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Abstract: Brazilian fish farming goes together with the emergence of numerous bacterial diseases,
with Aeromonas hydrophila being the main bacterial pathogen. As a consequence, antimicrobials
are excessively used. Considering that antimicrobials are relatively stable and nonbiodegradable,
medicinal plants and their phytochemicals have been used as alternative treatments of bacteriosis
in fish farming. Limonene is a monoterpene available in two enantiomers: R-(+)-limonene and
S-(-)-limonene. This study analyzed the antibacterial activity of the phytochemicals S-(-)-limonene
and R-(+)-limonene against some bacteria isolated from silver catfish (Rhamdia quelen). Furthermore,
by means of spectrophotometry and atomic force microscopy, we also investigated the combination
therapy of phytochemicals with antimicrobials and their activity in terms of inhibiting biofilm forma-
tion. Six clinical isolates and a standard strain were selected for antimicrobial activity testing. Biofilm
formation was tested in 96-well plates and nylon cubes. The most sensitive of the strains tested was
the A. hydrophila strain (MF 372510). S-(-)-limonene and R-(+)-limonene had high minimum inhibitory
concentrations; however, they strongly inhibited A. hydrophila biofilm formation. R-(+)-limonene and
S-(-)-limonene had an additive effect when combined with florfenicol and an antagonistic effect with
oxytetracycline. In general, the phytochemicals tested showed strong antibiofilm activity against A.
hydrophila, and when in combination therapy with florfenicol, they showed an additive effect against
the treatment of A. hydrophila.

Keywords: limonene; Aeromonas hydrophila; checkerboard; antibiofilm; atomic force microscopy

1. Introduction

Outbreaks of bacteriosis in fish farming are abrupt and cause considerable economic
losses [1]. Often, the occurrence of these outbreaks is associated with stressful conditions
such as impaired water quality and the handling and transport of fish. Most bacterial
pathogens in fish are aerobic and Gram-negative bacteria [2].

Aeromonas hydrophila is a Gram-negative bacterium that is considered a potent pathogen
in aquatic ecosystems [3–6]. Acute infections with this bacterium usually cause hemor-
rhagic septicemia, lesions in the mouth and fins, and ulcers progressing to necrosis of
the skin and internal organs [7,8]. Aeromonas veronii is a species that has genes for resis-
tance to various antimicrobials and has several virulence factors [9]. It is responsible for
hemorrhagic septicemia and ulcerative syndrome in fish [10].

Citrobacter freundii and Raoultella ornithinolytica are Gram-negative bacteria from the
Enterobacteriaceae family [11]. Infection with C. freundii usually occurs due to poor wa-
ter quality or immunosuppressed animals [7]. Symptoms include lethargy, disordered
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movements, and bleeding [12,13]. Raoultella ornithinolytica causes a high production of
histamine in fish and is responsible for a toxic condition termed scombroid poisoning,
which is related to the ingestion of fish contaminated by the bacterium. The most frequently
reported infections by R. ornithinolytica are those in the digestive system [14].

Stenotrophomonas maltophilia are Gram-negative aerobic bacilli that are considered to
be emerging pathogens. It is a bacterium prevalent in aquatic or humid environments
and in nosocomial environments and can cause several serious infections in humans [15].
American catfish (Ictalurus punctatus) infected with S. maltophilia present with infectious
intussusception syndrome [16], gilthead seabream (Sparus aurata L.) edema, and collapse
of the gills [17].

In Brazil, A. hydrophila and A. veronii are the main species reported [18–20]. The genus
Aeromonas is capable of forming biofilms and causing hemolysis, which contributes to the
virulence of the strain [3,18,20]. Currently, strategies to prevent biofilm formation involve
the development of biofilm inhibiting agents with the aim of preventing the early stages of
biofilm formation and preventing microcolony formation [21].

Due to the impacts caused by bacterial infections, effective therapeutic options are
needed to reduce the morbidity and mortality of animals. However, the indiscriminate
use of antimicrobials in fish has shown multiresistance by microorganisms, in addition
to the deposition of residues in animal tissues and in the aquatic environment [22,23]. In
this context, medicinal plants have been considered a promising alternative in the control
and treatment of bacteriosis in fish, either as an isolated therapy or as a combination
therapy with antimicrobials [18,24–26]. Through their secondary metabolism, plants give
rise to essential oils, which have a set of chemical compounds (phytochemicals) in their
composition [27].

