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Abstract: Next-generation sequencing and pool sequencing have been widely used in SNP (single-
nucleotide polymorphism) detection and population genetics research; however, there are few
reports on SNPs related to the growth of Penaeus vannamei. The purpose of this study was to call
SNPs from rapid-growing (RG) and slow-growing (SG) individuals’ transcriptomes and use DNA
pool sequencing to assess the reliability of SNPs. Two parameters were applied to detect SNPs.
One parameter was the p-values generated using Fisher’s exact test, which were used to calculate
the significance of allele frequency differences between RG and SG. The other one was the AFI (minor
allele frequency imbalance), which was defined to highlight the fold changes in MAF (minor allele
frequency) values between RG and SG. There were 216,015 hypothetical SNPs, which were obtained
based on the transcriptome data. Finally, 104 high-quality SNPs and 96,819 low-quality SNPs were
predicted. Then, 18 high-quality SNPs and 17 low-quality SNPs were selected to assess the reliability
of the detection process. Here, 72.22% (13/18) accuracy was achieved for high-quality SNPs, while
only 52.94% (9/17) accuracy was achieved for low-quality SNPs. These SNPs enrich the data for
population genetics studies of P. vannamei and may play a role in the development of SNP markers
for future breeding studies.

Keywords: transcriptome; DNA pool sequencing; SNP; MAF; shrimp

1. Introduction

Penaeus vannamei is a widely farmed penaeid shrimp. With the development of culture
technology, higher-density farming has become a trend. Currently, fast-growing strains are
under development. Genetic studies have been conducted to understand the molecular
mechanisms of target traits in P. vannamei, such as linkage map construction [1–4] and
quantitative trait locus detection [5,6]. As a major shrimp cultured in China, there are few
genetic markers of P. vannamei for growth performance. In 1996, the development of single-
nucleotide polymorphisms (SNPs) brought genetic diversity research to a new stage [7].
SNPs widely exist in the genome, and they serve as suitable markers for linkage maps,
genome-wide association studies (GWAS), and marker-assisted selection (MAS) of target
traits [8–16]. SNP markers are becoming increasingly important in P. vannamei. There have
been several studies to discover SNPs associated with the phenotypes of interest [17–20];
however, the available information for genetic diversity studies is still insufficient.

With the development of next-generation sequencing (NGS), the cost of sequenc-
ing has declined significantly, making the identification of SNPs feasible in non-model
species [21,22]. As RNA-seq focuses on the functional information in a genome, it has been
widely used to identify SNP markers [23,24]. Transcriptome sequencing has been used for
SNP detection in plants and animals, such as Ginkgo biloba [25], Arachis hypogaea L [26],
Oncorhynchus mykiss [27], Ictalurus punctatus [28], and P. vannamei [17,29–32]. A GWAS
study found that several SNPs in the deoxycytidylate deaminase gene and non-receptor
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protein tyrosine ki-nase gene were associated with body weight in P. vannamei [16]; however,
so far little transcriptome information is available regarding the growth of P. vannamei and
fewer reports have been conducted regarding growth-related SNPs [16,20,31].

Although sequencing technology is developing rapidly, high-quality genome se-
quences are still mostly limited to model organisms; therefore, RNA-seq technology is
an effective strategy [24,33]. The use of expressed sequence (RNA-seq) data has been
recognized as an efficient method to develop new SNP markers [23,25,34]. Although
RNA-seq cannot provide whole-genome observations, many SNPs can be found based
on the transcriptome. RNA-seq data can enrich SNPs in functional regions and can call
SNPs in exon regions [35]; therefore, these SNPs may have a more direct impact on gene
function. Moreover, using RNA-seq technology can reflect gene expression and can be
used to discover rare alleles in highly expressed genes [36]. Finally, this approach can be
applied to a wide variety of species at a reasonable cost when genomes are not available.

From RNA extracts to SNP validation, standard protocols exist for developing SNPs
based on transcriptome sequencing [23,37]. Transcriptome sequencing has been adopted to
identify SNPs in many aquatic species, such as Crassostrea gigas [38], Cyprinus carpio [39],
and Artemia franciscana [40]. Moreover, genetic differences can be shown by comparing
SNPs in different population transcriptomes [31,41], which is consistent with the purpose
of this study—to find SNPs associated with growth traits in P. vannamei.

