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Abstract: This study aimed to determine the optimal live feed regime (i.e., initial feeding moment,
density, and frequency) for maximum growth and survival of pangasius catfish (Pangasianodon
hypophthalmus) early life history stages. The first experiment assessed the optimal initial feeding
moment (30, 36, 42, and 48 h post hatching, hph). The second experiment assessed feeding density (3,
5,8 and 11 individuals per mL, ind/mL) at the optimal initial feeding moment (30 hph) which was the
best result from the first experiment. The third experiment assessed optimal feeding frequency (1, 2,
4, and 6 times per day) at the optimal initial feeding moment (30 hph) and density (8 ind/mL) which
was drawn upon from the second experiment. All experiments were conducted in 20 L containers
containing 20 hph P. hypophthalmus larvae at a density of 10 ind/L and fed rotifers (Brachionus angularis)
for 3 days and then water fleas (Moina macrocopa) for 7 days. The first experiment demonstrated that
larvae initially fed at 30 hph exhibited a significantly higher survival rate (24%) than larvae initially
fed at 36, 42, and 48 hph (19%, 16%, and 16%), respectively. The second experiment demonstrated
that larvae fed at 8 and 11 ind/mL densities exhibited significantly higher survival rates (32% and
32%) than larvae fed at 3 and 5 ind/mL densities (13% and 23%), respectively. The third experiment
demonstrated that the highest survival rate (66%) was obtained when larvae were fed 6 times per
day. These results provide valuable insights regarding the optimal live feed regime for better growth
and survival of P. hypophthalmus larvae, which are commercially important and numerously cultured
throughout the Mekong Delta region.

Keywords: pangasius catfish; feeding rate; feeding frequency; feeding moment; rotifer Brachionus
angularis; water flea Moina macrocopa

1. Introduction

Live feeds play an important role in the aquaculture production of various fish and shellfish
species [1-4]. In addition to the provided nutritional value, the small size of live feeds is critical for
early life history stages of many fish, especially species with a narrow mouth opening gape at the
developmental timepoint when exogenous feeding begins [5-7]. Among the available live feed options,
rotifers are considered one of the best and, accordingly, one of the most widely used for small fish
species [8-10]. However, in addition to the use of an optimal live feed species, optimal feeding regime
also plays a vital role in survival and growth performance during early life history stages.

Higher feeding rates and frequencies can result in higher performance of fish larvae although
optimal feeding regimes may vary depending on fish species, life history stage, sizes, or rearing
conditions. For example, growth performance of various fish larvae improved when administered live
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feed at higher frequencies or rates [11-15]. Administering live feed at the optimal time (i.e., switching
on exogenous feeding) is critical, especially for fish species that exhibit cannibalism [16,17]. Hecht and
Pienaar [18] revealed that cannibalism in larviculture relates to intra- and inter-cohort sibling
cannibalism, which is mainly driven by genetic and behavior factors with the latter usually being
driven by environmental factors (e.g., food availability, population density, light intensity, and feeding
frequency). Cannibalism can be reduced during larviculture if these environmental factors are
effectively controlled [18]. Furthermore, a delay in the timing of first feeding can increase mortality in
fish larvae due to starvation and, thus, optimal fish larvae performance depends on availability of prey
organism when the yolk sac is resorbed and fish larvae switch on exogenous food [19,20].

Pangasius catfish (Pangasianodon hypophthalmus) has been known as one of the most important
aquaculture species of Vietnam, especially in the Mekong Delta [21,22]. High production of this
species not only supports the economic growth of Vietnam but also contributes to the global fish
production [23,24]. Despite high production having been maintained throughout the years, early life
history survival rates for this commercially important aquaculture species remain variable and low
(per. communication).