Limonene is a monoterpene of secondary metabolism mainly in plants of the genus
Citrus [28]. It is found in the R-(+)-limonene and S-(-)-limonene isoforms [29]. The R-(+)-
limonene isoform is widely used in cosmetic products [30], food [31], and insect control [32].

Several studies have reported that essential oils containing limonene have different
biological activities, including antimicrobial activities. Song et al. [33] found that Citrus
reticulata essential oil, whose composition corresponds to 78% limonene, inhibited the
activity of Staphylococcus aureus. Haraoui et al. [34] determined the antibacterial activity
of C. max, C. aurantium, and C. limon essential oils in several Gram-negative and Gram-
positive bacteria. As far as we know, there are no data available on the specific activity of
the R-(+)-limonene and S-(-)-limonene isoforms against the bacteria to be tested.

Thus, the aim of this study was to determine the minimum inhibitory concentration
(MIC) and the minimum bactericidal concentration (MBC) of the phytochemicals R-(+)-
limonene and S-(-)-limonene against A. hydrophila, A. veronii, C. freundii, R. ornithinolytica,
and S. maltophilia, to analyze the combined therapy of limonene enantiomers with florfeni-
col and oxytetracycline against A. hydrophila, and to analyze the inhibition of A. hydrophila
biofilm formation by means of atomic force microscopy.

2. Materials and Methods
2.1. Phytochemicals

The phytochemicals R-(+)-limonene and S-(-)-limonene were purchased from Sigma-
AldrichTM (St. Louis, MO, USA).

2.2. Minimum Inhibitory Concentration and Minimum Bactericidal Concentration Assays

Six clinical isolates (A. hydrophila (GenBank access MF 372509), A. hydrophila (MF372510),
A. veronii (MH 397688), C. freundii (MF 565839), R. ornithinolytica (MF 372511), and S. mal-
tophilia (MT 572493)) and a standard strain (A. hydrophila (ATCC® 7966)) were selected for
MIC and MBC tests. The MIC and MBC were obtained following the microdilution method
from the Clinical and Laboratory Standards Institute (CLSI) guidelines [35], document
VET04-A2. S-(-)-limonene and R-(+)-limonene were diluted in 96% ethanol and added to
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Mueller–Hinton broth (MHB) at concentrations of 6400, 3200, 1600, 800, 400, 200, 100, 50,
25, 12.5, 6.25, and 3.125 µg/mL (in triplicate).

The inoculum was prepared in saline from cultures grown on Mueller–Hinton agar
(MHA) (1 × 108 CFU/mL; 0.15—optic density (DO)—600 nm) (28 ◦C/24 h). Inoculum
(10 µL, 1 × 105 CFU) was added to each well containing the tested substances. The
microplates were incubated under aerobic conditions for 24 h at 28 ◦C. The same procedure
was carried out in an ethanol control. Ten microliters of 0.1% resazurin dye (Sigma-
AldrichTM, Product Code 199303) was added to each well to assist in the MIC reading,
which was considered the lowest concentration of the substance that inhibited visible
bacterial growth. MBCs were confirmed by reinoculation of 10 µL of each bacterial culture
in MHA (28 ◦C/24 h), and the lowest concentration of antimicrobial that did not show
growth was defined as the MBC.

2.3. Checkerboard Assay

Different combinations of oxytetracycline and florfenicol with S-(+)-limonene and
R-(+)-limonene were tested against the most sensitive strain in the MIC test (A. hydrophila
MF 372510) using the checkerboard method [36]. The MIC values for florfenicol and
oxytetracycline were obtained from Bandeira Junior et al. [18], who used this same bacterial
strain and the same methodology. The concentrations tested (in triplicate) in combination
were below (MIC/8, MIC/4, MIC/2), equal to (MIC), or above (MIC × 2, MIC × 4,
MIC × 8) the MIC for the microorganism tested.