Several factors may cause false SNPs in an SNP calling process, such as alignment
errors, unequal levels of allele-specific gene expression [42], paralogous genes [36,37],
inexact repeats, and RNA editing [36]; hence, some data will be lost and erroneous sites
will be obtained when using the transcriptome to develop SNP markers. The number of
SNPs called by the transcriptome is daunting. It is a considerable challenge to remove
noise and identify SNPs associated with target traits. To deal with an enormous number of
SNPs and reflect genetic information as much as possible, a precise screening procedure
is needed to maximize accuracy and prevent false-positive SNP detection. Some criteria
should be applied to screen SNPs, and only those SNPs with these criteria will be selected
for downstream analysis.

Next-generation resequencing of DNA pools is an efficient method that is used for
the identification of SNPs [43]. DNA pool sequencing can detect rare variants and estimate
allele frequencies at a moderate cost [44–46]. Furthermore, pool sequencing requires less
DNA from each individual and reduces the time of sequencing [47]. On the other hand,
a more accurate step must be established to avoid sequencing errors. The rare SNPs (allele
frequency, AF < 0.01) require a more efficient model [46,47], such as the SKAT test [48],
Bayesian model [49,50], or KBAC test [51].

In this work, SNPs were detected using transcriptome data [52]. In order to identify
high-quality SNPs that might be related to growth performance, while resequencing of
DNA pools was used to assess the reliability of these SNPs. We hope that these SNPs from
this experiment will provide a basis for the development of SNP markers and selective
breeding in the future.

2. Materials and Methods
2.1. Biological Sampling

Sixteen shrimp strains with different genetic backgrounds (produced by four different
strains interbred with each other, Table 1) were used in the present study. A total of
three ponds and forty-eight cages (1 m × 1 m) were assigned to culture each crossbred
in triplicate. Sixteen strains were stocked in 16 net cages in each pool with a random
arrangement, while each cage contained only 1000 larvae from a single strain.

These ponds were connected by pipes in one breeding building. Seawater was circu-
lated via pumps into the three pools, with four aeration zones in each pond. There were
five aeration points in each cage; one was in the center and the others were in the four
corners. The number of individuals was adjusted every month to maintain a consistent
density by taking individuals out of the cages. After 120 days of breeding, the five heaviest
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individuals were collected from each cage in the first pond, with eighty shrimps in total.

Table 1. Sixteen crossbred groups used in this experiment.

Strain A♀ B♀ C♀ D♀

A♂ A♂× A♀ A♂× B♀ A♂× C♀ A♂× D♀
B♂ B♂× A♀ B♂× B♀ B♂× C♀ B♂× D♀
C♂ C♂× A♀ C♂× B♀ C♂× C♀ C♂× D♀
D♂ D♂× A♀ D♂× B♀ D♂× C♀ D♂× D♀

Note: The four different strains (A, B, C, and D) were interbred with each other to produce the 16 crossbred families. Strain A was from
Xiaxinglong, Xiamen shrimp breeding factory, China. Population crossbreeding was performed in 2012 and was used in 2019. Strain B,
was from Syaqua, Thailand. Population crossbreeding was performed in 2017 and was used in 2019. Strain C was from Hainan, China.
Population crossbreeding was performed in 2017 and was used in 2019. Strain D was from Texas Primo Broodstock, Inc., USA. Population
crossbreeding was performed in 2017 and was used in 2019.

The molting process is directly related to the muscle growth of crustaceans, while
the eyestalk secretes hormones that regulate molting. Ocular stalk ablation is the most
successful method for affecting ecdysis and growth [53,54]. The hepatopancreas and
intestines contain digestive enzymes. Many studies have shown that a high growth rate
and final weight are positively correlated with digestive ability [55–57]; thus, the eyestalks,
hepatopancreas, and intestinal tract tissues were collected to extract total RNA. The total
RNA from three tissue samples was mixed equally as sample RG1. In the same manner,
we sampled the five lightest individuals in each cage in the first pond, and the mixture of
the total RNA from their three tissue samples was regarded as sample SG1. Similarly, in
the second and third ponds, samples RG2, SG2, RG3, and SG3 were obtained. We used
paper towels to soak up the water on the surface of the shrimp, then an electronic balance
was used to measure each group’s weight, with an accuracy of 0.01 g. The average weights
of RG1–RG3 were 18.44 g ± 0.83, 19.75 g ± 1.04, and 19.8 g ± 0.17, respectively. The average
weights of SG1–SG3 were 5.23 g ± 0.09, 5.46 g ± 0.31, and 5.08 g ± 0.03, respectively.