Subagja et al. [25] highlighted that although P. hypophthalmus cultivation has been practiced for
30 years, published information on optimal rearing methods are scarce. This remained true until the
recent investigations into the causes of high mortality during P. hypophthalmus larvae rearing, which
demonstrated that cannibalism was the major cause during the first week of development [26,27].
Cannibalism was significantly reduced during aquaculture rearing of P. hypophthalmus larvae by
increasing darkness duration, increasing food availability, and decreasing stocking density [27].
Moreover, the use of increased feeding rate and frequency have also been demonstrated to increase the
survival rates of several fish species reared under aquaculture conditions such as large yellow croaker
(Pseudosciaena crocea) [28], spotted seatrout (Cynoscion nebulosus) [29], red-spotted grouper (Epinephelus
akaara) [11] and Ayu sweetfish (Plecoglossus altivelis) [13].

This study aimed to determine suitable feeding environment including (i) initiation of feeding
moment; (ii) feeding rate, and (iii) feeding frequency for optimal growth performance and survival of
P. hypophthalmus larvae. These optimal feeding regimes obtained from the research could be practically
applied to increase survival rate of the early life history stages of the commercially important and
intensively cultured pangasius catfish.

2. Materials and Methods

2.1. Pangasius Catfish Larvae

All experiments used 20 h post hatch (hph) P. hypophthalmus larvae obtained from the Can Tho
University fish hatchery.

2.2. Live Feeds Preparation

Freshwater rotifer (Brachionus angularis) with a size range of approx. 90-100 um in length were
provided from a mass culture system operated in the Laboratory for Natural Foods, Department
of Applied Hydrobiology, College of Aquaculture and Fisheries, Can Tho University, Vietnam.
Rotifers were originally collected and isolated from the wild and mass culture was performed under
controlled conditions. The initial rotifer stock was maintained in a 2 L glass bottle with continuous
aeration. Rotifers were fed once a day with freshly cultured Chiorella sp. microalgae at a density of
approx. 60,000 individuals per rotifer per day. Up-scaling of the rotifer culture was initiated in 8 L
glass bottles at a density of 50 rotifers per milliliter (mL). The same Chlorella sp. microalgae diet was
provided to this up-scaled rotifer culture. Density of rotifer culture was determined daily and the
biomass was partly harvested as live feed for P. hypophthalmus larvae experiments when it reached
approx. 400-600 rotifers per mL.
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Water fleas (Moina macrocopa) were originally collected from a commercial culture pond where
biomass was regularly harvested for sale. The water fleas were mass cultured in 250 L composite tanks
at a density of 200 individuals per L. The water flea culture was provided a 1:1 mixture of rice bran
and shrimp feed size 0 three times a day. Water flea culture biomass was harvested as live feed for
P. hypophthalmus larvae experiments when density reached approx. 8000 individuals per L. The average
size of cultured water fleas was 598 + 250 pm; however, water fleas were size graded to <500 um before
feeding to P. hypophthalmus larvae by filtering biomass through a plankton net with 500 pm mesh size.

2.3. Experimental Design and Rearing Management

Three discrete experiments were undertaken. Each experiment was conducted in a 20 L container
system located in an open air compartment within a wet lab with water volume maintained at 18 L
and continuous aeration. Twenty hours post hatching (hph) P. hypophthalmus larvae were allocated
in the system at a density of 10 individuals per L (ind/L) [27]. In all experiments larvae were fed
B. angularis rotifers only for first 3 days and then M. macrocopa water fleas only for the remaining
7 days. Feeding densities of each treatment were consistent over the 10 day rearing period. Before each
feeding, the number of live feed organisms was counted using a Sedgewick-Rafter counting chamber
and additional live feed was supplemented as needed to maintain the standardized feeding densities.

The first experiment was designed to determine the optimal initial feeding moment
(i.e., developmental time point at which larvae transition from endogenous to exogenous feeding).
As the fish larvae of this species exhibit an intense cannibalistic behavior at an early age, about 36 h after
hatching [30,31], early provision of live feed may reduce mortality during this period. The experiment
was therefore designed with four treatments with three replicates each in which initial feeding was
commenced at 30, 36, 42 and 48 hph. Larval yolk sac exhaustion was observed throughout the
first 3 days of development. Each experimental container (1 = 180) was fed daily at 7 am, 11 am,
3 pm, and 7 pm with rotifers and water fleas at a density of 5 ind/mL for the first 3 and remaining
7 days, respectively.