The checkerboard method consisted of lines containing different amounts of Substance
A, diluted along the y-axis, and columns containing different amounts of Substance B,
diluted along the x-axis. The checkerboard results were analyzed through the lowest
fractional inhibitory concentration (FIC) index method, following the Clinical Microbiology
Procedures Handbook [37]. The FIC was calculated as follows: FIC of Substance A (FICA)
= MIC of Substance A in combination/MIC of Substance A alone; FIC of Substance B (FICB)
= MIC of Substance B in combination/MIC of Substance B alone. The FIC index (FICI) was
considered to be FICA + FICB. A synergy effect between substances was defined for FICI
values less than or equal to 0.5, and additivity was determined for FICI values between 0.5
and 4, while antagonism was determined for FICI values greater than 4 [38].

2.4. Effect on Biofilm Formation

Several phytochemical concentrations (MIC/8, MIC/4, MIC/2, MIC, MIC × 2, MIC × 4,
and MIC × 8) were tested on A. hydrophila biofilms, according to Stepanovic et al. [39].

Cultures were grown overnight in tryptic soy broth (TSB) and diluted to 0.25 OD
(600 nm). Subsequently, TSB with the phytochemical to be tested (diluted in ethanol) and
bacterial inoculum were added to each well for each concentration tested (in triplicate).
After 48 h of incubation at 28 ◦C, each well was washed (three times), dried, stained
with gentian violet, and washed again. The stained biofilms were resuspended in alco-
hol/acetone (80:20), and the OD (550 nm) was measured with a microplate reader. Controls
without inoculum (negative controls) corresponding to each phytochemical were added.
Biofilm formation was considered strong when the OD of the sample (ODs) was more
than four-fold greater than the OD of the negative control (ODnc), moderate when the
ODs was between two- and four-fold greater than the ODnc, and weak when the ODs
was up to two-fold greater than the ODnc [40]. In a pilot study, without the addition of
phytochemicals, it was observed that the strain tested had a strong ability to form biofilms
(data not shown). Consequently, a decrease in the formation of biofilms could be attributed
to the addition of phytochemicals.
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2.5. Effect on Biofilm Formation in Nylon Cubes

The effect of several phytochemical concentrations (MIC/8, MIC/4, MIC/2, MIC,
MIC × 2, MIC × 4 and MIC × 8) on the biofilm formation capacity of the A. hydrophila (MF
372510) strain was tested in nylon (Braskem, Brazil) rectangular blocks (1.0 × 1.0 × 0.5 cm)
previously autoclaved and maintained individually in each well of 24-well flat-bottomed
polystyrene microtiter plates.

Cultures in 6 mL of TSB were incubated for 24 h at 28 ◦C and diluted to 0.25 OD
(600 nm). Subsequently, 950 µL of TSB was added, followed by 50 µL of inoculum and
1 mL of TSB with the phytochemicals to be tested in each well (5 replicates for each tested
concentration). After 48 h of incubation at 28 ◦C, each well was washed 3 times with sterile
distilled water. After drying, 2 mL of absolute methanol was added to each well and
incubated for 1 min. After removing all methanol, the blocks were analyzed using atomic
force microscopy.

2.6. Atomic Force Microscopy

Images were obtained with an Agilent Technologies 5500 microscope. The images
(5 µm × 5 µm) were obtained in noncontact mode using PPP-NCL tips (Nanosensors, force
constant = 48 N/m). The images were analyzed with PicoView software.

2.7. Statistical Analysis

The Levene test was used to test the homogeneity of variances between the groups.
When the data were parametric, groups were compared using unilateral analysis of variance
and Tukey’s test. In the case of nonparametric data, Kruskal–Wallis ANOVA and multiple
comparisons of the mean ratings for all groups were performed (STATISTICA 7.0).

3. Results
3.1. Minimum Inhibitory Concentration and Minimum Bactericidal Concentration Assays

The S-(-)-limonene and R-(+)-limonene enantiomers showed weak antibacterial ac-
tivity (MIC 3.2 mg/mL−1 and MIC 6.4 mg/mL−1, respectively) against the A. hydrophila
strain (MF 372510) and no activity against C. freundii, R. ornithinolytica, and S. maltophilia
(Table 1).