2.2. Library Construction and Sequencing

After the total RNA was extracted using the Eastep™ Super Total RNA extrac-
tion kit (Promega, Shanghai, China), the mRNA was enriched using oligo (dT) beads
(NEBNext Ultra RNA Library Prep Kit for Illumina (NEB#7530, New England Biolabs,
Ipswich, MA, USA)), while mRNA was enriched by removing rRN-A using the Ribo-
ZeroTM Magnetic Kit (Epicentre Biotechnology Co., Ltd., Madison, WI, USA). The enriched
mRNA was then reverse-transcribed into cDNA with random primers (NEB#7530, New
England Biolabs, Ipswich, MA, USA). Then, second-strand cDNA was synthesized using
DNA polymerase I, RNase H, dNTP, and buffer (NEB#7530, New England Biolabs, Ipswich,
MA, USA). Next, after purification with the QiaQuick PCR extraction kit, repair, and
addition of poly (A), the cDNA fragments were ligated to Illumina sequencing adapters.
The sizes (300–400 bp) of ligation products were selected via agarose gel electrophoresis.
Finally, six libraries were constructed and sequenced using the HiSeqTM 2500 platform. To
obtain high-quality, clean reads, the adapters, poly-N, and low-quality reads were filtered
further using fastp software [58]. Bowtie2 [59] was used to remove rRNA via mapping to
an rRNA database (all rRNA sequences of P. vannamei in GenBank). Then, the unmapped
reads (the reads with ribosomal RNA removed from clean HQ reads) were aligned to
the reference genome (ncbi_GCA_003789085.1) by TopHat2 [60]. All raw data were stored
in NCBI (BioProject PRJNA664224, accession numbers: SRR12664621–SRR12664626).

2.3. SNP Identification

The unmapped reads were aligned to the reference genome and the HaplotypeCaller
from GATK software [61] was used to call SNPs via default parameters, then ANNO-
VAR [62] was applied to annotate SNPs. The two-tailed Fisher’s exact test [63] was applied
to determine the significance of the allele frequency difference for each SNP between RG
and SG. After Bonferroni correction [64], we analyzed the significance of the difference in
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allele frequency between RG and SG with a threshold p-value < 4.97e−7 (calculated from
0.05 divided by 100,633). Moreover, the AFI (minor allele frequency imbalances, the ratio
between the minor allele frequencies of the RG and the SG) were defined and computed [27],
then used to detect high-quality SNPs if the value was > 4 or < 0.25.

2.4. SNP Data Statistics and Functional Annotation

Differentially expressed genes (DEGs) were identified with |Log2FoldChange| ≥ 1
and FDR (false discovery rate) < 0.05 using the edgeR package [65]. We analyzed the types,
locations, and classifications of mutations. The functions of all genes that contained candi-
date SNPs (p-value < 0.05, AFI > 4 or < 0.25) were analyzed via GO (Gene Ontology) [66]
and KEGG (Kyoto Encyclopedia of Genes and Genomes) [67] databases and visualized
using the ggpubr [68] and ggplot2 [69] R packages. The VennDiagram package [70] in R
was adopted to illustrate the Venn plot.

