads were prepared using the air-drying method described
by Suntronpong et al. [62]. The chromosomal locations of telomeric (TTAGGG)n se-
quences, 18S–28S ribosomal RNA (rRNA) genes, and 19 microsatellite repeat motifs,
(CA)15, (GC)15, (GA)15, (AT)15, (CAA)10, (CAG)10, (CAT)10, (CGG)10, (GAG)10, (AAT)10,
(AAGG)8, (AATC)8, (AGAT)8, (ACGC)8, (AAAT)8, (AAAC)8, (AATG)8, (AAATC)6, and
(AAAAT)6, were determined using fluorescence in situ hybridization (FISH) as described
previously [63–66]. The FISH signals were captured using a cooled charge-coupled device
camera mounted on a Nikon Eclipse 80 microscope and processed using the NIS-Elements
BR 3.2 software (Nikon Corporation, Tokyo, Japan).

3. Results
3.1. Identification of the Sex Determination System and Sex-Linked Loci in the Snakeskin Gourami

Of the samples from 20 individuals, 4 did not produce sufficient read depth for an
analysis. In total, we sequenced 2925 SNP loci and 3703 PA loci from a sample size of
16 individuals (seven males and nine females). PIC values ranged from 0.1 to 0.5 with an
average of 0.32 from all loci. The overall distribution of PIC values was asymmetrical and
skewed toward higher values. To determine whether the sex determination system in the
snakeskin gourami was GSD (XX/XY or ZZ/ZW) or ESD, we compared the number of SNP
and PA loci after filtering by using a set of criteria with gradual changes. For the ZZ/ZW
system, after filtering using the criterion of 30:70 ratio of males:females, we obtained
12 SNPs and 66 PA loci that were female-linked. The Hamming distance, measured using
sex-linked SNP and PA loci under the null exclusive model, showed within-sex distances
of 0.618 ± 0.038 in males and 0.183 ± 0.008 in females for SNP loci, and 0.667 ± 0.026 in
males and 0.382 ± 0.029 in females for PA loci. Between-sex distances were 0.714 ± 0.022
for SNP loci and 0.685 ± 0.027 for PA loci. A CATT analysis verified that phenotype
was significantly associated with 5 SNP loci (χ2 = 4.00–11.00, p < 0.001) and 59 PA loci
(χ2 = 3.00–10.00, p < 0.001). However, after filtering with 20:80, 10:90, and 0:100 ratios, we
did not find any significant sex-specific or -linked SNP/PA loci.

For the XX/XY system, filtering for a 70:30 ratio of males:females yielded 36 SNP loci
and 19 PA loci that were male-linked. The Hamming distances between male and female
snakeskin gourami were calculated using sex-linked SNP and PA loci, and showed within-
sex distances of 0.423 ± 0.017 in males and 0.573 ± 0.012 in females for SNP loci, and
0.429 ± 0.02 in males and 0.354 ± 0.016 in females for PA loci. The between-sex distances
were 0.745 ± 0.009 for SNP loci and 0.675 ± 0.012 for PA loci. The within-sex distances
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were lower than the between-sex distances. A CATT analysis was used to verify significant
associations of phenotypic sex with 22 SNP loci (χ2 = 3.00–12.00, p < 0.001) and 17 PA loci
(χ2 = 3.00–13.00, p < 0.001). In total, of 3 SNP loci and 3 PA loci were associated with males
based on the filtering criterion of 80:20 ratio of males:females. Using the sex-linked SNP
and PA loci, we calculated the proportional pairwise Hamming distances between male and
female snakeskin gourami, and these results showed within-sex distances of 0.286 ± 0.07 in
males and 0.582 ± 0.05 in females for SNP loci and 0.286 ± 0.101 in males and 0.0 ± 0.0 in
females for PA loci (Figures 2 and 3). The between-sex distances were 0.815 ± 0.028 for SNPs
and 0.857 ± 0.044 PA loci. A CATT analysis verified a significant association of phenotypic
sex with 3 SNP loci (χ2 = 8.00, p < 0.001) and 3 PA loci (χ2 = 12.00–30.00, p < 0.001). However,
after filtering with 90:10 and 100:0, we did not find any significantly sex-specific or -linked
SNP/PA loci (Figure 3). Chi-square tests showed that the 70:30 and 80:20 filtering criteria
indicated no significant differences in males (χ2 = 1.0383 × 10−31, p = 1) and females
(χ2 = 3.7886 × 10−32, p = 1) for PA loci. Moreover, Kruskal–Wallis tests showed that these
filtering criteria produced no significantly different percentages of heterozygosity in males
(H = 2.27, p = 0.132) and females (H = 0.734, p = 0.392) for SNPs (Figure 4). Pairwise
comparisons using the Nemenyi test with chi-squared approximation for independent
samples also revealed that the 70:30 and 80:20 filters produced no significantly different
heterozygosity compared with other filters in males (p = 0.13) and females (p = 0.39)
(Figure 4). A principal coordinates analysis plot revealed that the grouping was more
similar between the sexes (Figure 5).