3.2. Checkerboard Assay

The results obtained in the checkerboard tests allowed us to infer that limonene can
be a good alternative for the treatment of diseases caused by A. hydrophila, as an addi-
tive effect was demonstrated in 50% of the tested combinations. The phytochemicals
S-(-)-limonene and R-(+)-limonene combined with the antimicrobial florfenicol showed an
additive effect against A. hydrophila (MF 372510), and the same effect presented when the
antimicrobials florfenicol and oxytetracycline were combined. The combination therapy
of S-(-)-limonene and R-(+)-limonene with each other or in combination with oxytetra-
cycline had an antagonistic effect. None of the combinations tested had a synergistic
effect (Table 2).

3.3. Effect of Biofilm Formation by Optical Microscopy

The S-(-)-limonene isoform was more effective at inhibiting A. hydrophila biofilm
formation at MIC × 2, MIC × 4, and MIC × 8, compared to R-(+)-limonene only at
MIC × 8 (Table 3).
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Table 1. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of the optical isomers of limonene against six clinical isolates of pathogenic bacteria
from fish and a standard strain.

Aeromonas
hydrophila

ATCC® 7966

Aeromonas
hydrophila
MF 372509

Aeromonas
hydrophila
MF 372510

Aeromonas veronii
MH 397688

Citrobacter freundii
MF 565839

Raoultella
ornithinolytica

MF 372511

Stenotrophomonas
maltophilia
MT 572493

MIC
mg

mL−1

MBC
mg

mL−1

MIC
mg

mL−1

MBC
mg

mL−1

MIC
mg

mL−1

MBC
mg

mL−1

MIC
mg

mL−1

MBC
mg

mL−1

MIC
mg

mL−1

MBC
mg

mL−1

MIC
mg

mL−1

MBC
mg

mL−1

MIC
mg mL−1

MBC
mg mL−1

S-(−)-
limonene >6.4 >6.4 >6.4 >6.4 3.2 3.2 >6.4 >6.4 >6.4 >6.4 >6.4 >6.4 >6.4 >6.4

R-(+)-
limonene >6.4 >6.4 >6.4 >6.4 6.4 6.4 >6.4 >6.4 >6.4 >6.4 >6.4 >6.4 >6.4 >6.4



Fishes 2021, 6, 32 6 of 13

Table 2. Fractional inhibitory concentration (FIC) and fractional inhibitory concentration index
(FICI) of phytochemicals S-(+)-limonene (SL) and R-(+)-limonene (RL) in association with different
combinations of the antimicrobials florfenicol (FLF) and oxytetracycline (OXT) against Aeromonas
hydrophila MF 372510.

DRUGS FIC FICI

SL—FLF
SL 0.125 2.125 b

FLF 2
SL—OXT

SL 0.125 4.125 c

OXT 4
RL—FLF

RL 0.125 2.125 b

FLF 2
RL—OXT

RL 0.125 4.125 c

OXT 4
SL—RL

SL 4 8 c

RL 4
FLF—OXT

FLF 1 2 b

OXT 1
b additivity; c antagonism.

Table 3. Effects of phytochemicals S-(+)-limonene and R-(+)-limonene on the biofilm formation of
Aeromonas hydrophila isolated from fish (MF 372510).

Aeromonas hydrophila MF 372510

S-(-)-limonene R-(+)-limonene

MIC × 8 0 1
MIC × 4 0 3
MIC × 2 1 3

MIC 3 3
MIC/2 3 3
MIC/4 3 3
MIC/8 3 3

MIC, minimum inhibitory concentration; 0, no biofilm production; 1, weak biofilm production; 2, moderate
biofilm production; 3, strong biofilm production.

3.4. Effect of Biofilm Formation by Atomic Force Microscopy

Figure 1 shows the atomic force microscopy (AFM) results on nylon rectangular
block surfaces in the control groups (Figure 1A), S-(-)-limonene (Figure 1B) and R-(+)-
limonene (Figure 1C) results at low concentrations, and S-(-)-limonene (Figure 1D) and
R-(+)-limonene (Figure 1E) results at high concentrations.
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hydrophila biofilms (0.3 µm and 0.8 µm, respectively) compared to the control group. The 

Figure 1. Atomic force microscopy (AFM) on a nylon surface. Comparative images between control
—2 µm (A), low concentrations (minimum inhibitory concentration—MIC/8, MIC/4, and MIC/2):
S-(+)-limonene—0.3 µm (B) and R-(+)-limonene—0.8 µm (C), high concentrations (MIC × 2, MIC × 4,
and MIC × 8): S-(+)-limonene—0.006 µm (D), and R-(+)-limonene—0.04 µm (E).