2.5. SNP Validation

A total of 35 target SNPs were selected from 100,633 putative SNPs for further
validation (Figure 1). Eighteen SNPs were selected from the 104 high-quality SNPs
(p-value < 4.97e−7, AFI > 4 or < 0.25), while the other 17 SNPs were randomly cho-
sen from 96,819 low-quality SNPs (p-value >= 4.97e−7, and 0.25 <= AFI <= 4). Then,
the sequences of ± 200 bp of SNP loci were extracted, and Primer3 online software
(https://bioinfo.ut.ee/primer3-0.4.0/, accessed on 20 November 2012) was used to de-
sign primers (Table S1, Primers) and amplify the flanking sequence of SNPs. The product
sizes were mostly in the range of 100–150 bp. All primers were synthesized by TsingKe
Biotechnology Co., Ltd. (Beijing, China). In total, 240 rapid-growing individuals (RG)
and 240 slow-growing individuals (SG) were selected for DNA extraction and to form
two DNA pools, one of which served as an RG template, while the other served as an SG
template. The purified PCR products were recycled from agarose gel electrophoresis using
the HiPure Gel Pure DNA Mini Kit (Magen, Guangzhou, China), then these products were
then mixed equally to ensure that each product contributed an equal amount of DNA to
the pool [46,71,72]. The two samples (RG and SG) were sent to Gene Denovo Biotechnology
Co., Ltd. (Guangzhou, China), for DNA pool sequencing.
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3. Results
3.1. RNA-Seq Data

SG (slow-growing individuals) and RG (rapid-growing individuals) groups were
divided into three replicates per group. High-quality, clean reads were obtained by fil-
tering clean data. Here, 52,476,282; 54,200,380; 59,824,174; 55,354,830; 54,220,100; and
43,292,594 high-quality reads were obtained. These high-quality, clean reads were mapped
to the rRNA database (all rRNA sequences of P. vannamei in GenBank), then the unmapped
reads were used for subsequent analysis. There were 46,852,556; 50,450,550; 55,177,690;
51,620,794; 48,853,888; and 40,165,176 unmapped reads, respectively (Table 2).

Table 2. RNA-seq data.

Samples SG1 SG2 SG3 RG1 RG2 RG3

Clean Reads 53,417,000 55,225,902 60,854,638 56,319,016 55,217,378 44,038,758
HQ Clean

Reads
52,476,282
(98.24%)

54,200,380
(98.14%)

59,824,174
(98.31%)

55,354,830
(98.29%)

54,220,100
(98.19%)

43,292,594
(98.31%)

Q20 98.59% 98.48% 98.60% 98.55% 98.59% 98.51%
Q30 95.24% 94.97% 95.29% 95.14% 95.24% 95.06%
GC 49.27% 49.00% 49.24% 48.41% 49.05% 48.25%

Unmapped
Reads 1

46,852,556
(89.28%)

50,450,550
(93.08%)

55,177,690
(92.23%)

51,620,794
(93.25%)

48,853,888
(90.10%)

40,165,176
(92.78%)

1 The unmapped reads represent the reads with ribosomal RNA removed from HQ, clean reads, which were used for further analysis. RG:
rapid-growing individuals; SG: slow-growing individuals.

3.2. SNP Statistics

In total, 216,015 hypothetical SNPs were annotated (Table S2, SNPs); most mutations
were transitions, accounting for 64.73%, while transversion accounted for 35.27%. Among
the transition types, the GA and CT were almost equal in number. In terms of transversions,
the proportions of AC and GT were equivalent, while the quantity of AT was nearly twice
that of GC (Table 3).

Table 3. Mutation types statistics for 216,015 hypothetical SNPs.

Type Transition Transversion

GA CT AC AT GC GT

Number 69,765 70,055 17,499 27,376 13,758 17,562

Percentage 32.30% 32.43% 8.10% 12.67% 6.37% 8.13%

The localization of SNPs is shown in Table 4. The numbers of SNPs located in exons
and intergenic regions were almost equal (about 38% locations), followed by downstream
(12.53%) and intronic (8.63%) regions, respectively. The other locations were not over 3%.

Table 4. Mutation location statistics for 216,015 hypothetical SNPs.

Location Number Percentage

Exonic 82,663 38.27%
Intergenic 82,225 38.06%

Downstream 27,077 12.53%
Intronic 18,650 8.63%

Upstream 5276 2.44%
Splicing 124 0.06%
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3.3. SNP Detection