3.2. Random Sex-Linkage Estimation

Across a range of sample sizes and loci, samples were required from 16 individuals of
the snakeskin gourami (7 males and 9 females) to minimize the probability of selecting less
than one spurious sex-linked marker. For the 16 specimens, the probability of a single locus
exhibiting a sex-linked pattern by chance (i.e., Pi) was 1.526 × 10−5 based on 6628 loci
(including SNP and PA loci), whereas the expected sex linkage was estimated to be 0.1011.
Therefore, the random sex-linked markers in the snakeskin gourami were higher than the
expected values in this study.
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XX/XY system.
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3.3. Homology of Putative Sex-Linked Loci

Sex-linked loci in male snakeskin gourami had sequence homology with the genomes
of the Japanese rice fish, O. latipes; zebrafish, D. rerio; the Japanese puffer fish, T. rubripes;
and the chicken: G. gallus. No substantial differences were observed between the linkage
groups. Therefore, all these loci may be located on the same chromosome. Based on
the global BLAST analyses against the NCBI databases, 9 of the 39 SNP/PA loci were
homologous with putative genes: CFAP92 (E-value 0.047 and similarity 79.49%), ZIC3
(E-value 0.05 and similarity 78.38%), IFT88 (E-value 0.015 and similarity 79.49%), IL4
(E-value 0.15 and similarity 80.49%), IL13 (E-value 0.15 and similarity 80.49%), XIRP2
(E-value 0.15 and similarity 80.00%), PATJ (E-value 1 × 10−16 and similarity 90.62%),
NEB (E-value 1 × 10−16 and similarity 90.62%), PLA2R1 (E-value 2 × 10−8 and similarity
94.87%), and NEMF (E-value 0.016 and similarity 80.56%) (Table S1). Moreover, 10 SNP/PA
loci showed partial homology with transposable elements, including three long terminal
repeat retrotransposons of Gypsy families (similarity 80–100%), two hAT DNA transposons
(similarity 78%), and one endogenous retrovirus (similarity 80%) (Figure S1).
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Figure 5. An index of the 16 moderately sex-linked loci with criterion of 70:30 (male:female) (XX/XY
sex determination system) created using the “glPlot” function in the R package, “dartR”. Blue
indicates homozygosity to the reference allele, pink indicates heterozygosity, and green indicates
homozygosity to the allele containing the alternate SNP.
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3.4. Karyotype and Meiotic Configuration

More than 20 Giemsa-stained metaphase spreads were examined for each snakeskin
gourami individual. The diploid chromosome number was 46, including acrocentric
chromosomes (Figure S2). The chromosomes were arranged sequentially based on size,
and chromosome pairs could not be identified by size. Light microscopy of the meiotic
configuration in the spermatocytes of male snakeskin gourami showed normal stages of
meiosis (Figure S3).

3.5. Chromosomal Locations of the 18S–28S rRNA Genes, Telomeric (TTAGGG)n Sequences, and
Microsatellite Repeat Motifs

FISH signals for the 18S–28S rRNA genes were detected in the pericentromeric region
of one chromosome pair. Hybridization signals of TTAGGG repeats were observed at
the telomeric ends of all chromosomes, but no interstitial signals were found (Figure 6).
Moreover, no signals were detected for the 19 microsatellite repeat motifs: (CA)15, (GC)15,
(GA)15, (AT)15, (CAA)10, (CAG)10, (CGG)10,(CAT)10, (GAG)10, (AAT)10, (ACGC)8, (AAGG)8,
(AATC)8, (AAAC)8, (AATG)8, (AAAT)8, (AGAT)8, (AAATC)6, and (AAAAT)6.
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4. Discussion

Snakeskin gourami is one of the top five freshwater fish used in aquaculture in
Thailand. Many hatcheries import their broodstock from grow-out farms and manipulate,
culture, and maintain fish commercially. The farming of snakeskin gourami offers an
attractive income and good commercial prices [67]. Many teleosts exhibit substantial sexual
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dimorphism in growth rate and body size, which are closely linked to multiple economically
important traits. Accurate sex identification of the snakeskin gourami based on sexual size
dimorphism is of considerable value to fish farmers for the use of sex-controlled breeding
biotechnologies [68]. Here, we used 20 individuals (10 males and 10 females), of which 16
(7 males and 9 females) were successfully used to identify genome-wide SNP/PA loci. This
allowed us to predict sex-linked loci for snakeskin gourami. The probability of a single
locus spuriously showing a sex linkage was 0.1026. Although this is a relatively small
sample size, we sampled four sex-linked loci, and the identification of any sex-linked loci
by chance was unlikely. Several similar cases with small sample sizes (<5 individuals per
sex) have also been reported in gecko lizards, pythons, and North American green frogs
(Rana clamitans) [69,70].