Figure 2 shows high peaks of roughness (2 µm) in the control group, indicating the
formation of A. hydrophila biofilm. In the S-(-)-limonene and R-(+)-limonene groups, the
lower concentrations of these isomers significantly decreased the formation of A. hydrophila
biofilms (0.3 µm and 0.8 µm, respectively) compared to the control group. The higher
concentrations of S-(-)-limonene (0.006 µm) and R-(+)-limonene (0.04 µm) also statistically
reduced the biofilm formation of A. hydrophila, when compared to the control.
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Figure 2. Effect of S-(-)-limonene and R-(+)-limonene on the inhibition of A. hydrophila biofilms
in rectangular nylon blocks. Data are shown as the mean ± standard error. One-way analysis of
variance and Tukey test, p < 0.05. Distinct letters indicate a significant difference between treatments.

4. Discussion

Brazilian fish farming is growing, and allied with this expansion, numerous bacte-
rial diseases can arise [41]. Consequently, the indiscriminate use of antimicrobials may
increase [22]. The occurrence of multiresistant bacteria in aquatic environments has been
constant [42], a fact that has driven research into medicinal plants and their major com-
pounds as alternatives to antimicrobials [25,26].

When studying limonene enantiomers, Lis-Balchin et al. [43] found that R-(+)-limonene
exhibited greater activity against several bacterial species and different strains of Listeria
monocytogenes than S-(-)-limonene. Lee et al. [44] verified the significant role of S-(-)-
limonene in suppressing the growth of the bacterium Xanthomonas oryzae pv. Oryzae, and
using extracts of orange and lemon peel against the fungi Candida albicans, Aspergillus niger,
Aspergillus sp., and Penicillium sp., Omran et al. [45] verified that the S-(-)-limonene present
in lemon peel had a greater inhibitory effect on the examined fungi than R-(+)-limonene.

In the MIC and MBC tests, the S-(-)-limonene and R-(+)-limonene isoforms showed a
weak minimum inhibitory concentration for the A. hydrophila strain (MF 372510), show-
ing no activity for the other tested bacteria. However, the MIC was equal to the MBC,
suggesting that these phytochemicals can be bacteriostatic and bactericidal at the same con-
centration, as also described by Pathirana et al. [46] for an essential oil of Citrus aurantifolia
and limonene against pathogenic bacteria of sole Paralichthys olivaceus. Cunha et al. [24]
reported that most essential oils, including their isolated compounds and even those that
have an MIC that is greater than that recommended by Ríos and Recio [47], are effective at
treating bacterial infections in fish at concentrations below the MIC observed in vitro.

Few countries monitor the amounts of antimicrobials used in fish farming, which
demonstrates the scarcity of data. In Brazil, oxytetracycline and florfenicol are the legal
antimicrobials for use in aquaculture [48,49]. Oxytetracycline is one of the main antimicro-
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bials recently legalized to treat bacterial diseases in some aquatic species [48]. It has low
tissue absorption and distribution in fish, which consequently maximizes the use of high
doses and can favor multiresistance by microorganisms [50]. Florfenicol, in addition to
being the first and main choice for the treatment of bacteriosis in Brazil [48] and in several
countries [51,52], has a broad spectrum of action and is bacteriostatic in the treatment of
bacterial diseases in fish [53].

There have been some studies that have shown the susceptibility of several strains of
A. hydrophila, A. veronii, C. freundii, and R. ornithinolytica to florfenicol and oxytetracycline.
Janda and Abbott [4] reported the low susceptibility of Aeromonas sp. to various classes
and combinations of antimicrobials, in addition to their ability to develop resistance to
antimicrobials in the aquatic environment. Bandeira Junior et al. [18] showed the resistance
of some strains of A. hydrophila, C. freundii, and A. veronii to florfenicol and oxytetracycline.
However, the same authors verified that when the therapy of these antimicrobials was
combined with the phytochemicals tested, therapeutic success was found in all the bacteria
tested, suggesting that this combination resulted in activity or synergy.