The second experiment was designed to determine the optimal feeding density (i.e., concentration
of live feed organisms). Four treatments with three replicates each were undertaken wherein larvae
were fed 3, 5, 8, and 11 ind/mL of live feed at the optimal developmental time point determined by the
first experiment. Consistent with the first experiment, larvae were fed daily at 7 am, 11 am, 3 pm and
7 pm.

The third experiment was designed to determine the optimal feeding frequency (i.e., number of
feeds per day). Four treatments with three replicates each were undertaken wherein larvae were fed
one (at 7 am), two (at 7 and 11 am), four (at 7 am, 11 am, 15 pm, and 19 pm) and six (7 am, 11 am,
15 pm, 19 pm, 23 pm, and 3 am) times per day at the optimal developmental time point and density
determined by the first and second experiments, respectively.

All three experiments are summarized in Table 1. All experiments were run across the first 10 days
of development as this is the critical period in P. hypophthalmus larval development (i.e., transition
from endogenous to exogenous feeding and before weaning onto granulated feed) ([31]; unpublished
data). Water temperature and pH were monitored daily in the morning (7 am) and afternoon (2 pm),
while dissolved oxygen (DO), total ammonium nitrogen (TAN) and nitrite (NO,~) were measured
every three days.
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Table 1. Summary of experimental design of three experiments.

No Experiments Treatments
Experiment 1: Determination of optimal initiation of
! feeding moment (hour post hatching—hph) 30 36 42 48
Experiment 2: Determination of optimal feeding density
2 . 3 5 8 11
(ind/L)
Experiment 3: Determination of optimal feeding
3 . 1 2 4 6
frequency (times/day)

Fish (n = 15 per container or n = 45 per treatment) were sampled every three days to determine
growth rate (length and weight) and mouth opening gape. Survival rate of larvae within each container
was determined at the termination of each 10 day experiment.

2.4. Sample Analysis and Calculations

Temperature and pH were recorded using a thermometer and pH meter (HI98107, Romania),
respectively, while DO, TAN, and NO,~-N were analyzed following APHA [32]. Mouth opening gape
was determined at 90° by measuring the length of the upper jaw using an optical microscope eyepiece
and applying by the formula suggested by Shirota [33]:

D (90°) = AB x V2

where D is mouth opening gape (um) and AB is upper jaw length (mm). Growth (length and weight)
and survival rates were calculated as follows:

Length-Specific Growth Rate (L-SGR; %) = [(In final length—In initial length)]/days of rearing) x 100

Weight-Specific Growth Rate (W-SGR; %) = [In (final weight) —In (initial weight)]/days of rearing) x 100
Survival (%) = (final number of fish/initial number of fish) x 100

2.5. Data Analysis

Statistical analyses were performed using SAS version 9.4 (SAS Institute, Cary, NC, USA). One-way
analysis of variance (ANOVA) was used to identify differences among treatments followed by Tukey’s
HSD multiple comparisons test to determine differences among groups. All percentage data (survival,
L-SGR, and W-SGR) were normalized by arcsine transformation prior to analysis. Alpha was set to
0.05 for all statistical comparisons.

3. Results
3.1. Determination of Optimal Feeding Time

3.1.1. Growth Performance

Monitored water parameters fell within suitable ranges. Temperature ranged from 26.3 to 27.8 °C
in the morning and afternoon, while pH was consistent (7.4-7.5). DO concentrations ranged from 4.8
to 5 mg/L (expected given aeration) while both TAN and NO,™-N concentrations ranged from 0.3 to
0.4 mg/L.

During the first three days of development, the gape of larval fish mouth opening increased
from 232 + 48 to 496 + 27 um (Table 2). The mouth opening gape increased steadily to the end of
the experiment and no significant difference was found among treatments (p > 0.05). After 10 days
of rearing, the larvae mouth opening gape was approximately four times larger than day 0 for all
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four treatments (Table 2). More specifically, the mouth opening gape was 825 + 60 um, 812 + 59 um,
841 + 45 pm, and 867 + 48 um at day 10 for the 30, 36, 42 and 48 hph treatments, respectively.

Table 2. Mouth opening gape (um) of P. hypophthalmus larvae at four developmental time points
following different initiation of feeding moment.