Gynogenesis primarily makes use of heterogeneous or inactivated sperm to activate
eggs, which are then heat-shocked to prevent the second meiotic division. This process
essentially induces female self-fertilization [71]. There have been several studies on gyno-
genesis and sex manipulation in snakeskin gourami [72–74] that enabled us to predict
the XX/XY sex determination system in this species. However, this is phylogenetically
different from the usual sex determination systems of osphronemids (Figure 1). Here, we
used karyotyping and molecular cytogenetic (18S–28S rRNA genes, telomeric repeats, and
microsatellite repeat motifs) analyses to show similar patterns between males and females.
We did not find any signals of chromosome-specific microsatellite amplification, such as
those found in chromosome Y (or W) with the set of probes used here. The same set of mi-
crosatellite repeat motifs was used to perform chromosome mapping in many vertebrates
showing large blocks of hybridization signals on sex chromosomes [31,62,75]. We also did
not detect any diakinesis-meiotic (I) cells with partially paired bivalents (speculated to be
heteromorphic X and Y chromosomes) or meiotic (II) cells with condensed chromosomes
(speculated to be the Y chromosome) (Figure S3). However, our meiotic configuration
result did not allow us to make a definitive conclusion about the presence/absence of
sexual bivalence because we were unable to identify the asynaptic ends of sexual biva-
lence under a synapsis analysis [76]. Comparative genomic hybridization permitting the
detection of chromosomal copy number changes or sex-specific region detection on low-
quality chromosomes is also required to assist the localization of potential sex-specific
regions [77]. However, our study successfully identified 39 SNP/PA male-linked loci, and
1 female-linked locus. This suggests that snakeskin gourami tends to exhibit an XX/XY
sex-determining system. Male-beneficial mutations arising close to the sex locus on the
Y chromosome are strongly favored in males, and should also drive a progressive arrest
of recombination in males to enhance sex linkage [78,79]. This suggests that the Y chro-
mosomes of snakeskin gourami are very young sex chromosomes. The emergence of an
XY sex determination system is likely to be a hallmark of evolutionary autapomorphy
compared with giant gourami (Trichogaster fasciata), or dwarf gourami (Colisa lalia) which
have a ZZ/ZW sex determination system [80] (Figure 1). We also did not find any male-
specific SNP/PA loci indicating distinct male-specific regions of the Y chromosome. By
contrast, the male-linked loci indicated either partial recombination between the X and Y
sex chromosomes of snakeskin gourami. This suggests that the non-recombinant regions of
the Y chromosome might be too cryptic for detection by the DArTseq methodology. More-
over, it is possible that the noise from high-throughput sequencing and random biological
variation/association, especially with relatively small sample sizes, can be used to identify
sex-linked loci outside the sex determination region or even in autosomes [81–84]. How-
ever, we observed a female-linked locus, which were occasionally observed in the same
individual but with different linkage groups. This may be caused by recombination events
that occur frequently in regions of homomorphic sex chromosomes, and heterozygous sex-
linked loci in females may not always indicate female heterogametic sex determination [85].
Alternatively, several genes might regulate the sex determination system in a species in
a system known as polygenic sex determination (PSD), observed across teleosts [86]. In
several teleost species, sex is determined by either several loci dispersed throughout the
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genome, or by multiple allele combinations located on a specific pair of chromosomes, as
observed in zebrafish, Lake Malawi cichlid fish [87] and the European sea bass [88]. PSD
may appear by the modification of existing sex chromosomes to create a third functional
sex chromosome at the same locus, or by the modification of autosomal loci in other regions
of the genome to create novel inputs for gonadal development regulations [89].