A total of 216,015 hypothetical SNPs were obtained from transcriptome data. Then,
the 162,571 presumptive SNPs were obtained after filtering read depths ≥ 10. Afterward,
we obtained 100,633 putative SNPs from 162,571 presumptive SNPs after filtering with
MAF (minor allele frequency, ALT_counts divided by REF_counts) > 0.05. P-values and
AFI values (minor allele frequency imbalance, MAF of RG divided by MAF of SG) were
calculated and used to screen out SNPs, then 104 high-quality SNPs (p-value < 4.97e−7,
AFI > 4 or < 0.25) were obtained from 100,633 putative SNPs. Strict thresholds contribute
to discovering true SNPs and also filter out some false-negative results. We were more
willing to accept false negatives than false positives. Meanwhile, with p-value > 4.97e−7
and 0.25 ≤ AFI ≤ 4, 96,819 low-quality SNPs were also obtained from 100,633 putative
SNPs. Finally, among 104 high-quality SNPs, 18 SNPs were selected for further validation
analysis. For comparison, we also randomly chose 17 SNPs from 96,819 low-quality SNPs
(Figure 1).

3.4. Read Depth and AFI Distribution

The read depth is a key factor affecting the accuracy of SNP detection. The 162,571 pre-
sumptive SNPs obtained after filtering read depths ≥ 10 were calculated and drawn
(Figure 2). The figure shows that most SNP (41.25%) read depths ranged from 10 to 50,
while 14.19% of the SNP read depths were between 51 and 100. There were 100,633 putative
SNPs in total with > 0.05 MAF. The distribution of AFI values in the linkage groups is
illustrated in Figure 3. The most SNPs (82,770, 82.25%) had AFI values between 0.5 and 2.
SNPs with AFI values over 4.0 or below 0.25 only accounted for 1.74%.
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3.5. SNP Annotation and Functional Analysis

Of 216,015 hypothetical SNPs, a total of 82,663 SNPs were annotated (Table 5). Among
these 82,663 annotated SNPs, most were synonymous SNPs (63,286), followed by 17,790 non-
synonymous SNPs and 1587 unknown SNPs. Here, 133,352 SNPs (61.73%) were not annotated.

Table 5. Classification of 216,015 hypothetical SNPs using ANNOVAR.

Classification Number Percentage

Synonymous 63,286 29.30%
Nonsynonymous 17,790 8.24%

Unknown 1587 0.73%
Not annotated 133,352 61.73%

Total 216,015

Among 100,633 putative SNPs, 1511 candidate SNPs (p-value < 0.05, AFI > 4 or < 0.25)
were obtained in total. All 566 functional genes (FGs) that contained these candidate
SNPs were extracted. In Figure 4, the 2292 DEGs (differentially expressed genes) are
shown, which were identified in previous a previous study [52]. The Venn diagram shows
that these 566 functional genes include 75 DEGs. All 566 FGs were further analyzed
by GO and KEGG enrichment with p-values < 0.05. These FGs were mapped to fifteen
biological processes (including 70 FGs), four cellular components (including 17 FGs),
and seven molecular functions (containing 19 FGs). As shown in Figure 5, the term
“hydrolase activity” was a representative group regarding molecular function. Among
the cellular components, FGs were predominantly enriched in the “extracellular region”.
In terms of the biological processes, most FGs were concentrated in the “localization” and
“establishment of localization” categories. All pathways of FG enrichment are shown in
Table S2, Pathway. Only the top 10 KEGG pathways are shown in Figure 6. FGs were
mainly concentrated in the “metabolism” pathway, followed by “protein processing in
the endoplasmic reticulum”, “phagosome”, and “lysosome” pathways (Figure 6).
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3.6. SNP Validation via Pool Sequencing

A total of 35 target SNPs were selected from 100,633 putative SNPs to assess the reliabil-
ity of the workflow (Figure 1). Table 6 shows the SNP position information for 35 amplifiable
target sequences. The former 17 SNPs were from 96,819 low-quality SNPs, while the latter
18 SNPs came from 104 high-quality SNPs. The “pool-seq” column represents the mutant
base detected by DNA pool sequencing at the target SNP location. Completed pool-seq
results are shown in Table S1, Pools-seq results. As shown in Table 6, only 9 of 17 SNPs
could be detected via pool sequencing. The detection rate for low-quality SNPs was 52.94%.
After filtering (p-value < 4.97e−7, AFI > 4 or < 0.25), 13 of 18 high-quality SNPs could be
verified and the detection rate was 72.22%. The detection rate for high-quality SNPs was
36 percent higher than that of low-quality SNPs. Regarding read depth, even at values as
high as 5404, G233420A was still not detected in pool sequencing. Meanwhile, T221463A,
with a read depth equal to 40.5, was detected. For a similar p-value, A137866G (0.0371) had
a read depth of 1134, while T50172C (0.0391) failed and had a read depth of 32. Regarding
p-values, even at values as low as 1.24e−58, C247322T was not detected. On the contrary,
A137866G, with a high p-value (0.0371), was detected. AFI values of SNPs showed no corre-
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lation with detection. For example, T133937C, with an AFI equal to 1.04, was detected,
although C785995T, with a high AFI, was not detected.