Initiation of Feeding Moment Treatments

Days after Hatching
30 hph 36 hph 42 hph 48 hph
0 232 £ 482 232 + 482 232 £ 482 232 + 482
3 496 + 272 455 + 372 485+ 192 476 +392
6 666 + 70 b 719 + 19 ab 730 + 45 b 764 + 46 2
10 825 + 602 821 +592 841 £ 452 867 + 482

Data (mean + SD) in the same row with different letters are significantly different (p < 0.05). hph: hour post hatching.

After 10 days of development there was no statistically significant difference in growth rate metrics
among larvae from the 30, 36, 42, and 46 hph feeding moment treatments (p > 0.05; Table 3). The best
L-SGR and W-SGR growth rates were observed for larvae from the 36 hph treatment (10 + 2%/day
and 27 + 2%]/day), respectively. The least growth in length (14 + 4 mm) and L-SGR (9 + 3%/day) were
observed in larvae from the 42 hph treatment while the least growth in weight (26 + 9 mg) and W-SGR
(23 + 4 %/day) were observed in larvae from the 30 hph treatment (Table 3).

Table 3. Growth performance of P. hypophthalmus larvae after 10 days of development following
different initial feeding times.

Initiation of Feeding Moment Treatments
30 hph 36 hph 42 hph 48 hph

Final length (mm) 16+32 16+42 14+42 17+52
Final weight (mg) 26+94 40+82 29+104 34+72
L-SGR (%/day) 10+272 10+242 9+32 10+442
W-SGR (%/day) 23+4%2 27 +22 24 +472 25+22

Data (mean + SD) in the same row with different letters are significantly different (p < 0.05). hph: hours post hatching.

Parameter

3.1.2. Survival Rate

Larvae from the 30 hph treatment exhibited significantly higher survival (24 + 3%) than larvae
from the 36, 42, and 48 hph treatments (19 + 2%, 16 + 1%, and 16 + 1%, respectively) (p > 0.05) while
larvae from the 36 hph treatment exhibited significantly higher survival than larvae from the 42 and
48 hph treatments (p < 0.05; Figure 1).

30 -
a

25 _I_
9 b
~ 20 .
[}
& ¢ o
a 15 7
2
£ 10 1
(2]

5 4

0

30 hph 36 hph 42hph 48 hph

Initiation of feeding moment

Figure 1. Survival rates of P. hypophthalmus larvae following 10 days of rearing under four initiation
of feeding moments: 30 h post hatching (hph), 36 hph, 42 hph, and 48 hph. Each bar represents the
mean value and standard deviation data for each feeding time treatment. Data with different letters are
significantly different (p < 0.05).
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3.2. Determination of Optimal Feeding Density

3.2.1. Growth Performance

Consistent with the first experiment, monitored water parameters fell within suitable ranges.
Temperature and pH were stable (26.3-27.7 °C and 7.4-7.5, respectively), while DO was maintained in
a range of 4.8-5.0 mg/L. Both TAN and NO,™-N concentrations were relatively low, ranging from 0.33
to 0.37 mg/L.

There was no significant difference in mouth opening gapes among feeding density treatments
(p > 0.05; Table 4) when initial feeding commenced at 30 hph. Mouth opening gape did, however,
steadily increase from 231 + 48 um in larvae from the 3, 5, 8 and 11 ind./L treatments to 864 + 54 pm,
880 + 74 pum, 803 + 60 pm, and 861 + 45 um after 10 days of development, respectively (Table 4).

Table 4. Mouth opening gape (um) of P. hypophthalmus larvae at four developmental time points
following subjection to different feeding density treatments.

Feeding Density Treatments

Days after Hatching
3 ind/mL 5ind/mL 8 ind/mL 11 ind/mL
0 231 + 484 231 +48°2 231 + 484 231 +48°
3 505+ 142 465 + 452 466 + 352 485+ 194
6 648 + 52b 717 + 15ab 741 £372 790 £ 542
10 864 + 544 880 +7442 803 +60° 861 + 4542

Data (mean + SD) in the same row with different letters are significantly different (p < 0.05). ind/mL: individuals
per milliliter.