The combined therapy of one or more antimicrobials with phytochemicals has been
an effective alternative treatment of a disease, as well as a means to reduce the amounts of
antimicrobials used, to reduce the speed of development of multiresistance, and to protect
the environment from waste contamination [54,55]. Our checkerboard results suggest that
a combined therapy of the R-(+)-limonene and S-(-)-limonene enantiomers with florfenicol
for treatment against A. hydrophila is possible, but combined therapy with oxytetracycline
is not possible due to the presented antagonistic effect.

In this investigation, the combination of florfenicol and oxytetracycline produced
an additive effect, the same effect shown by the limonene enantiomers. Considering the
increase in environmental and health problems due to the indiscriminate use of antimi-
crobials and the safety regarding the biodegradability and lesser toxicity of essential oils
and their compounds in mammals, birds, and fish [56,57], a combined therapy of limonene
enantiomers with florfenicol is significantly safer and less expensive.

It is important to emphasize that the biological activity of a chiral substance can vary
according to its stereoisomerism, and although they have the same chemical structure,
when in a racemic mixture, the enantiomers are also capable of demonstrating different
biological responses [58]. Some studies have reported that pure enantiomers are generally
less biologically active since greater activity is often associated with the racemic mixture
due to the interaction of the components [59]. Vuuren and Viljoen [60] reported that the
racemic mixture of limonene had a better FIC than the isolated enantiomers against the
tested bacteria. Contrary to these results, our study found that the combination of the
enantiomers R-(+)-limonene and S-(-)-limonene should be avoided since it presents an
antagonistic effect in the treatment of A. hydrophila.

Approximately 65% of all bacterial infections are related to bacterial biofilms [61].
Biofilms are ecosystems of microorganisms fixed on a surface, formed by one or more
species, surrounded by a matrix of exopolysaccharides [62]. As biofilms mature and
multiply, microcolonies appear and are responsible for inducing the formation of channels,
which favor the transfer of nutrients, oxygen, and mainly genetic material such as plasmids,
which are important for the mechanisms of resistance to antimicrobials and virulence [63].

There are few reports on the antimicrobial activity of isoforms isolated from S-(-)-
limonene and R-(+)-limonene. In the analysis of the inhibition of biofilm formation through
spectrophotometry, the S-(-)-limonene isoform was more effective in the antibiofilm activity
of A. hydrophila than R-(+)-limonene. There are no data on the antibiofilm activity of the
isolated S-(-)-limonene and R-(+)-limonene enantiomers. Subramenium et al. [64] showed
the antibiofilm activity of limonene against different species of Streptococcus sp.

Different microscopic techniques are employed for the analysis of biofilms. AFM
has been proven to be a reliable tool for studying films embedded in a matrix, such as
biofilms [64–66]. In assessing the inhibition of biofilm formation through AFM, we used
nylon as a substrate, which is the main polymer used in making net tanks in fish farming.
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Some factors, such as the nature of the substrates, interfere and favor the formation of
biofilms at different stages [67]. Cai and Arias [68] proved the ability of A. hydrophila to
form biofilms on the surfaces of all materials tested in aquaculture facilities. The two
isoforms of limonene inhibited the formation of A. hydrophila biofilms in nylon cubes. The
inhibition of biofilm formation is a fundamental step in decreasing the pathogenic effect
of bacteria [69]. Similar results were also found with Citrus limonum, the composition of
which corresponds to 70% limonene, against biofilms of Klebsiella sp. [70]. In addition,
the results of a surface coating test suggested that the inhibition of bacterial adhesion to
surfaces could be the mode of action of limonene, thus avoiding the cascade of biofilm
formation [65].

The results obtained in this study show that, although S-(-)-limonene and R-(+)-
limonene had a weak minimal inhibitory concentration, they strongly inhibited the biofilm
formation of A. hydrophila in the tests performed. An analysis of the MIC and the minimum
effective concentrations of essential oils, as well as their major compounds used in in vivo
tests demonstrated that there was no correlation between them. Consequently, the value of
the MIC in vitro does not allow for a good prediction of the in vivo effect of an essential
oil [24].

In conclusion, we propose the investigation of the antibacterial activity of these
phytochemicals against bacteriosis in vivo, as well as for the prevention of contamination
linked to the formation of biofilms, as we found satisfactory results in the reduction of
nylon biofilms, which would justify their use in the treatment/prevention of biofilms in
networks. The phytochemicals tested may be promising combination therapy agents with
florfenicol for potential applications in clinical fish infections.
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