Table 6. The information for 35 target SNPs.

Gene Id Position Ref Alt Read Depth p-Value
MAF

AFI Pool-Seq Name
RG SG

C7M84_022026 27796 G A 287.5 0.0028 0.633 0.752 0.84 A G27796A
C7M84_023984 36958 C T 326 0.0279 0.844 0.774 1.09 T C36958T
LOC113805038 349955 G C 16.5 0.0403 0.750 1.000 0.75 NA G349955C
C7M84_004438 204734 G A 138 0.0276 0.700 0.819 0.85 A G204734A
C7M84_005801 133937 T C 2182 0.0008 0.900 0.867 1.04 C T133937C
C7M84_007144 137866 A G 1134 0.0371 0.457 0.413 1.11 G A137866G
C7M84_009716 107815 T C 659.5 0.0112 0.629 0.560 1.12 NA T107815C
C7M84_017766 148891 C T 106 0.0070 0.061 0.186 0.33 NA C148891T
C7M84_021354 328130 A G 53.5 0.0065 0.319 0.100 3.19 G A328130G
C7M84_021883 50172 T C 32 0.0391 0.079 0.308 0.26 NA T50172C
LOC113828755 914967 C T 314 1.17e−06 0.061 0.194 0.31 NA C914967T
C7M84_022385 231745 G A 139 0.0099 0.154 0.056 2.74 NA G231745A
C7M84_022682 221463 T A 40.5 0.0095 0.529 0.234 2.26 A T221463A
C7M84_023278 233420 G A 5404 0.0062 0.102 0.119 0.86 NA G233420A
C7M84_023424 1031552 A T 377.5 0.0330 0.675 0.597 1.13 T A1031552T
C7M84_020628 42707 C T 146 0.2135 0.265 0.200 1.33 NA C42707T
C7M84_024169 1182178 T A 241 0.0003 0.403 0.575 0.70 A T1182178A

After Filtering

C7M84_013676 55042 G A 118.5 2.93e−07 0.065 0.325 0.20 NA G55042A
C7M84_022166 785995 C T 172.5 2.14e−22 0.059 0.588 0.10 NA C785995T
C7M84_025140 59957 T C 1659.5 4.37e−71 0.067 0.298 0.22 C T59957C
C7M84_000346 559390 A G 86.5 4.58e−10 0.143 0.604 0.24 G A559390G
C7M84_000503 110344 A G 390 2.31e−54 0.790 0.127 6.21 G A110344G
C7M84_000990 656281 G A 323.5 7.39e−38 0.157 0.665 0.24 A G656281A
C7M84_001073 1317191 T A 164 1.37e−07 0.073 0.294 0.25 NA T1317191A
C7M84_003252 917813 T C 54 9.89e−13 0.075 0.727 0.10 C T917813C
C7M84_004254 362599 C T 830 5.10e−30 0.262 0.057 4.59 T C362599T
C7M84_006107 134086 G C 128.5 2.12e−20 0.598 0.074 8.08 C G134086C
C7M84_011240 585697 T C 2094 6.46e−84 0.489 0.103 4.77 C T585697C
C7M84_012141 195878 T C 79.5 9.74e−09 0.439 0.052 8.45 C T195878C
C7M84_012205 93082 T C 214.5 1.67e−07 0.235 0.054 4.36 C T93082C
C7M84_013033 54546 C T 61.5 1.72e−10 0.625 0.085 7.38 T C54546T
C7M84_014204 246976 A G 74 2.72e−07 0.113 0.510 0.22 G A246976G
C7M84_016823 230068 A T 615 2.96e−28 0.303 0.067 4.57 NA A230068T
C7M84_018561 236704 C T 223 4.18e−11 0.290 0.055 5.30 T C236704T
C7M84_014903 247322 C T 859 1.24e−58 0.064 0.386 0.17 NA C247322T

Note: The former 17 SNPs were randomly chosen from 96,819 low-quality SNPs. After filtering means that these eighteen SNPs were
selected at random from 104 high-quality SNPs. NA represents SNPs that could not be verified by pool sequencing in the target position.
The “pool-seq” column represents the mutant base detected by DNA pool sequencing at the target SNP location.