After 10 days of development, there were significant increases in length and L-SGR observed for
larvae fed higher densities of live feed starting at 30 hph while no significant differences were observed
for weight or W-SGR (Table 5). More specifically, length and L-SGR were significantly higher for larvae
from the 8 and 11 ind/mL treatments (12.6 + 0.4 and 12.5 + 0.1 %/day, respectively) than for larvae
from the 3 ind/mL treatment (10.3 £+ 1.5 %/day) but not the 5 ind/mL treatment (Table 5). The lowest
growth rate metrics were observed in larvae from the lowest feeding density treatment (3 ind/mL).

Table 5. Growth performance of P. hypophthalmus larvae after 10 days of development under different
feeding density treatments.

Feeding Density Treatments

Parameter
3 ind/mL 5 ind/mL 8 ind/mL 11 ind/mL
Final length (mm) 16.1 +2.8P 19.7 +1.42b 20+0.72 20.0+022
Final weight (mg) 29.1+392 33.6 £3.82 298+5.12 313+112
L-SGR (%/day) 103+ 1.5P 12.4 £ 0.7 b 12.5+0.42 125+0.12

W-SGR (%/day) 258+14° 272+11°% 259+17°% 26.5+04°2

Data (mean + SD) in the same row with different letters are significantly different (p < 0.05). ind/mL: individuals
per milliliter.

3.2.2. Survival Rate

Larvae from the 8 and 11 ind/mL treatments exhibited the highest survival rates (32 + 1% and
32 + 2%, respectively), which were significantly higher than the survival rates observed for larvae
from the 3 and 5 ind/mL treatments (p < 0.05) but not significantly different from one another (p > 0.05;
Figure2). Larvae from the 3 ind/mL treatment exhibited the lowest survival rate, which was significantly
lower than all three other feeding density treatments (p < 0.05). Lastly, larvae from the 5 ind/mL
treatment exhibited a significantly higher survival rate (p < 0.05) than larvae from the 3 ind/mL
treatment but a significantly lower survival rate (p > 0.05) than larvae from both 8 and 11 ind/mL
treatments (Figure 2).



Fishes 2020, 5, 20 7 of 12

35

HH QL
—

30

25

—— o

20
15

1
—— O

10

Survival rate (%)

3ind/mL 5ind/mL 8ind/mL 11 ind/mL
Feeding density treatments

Figure 2. Survival rates of P. hypophthalmus larvae following 10 days of development under four
feeding density treatments: 3 ind/mL, 5 ind/mL, 8 ind/mL, and 11 ind/mL. Each bar represents the mean
and standard deviation data for each feed density treatment. Data with different letters are significantly
different (p < 0.05).

3.3. Determination of Optimal Feeding Frequency

3.3.1. Growth Performance

Consistent with the first two experiments, monitored water parameters fell within suitable ranges.
Temperatures varied from 26.2 to 27.0 °C while pH and DO varied from 7.6 to 8.3 and 4.8 to 4.9 mg/L,
respectively. Both TAN and NO;™-N concentrations were maintained at <0.4 mg/L.

There was no significant difference in mouth opening gapes among feeding frequency treatments
(p > 0.05; Table 6) when initial feeding commenced at 30 hph and utilized a density of 8 ind/mL.
Mouth opening gape did, however, steadily increase from 236 + 41 pum in larvae from the one, two,
four and six times/day treatments to 870 + 57 um, 877 + 65 um, 879 + 43 um, and 889 + 51 pm after
10 days of development, respectively (Table 6).

Table 6. Mouth opening gape (um) of P. hypophthalmus larvae at four developmental time points
following subjection to different feeding frequency treatments.

Feeding Frequency Treatments

Days after Hatching
1Time/Day  2Times/Day 4 Times/Day 6 Times/Day
0 236 £412 236+ 412 236 £412 236+ 412
3 484 + 452 452 + 492 450 £ 512 444 + 312
6 695 + 46 2P 784 + 762 632 +60b 699 + 94 2b
10 870 + 572 877 £ 652 879 + 433 889 + 512

Data (mean + SD) in the same row with different letters are significantly different (p < 0.05).