A total of 10.26% SNP/PA loci that were male-linked showed homology with genes en-
coding amino acids. Some of these, including ZIC3, IFT88, IL13, and CFAP92, are involved
in sex determination and sex development pathways in vertebrates [90–93] (Table S2). In
addition, 25.64% of the SNP/PA loci were homologous to transposable elements. These are
often distributed on sex chromosomes in the medaka (O. latipes), platyfish (Xiphophorus mac-
ulatus), guppy (Poecilia reticulata), and tilapia (Oreochromis niloticus) [81–84]. Transposable
element activity may play an important role in sex chromosome differentiation through
the mechanisms of chromosomal breakage, deletion, and rearrangement [94,95]. Transpos-
able elements in regions that experience recombination may regulate the gene expression
pattern of the Y sex chromosome by interrupting the gene structure, resulting in gradual
silencing and degeneration of the chromosome [96]. These male-linked loci, rather than
female-linked loci, may support the notion of an XX/XY sex determination system in the
snakeskin gourami. By contrast, homology searches of the male-linked loci revealed that
two of the four male-linked SNP/PA loci showed homology with partial sex chromosomal
linkages in amniotes (Tables S1–S4), whereas no female-linked SNP/PA loci were matched.
Genomic convergence has also been detected by comparative genomic studies in which
unrelated sex chromosomes share sex chromosomal linkage homologies across distantly
related species [19,20,24–28,30,50,64,96–98]. It is likely that the convergent evolution of sex
chromosomes across distantly related taxa has led to genomic elements that are particularly
efficient in sex determination [99]. Further evidence, such as whole-genome sequencing or
molecular combing, is required to identify this linkage homology.

The most parsimonious explanation of the results supports the hypothesis from a
previous study, i.e., diploid gynogenesis in snakeskin gourami produces all females, which
suggests the tendency for an XX/XY sex determination system in this species. These
studies suggest that sex-linked, X chromosome-linked, and Y chromosome-linked ge-
netic markers are very important in species that lack distinguishable sexually dimorphic
phenotypes and in specimens at early stages of development that lack secondary sex
characteristics [100,101]. However, none of the 6 male-linked loci discovered indepen-
dently in the snakeskin gourami were successfully validated. A non-specific band was
detected in a few female individuals, possibly due to the stability of the primer binding site.
These markers failed the validation step, and were not included in further analyses (data
not shown). The PCR validation step often fails when using a DArTseq or RADseq bioin-
formatics analysis [50,70,102]. This may be because of conserved regions adjacent to the
sex-specific restriction sites in both sexes, particularly in case where the non-recombining
portion of the Y or W chromosome is extremely small [103]. Biases in the DArTseq method
are related to GC content, library preparation, and other factors that may limit success [104],
and success depends on sampling an adequate number of individuals from each sex with
sufficient read depth [105]. A PCR-based approach for sex identification is required as
a genotypic tool for the practical sexing of individuals in populations. Future research
may also focus on polymerase chain reaction-restriction fragment length polymorphism or
melting curve analysis, which offers more sensitive detection [106]. Analyses of additional
snakeskin gourami specimens from different populations are required to examine the
presence of markers across populations.

5. Conclusions

This study evaluated genome-wide SNPs in snakeskin gourami using the DArTseq
methodology. Considering the small portion of the genome sequence, we identified a
considerable number of male-linked loci. The results indicated that snakeskin gourami
tended to have an XX/XY sex determination system. However, it remains unclear whether
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the large genomic regions between X-specific and Y-specific fragments are associated with
sex chromosome differentiation and sex-determining regions. Further analysis of unrelated
individuals did not reveal population-wide association with phenotypic sex assignment,
but indicated that heterozygosity is relatively common at both loci in larger and more
wide-spread populations. Thus, these are likely to be useful loci for the development of
sexing techniques for managing pedigrees, sex-controlled breeding programs, and genetic
improvements. The control of sex and reproduction has been the primary facilitator of
large-scale global industrial aquaculture programs. A high-quality complete genome
assembly of the snakeskin gourami is required to further elucidate its mechanism of sex
determination, ultimately leading to genetic improvements of this promising aquaculture
species. This approach will also provide a solid background for further studies to identify
the mechanisms of sex determination and potential sex-determining regions in teleosts.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/fishes6040043/s1, Figure S1: Transposable element searching from SNP and PA loci of snake-
skin gourami (Trichopodus pectoralis). The results show three long terminal repeat retrotransposons
in the Gypsy family, two hAT DNA transposons, and one endogenous retrovirus (ERV1), Figure S2:
Giemsa-stained karyotypes of (a) male and (b) female snakeskin gourami (Trichopodus pectoralis). The
scale bar represents 10 µm, Figure S3: Meiotic cell division of the snakeskin gourami (Trichopodus pec-
toralis), including the (a) interphase and the (b) leptotene, (c) pachytene, (d) diplotene phases. The
scale bar represents 10 µm, Table S1: Gene function and pathway for the SNP and PA loci of the snake-
skin gourami (Trichopodus pectoralis); 70:30 (males:females), Table S2: Homologies of the SNP and PA
loci in the snakeskin gourami (Trichopodus pectoralis); 70:30 (males:females), Table S3: Chromosomal
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BLAST analysis with the genomes of the Japanese rice fish (Oryzias latipes), zebrafish (Danio rerio),
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