4. Discussion
4.1. The Feasibility of the Workflow Used for Screening SNPs

Although only 35 SNPs were resequenced, the accuracy was more than 50%, meaning
these SNPs might be related to growth. When stricter threshold values were set, the odds
would be well over 70% for high-quality SNPs. In this experiment, the read depth, MAF,
p-value, and AFI were used as screening indicators, which had effects on SNP detection.

The read depth is an important factor for identifying SNPs [73]. In general, the read
depth is set to 10 to detect SNPs. A higher read depth was not implemented since this read
depth above 10 accounts for 75% of SNPs, which was sufficient to find credible variants. It
also ensured that most SNPs in the population could be detected. In our pool-seq results,
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the read depth may not be a primary factor. Even if the read depth is at a high level, this
may still allow false SNPs.

When a significance test applied only one SNP, the threshold p-value was set to
0.05. The Bonferroni correction was performed to adjust the threshold so as to improve
SNP reliability. In this work, SNPs with a p-value < 4.97e−7 were considered as reaching
a critical significance level. It was apparent that this threshold was too strict and would lead
to many true SNPs being discarded, although we believed this trade-off was acceptable;
however, even if the threshold is very strict, false positives cannot be avoided. As such,
additional screening indicators were needed to increase the credibility.

The MAF is used to calculate the frequency of alleles in a population [74], and setting
its threshold is usually the first step in analyzing population data [75]. Previous research
showed that SNPs with low MAF values were more likely to lead to spurious results [76].
Especially in GWAS analysis, any SNPs with MAF < 10% would be removed [77,78];
however, this strategy would cause mass data loss and leave few data points for further
analysis. Some scholars recommend not to remove low MAF values (<1% or <5%) [79]. In
general, researchers distrust results arising from low-MAF SNPs. To prevent false SNPs
arising from sequencing errors, a cut-off of 5% MAF was set in this work, with about 62%
(100,633/162,517) of SNPs meeting this threshold. A large amount of data was left, which
was a huge challenge in terms of subsequent individual genotyping.

Our main goal was not only screening for positive SNPs but looking for SNPs that
drastically differed between rapid and slow growth groups; therefore, we needed a metric
to show that difference. AFI was defined and performed to highlight the differences in
MAF values between the two populations. Our pool-seq function detected SNPs with AFI
values between 0.1 and 8. We acknowledge that our cut-off value may have been strict,
although it did have advantages. Our results might suggest that AFI could be used as
an optional parameter for detecting differences among groups. As reported previously,
AFI values were used to discover SNPs of O. mykiss [27].

4.2. SNP Validation via DNA Pool Sequencing

DNA-pool-targeted resequencing experiments were applied to verify SNPs. In1991,
Michelmore et al. [80] developed and demonstrated a method called bulked segregate
analysis (BSA) for rapidly identifying markers linked to any specific gene or genomic
region. Using this method, two bulked DNA samples were constructed from a segregating
population from a single cross. Pool sequencing has been proven to be an effective strat-
egy for variant detection, and there is an outstanding correlation between pool-seq and
genotyping results based on individuals [42,47,81,82].

Although high-quality SNPs showed 36% higher accuracy than low-quality SNPs,
there were still undetected sites, for which there were three possible reasons: (i) mismatch,
whereby the target fragment was not amplified accurately; (ii) individual contributions, as
each individual had a different contribution to the DNA pool; (iii) nonexistent SNPs. PCR
products were mapped to the shrimp genome. The size and sequence of PCR products
were expected, while the probability of mismatch was very low in our study. Although it is
possible that some individuals had more DNA in the DNA pools, the depth of the pool-seq
was sufficient and balanced (Table S1, Pools-seq results). It is unlikely that the true site
was not detected at all. The ideal situation is when the individual DNA in the pool has
an exactly equal molar concentration [46]; however, this is also one of the biggest technical
challenges of the pool-seq method because it is unrealistic. For example, technical errors
in DNA quantification would lead to unequal pool concentrations. Our sample size was
sufficient, so it had little effect on the accuracy [42,46,72]. The third reason was most likely
that there was no SNP at the site, which meant that there were still be some false-positive
results after screening.