After 10 days of development there were significant increases in length, weight, L-SGR, and W-SGR
observed for larvae fed more frequently compared to larvae fed less frequently when initial feeding
commenced at 30 hph and utilized a density of 8 ind/mL (Table 7). More specifically, all growth
rate metrics observed for larvae from the one time/day treatment were significantly lower (p < 0.05)
than larvae from the four or six times/day treatments while no significant difference in growth
rate metrics was observed between larvae from the two and four times/day treatments. Similarly,
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no significant difference in growth rate metrics was observed between larvae from the four and six
times/day treatments except for weight, which was significantly higher in the six times/day treatment
(52.87 + 7.22 mg) than the four times/day treatment (39.33 + 6.99 mg).

Table 7. Growth performance of P. hypophthalmus larvae after 10 days of development under different
feeding frequency treatments.

Feeding Frequency Treatments

Parameter
1Time/Day 2 Times/Day 4 Times/Day 6 Times/Day
Final length (mm) 17 +22b 19 + 0.8 2P 214022 22+1.32
Final weight (mg) 24+04° 30 +2.3b¢ 39+69P 53+7.22
L-SGR (%/day) 11+14P° 13 +0.42 b 14 +£0.102 14+0.62
W-SGR (%/day) 20+02¢ 22 +0.8bc 25+ 1.72ab 28+1.32

Data (mean + SD) in the same row with different letters are significantly different (p < 0.05).

3.3.2. Survival Rate

Larvae from the six times/day treatment exhibited the highest survival rate (66 + 5%), which was
significantly higher (p < 0.05) than the survival rates observed for larvae from the one, two, and four
times/day treatments (9 + 2%, 11 + 1%, and 28 + 1%), respectively (Figure 3). Larvae from the four and
six times/day treatments exhibited significantly higher survival rates than larvae from the one and two
times/day treatments (p < 0.05) while the one and two times/day treatments did not differ significantly
from each other (p > 0.05).

80 1

w b OO O N
o O O O o
HO

——iQ

Survival rate (%)

N
o

—
o
HHO
Ho

o

1time/day 2times/day 4times/day 6 times/day
Feeding frequency treatments

Figure 3. Survival rates of P. hypophthalmus larvae following 10 days of development under four
feeding frequency treatments: 1 time/day, 2 times/day, 4 times/day, and 6 times/day. Each bar represents
the mean and standard deviation data for each feeding frequency treatment. Data with different letters
are significantly different (p < 0.05).

4. Discussions

In this study P. hypophthalmus larvae fed earlier in development (30 and 36 hph) exhibited higher
rates of survival compared to larvae fed later in development (42 and 46 hph). Providing B. angularis
rotifers as live feed earlier in development (i.e., closer to the onset of exogenous feeding) helped
minimize starvation as well as cannibalism among P. hypophthalmus larvae. Cannibalism in fish
is a predatory feeding strategy that involves killing and eating conspecifics (reviewed by [18,34]).
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Cannibalism can be caused by various population and environmental stress factors [17] and tends
to cause a loss of individuals and, thus, a reduction in fish production. Although pangasius catfish
(P. hypophthalmus) was not indicated in the list of cannibalistic culture species by Hecht and Pienaar [18]
and Naumowicz and Pajdak [17], P. hypophthalmus has been demonstrated to exhibit cannibalistic
behavior during the first week after hatching [25-27,30]. This temporary but intense cannibalism
has been demonstrated to be the cause of high mortality during the early life history stages of
P. hypophthalmus development. Food or prey availability and feeding frequency have been found to
increase possibility of prey encounter of P. hypophthalmus larvae and thus reduce cannibalism [18].
Complete yolk sac absorption was reported at day 3 after hatching for P. hypophthalmus larvae; however,
cannibalism was observed to begin at or before 36 hph [30,31]. As such, when feed is provided earlier
in development (e.g., 30 hph) cannibalism and associated mortality during aquaculture rearing can
both be minimized. This is supported by Lima et al. [20] who demonstrated that a delay in initial
feeding time (i.e., into exogenous feeding stage) increased mortality and retarded growth performance
of silver catfish (Rhamdia voulezi) larvae and recommended that initial feeding should commence before
complete yolk sac absorption. Baolong et al. [35] also confirmed the importance of initial feeding
moment on red sea bream (Pagrosomus major) and olive flounder (Paralichthys olivaceus) larvae in that
both growth and survival of these fish larvae decreased as initial feeding time increased beyond
complete yolk sac absorption (i.e., into exogenous feeding stage). Shan et al. [36] also demonstrated
that growth and survival of rock bream (Oplegnathus fasciatus) larvae were significantly reduced when
the time of initial exogenous feeding was commenced 7 or 15 days after hatching compared zero day
after hatching.