Using a DNA pool as a PCR template can accurately reflect the contribution of each in-
dividual. In order to reduce the error, it is necessary to ensure the consistency of individual
concentrations as much as possible. By mixing many individuals, sampling errors can be
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significantly reduced [46]. Pool sequencing requires less DNA from each individual, which
increases the efficiency of the laboratory and reduces the time and cost. DNA pool-seq
should be cautiously chosen to discover rare variants. Calling SNPs from a pool will result
in a high probability of sequencing error unless the depth is sufficient.

4.3. Functional Analysis of SNPs

The results of the functional analysis showed that these FGs might link to metabolic
processes, such as “fructose and mannose metabolism”, “amino sugar and nucleotide
sugar metabolism”, and “glutathione metabolism”. The results indicated that growth
performance may be associated with certain basic metabolic processes. Fructose and
mannose metabolism provide upstream substrates for amino sugar and nucleotide sugar
metabolism [83]. The latter is involved in environmental stress responses, such as those
from salt [84] and nitrite [85]. Glutathione metabolism is an important pathway of antioxi-
dant and stress tolerance. Glutathione S-transferases participate in the detoxification of
xenobiotics and defend against oxidative damage [86–89]; therefore, these SNPs may affect
metabolic processes, leading to energy expenditure and consequently further affecting
growth traits. Additionally, “protein processing in the endoplasmic reticulum”, “phago-
some”, and “lysosome” pathways enriched some of the FGs. High levels of oxidative stress
inhibit organism growth [52]. Oxidative stress induces misfolding of endoplasmic reticu-
lum proteins, while the protein processing in the endoplasmic reticulum pathway mainly
plays a role in maintaining protein homeostasis [90]. When the endoplasmic reticulum
is unable to maintain homeostasis, the body may eliminate misfolded proteins through
phagosomes and lysosomes; hence, all of these processes might be a drag on growth.
These findings provided useful information for developing potentially useful SNP markers.
Moreover, the molecular mechanisms of the effects of these SNPs on growth performance
require further analysis. Finally, Figure 4 shows that there were 75 DEGs containing SNPs
with different allele frequencies (p-value < 0.05, AFI > 4 or < 0.25), with differences in
the expression patterns of these 75 DEGs possibly being related to SNPs.

4.4. SNP Portability

Another study also reported growth-related SNPs in P. vannamei [20]. They highlighted
that more SNPs were found in genes, such as actin, ryanodine receptor, astakine, chitinase,
and cuticle. Although the background and sampled tissue of P. vannamei were different,
a total of 42,848 consistent SNPs (Table S2, Consistent SNPs) were found by reanalyzing
their transcriptome data. Furthermore, five validated SNPs (Table 6; T133937C, A1031552T,
T585697C, T917813C, A110344G) were identified in these consistent SNPs. The SNPs
developed in a particular population might have no polymorphism in another population.
This may limit the use of these SNPs for breeding in other populations. The consistent SNPs
will make subsequent genotyping experiments more valuable. In summary, this study is
an appropriate reference and we hope that these SNPs can be used in other populations.

5. Conclusions

The purpose of this study was to identify SNPs (especially growth-related SNPs)
in P. vannamei via transcriptome sequencing. A total of 216,015 hypothetical SNPs were
detected from RNA-seq data. Various filtering criteria were applied to screen SNPs in our
study. The results showed that the read depth and MAF are important but not critical
factors, while p-values and AFI values can predict SNP sites effectively. These two indi-
cators (p-values and AFIs) are the most likely to identify SNPs associated with growth.
Twenty-two SNPs were successfully validated in this experiment. These validated SNPs
can provide a theoretical basis for the development of markers for future marker-assisted
breeding programs. In conclusion, these SNPs identified in this paper may contribute to
the breeding of P. vannamei. Our workflow may have potential for SNP development for
species in aquaculture and could also enable interesting SNP sites to be found efficiently
among thousands of SNPs.
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