At higher feeding densities fish larvae are more likely to encounter and ingest prey, which, in turn,
improves growth performance due to providing sufficient nutrition [37]. In this study, P. hypophthalmus
larvae provided higher live feed densities (5, 8, and 11 ind/mL) starting at 30 hph and exhibited better
growth compared to larvae provided lower live feed density (3 ind/mL). Importantly, survival of
P. hypophthalmus larvae was significantly improved when provided with higher densities of live feed
(Figure 2). Slembrouck et al. [38] also studied the effects of feeding densities on growth and survival of
P. hypophthalmus larvae and similarly demonstrated that survival increased when live feed density was
increased. Wang and Eckmann [39] also demonstrated that higher rotifer feeding densities resulted in
improved growth and survival rates of European perch (Perca fluviatilis) larvae. One explanation could
be that if prey are scarce during each feeding then larvae will likely forage for a long period of time
and, thus, become more exposed to the risk of being cannibalized by siblings. As such, it appears that
cannibalism due to starvation can be reduced by providing larvae with higher densities of live feed
during rearing under aquaculture conditions [17,18,34].

Higher growth (L-SGR and W-SGR) and survival rates were observed in P. hypophthalmus larvae
treatments that were fed four or six times/day compared to larvae treatments that were fed one or two
times/day (Figure 3) starting at 30 hph with a density of 8 ind/mL for both rotifers (days 1-3) and water
fleas (days 4-10). These findings are consistent with previous studies on different freshwater and marine
fish species. For example, gold fish (Carassius auratus) fry exhibited a significant increase in growth
and survival rates when fed more frequently (three times per day) than less frequently (one or two
times per day) [40]. Higher growth performance was also observed for angel fish (Pterophyllum scalare)
larvae when fed more frequently (2—4 times per day) than less frequently (once per day and every other
day) although, for this species, survival rate did not differ between feed frequency treatments [41].
Increased weight gain and survival rate were also observed for young red-spotted grouper (Epinephelus
akaara) fed at a higher frequency [11]. The transition from endogenous to exogenous feeding in fish
larvae is considered the most critical period during development as this is when high mortality is most
likely to occur [42] because the survival and growth of fish larvae depend on food availability [43].
This limitation in availability and accessibility of live feed to fish larvae can be overcome by increasing
feeding frequency because an increase in feeding frequency would likely increase the likelihood of live
feed ingestion by larvae and, thus, likely increase growth and survival. Kasiri et al. [41] confirmed
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that increasing the feeding frequency of live feed to fish larvae resulted in improved food accessibility,
growth, and survival. The present study has demonstrated the fact that provision of live food at
the right initiation of feeding moment with high availability would reduce significant cannibalism
and improve survival of the early history stage of pangasius catfish larvae during the first 10 days of
rearing process.

5. Conclusions

Feeding pangasius catfish larvae at right initial feeding moment, density, and frequency has
resulted in higher growth performance and survival of P. hypophthalmus larvae during the first 10 days
of development. Initial exogenous feeding should commence between 30 and 36 hph with B. angularis
rotifers for the first 3 days and then M. macrocopa water fleas for the subsequent 7 days. Both live feed
organisms are best fed at a density of 8-11 ind/mL and frequency of six times/day. Routine application
of this optimal feeding regime for P. hypophthalmus larvae reared under aquaculture conditions can
improve survival rates to be quintupled (66%).
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