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Abstract: Using multiple, individual encryption schemes is a well-established method to increase
the overall security of encrypted data. These so-called multiple encryptionor hybrid schemes have
regained traction in the context of public-key cryptography due to the rise of quantum computers,
since it allows the combination of well-known classical encryption schemes with novel post-quantum
schemes. In this paper, we conduct a survey of the state-of-the-art public-key multiple encryption
(M-PKE) schemes. For the first time, we describe the most relevant M-PKE schemes in detail and
discuss their security in a unified model, which allows better comparison between the schemes. Hence,
we compare the security, efficiency, and complexity of the schemes and offer recommendations for
usage based on common use cases. Our survey emphasizes the importance of being deliberate when
combining encryption schemes, as small nuances can easily break security.

Keywords: multiple encryption; hybrid encryption; combiners; public-key cryptography;
post-quantum cryptography; quantum resistance

1. Introduction

A cornerstone of today’s information technology is modern cryptography. Public-
key cryptography—like the RSA system [1] or the Diffie–Hellman key-exchange [2]—is
threatened by recent advances in quantum computing [3,4]. A way to counter this threat
is the development and standardization of post-quantum cryptography (PQC). The National
Institute of Standards and Technology (NIST) conducted a standardization competition for
PQC algorithms and announced in 2022 the first group of winners of this competition [5].
Nevertheless, the novel PQC algorithms are not as thoroughly studied as the well-known
classical public-key cryptography. For example, last year, the promising NIST-submissions
Rainbow and SIKE were unexpectedly broken [6,7]. An established way to strengthen
cryptographic primitives in such a situation is to utilize redundancy by combining multiple
schemes at once in a secure way.

Multiple encryption—also known as “double encryption”, “combiners”, or “hybrid
encryption”—allows the combination of multiple, individual cryptographic schemes in
order to create a new secure scheme. Such a new combined scheme resists attacks that
target only one of its components. It is possible to combine the same encryption scheme
several times with different keys, but usually, schemes based on different computational
assumptions are used. In the context of migrating to a fully post-quantum infrastruc-
ture, this means combining well-known classical cryptosystems with novel post-quantum
cryptosystems. This increases the chances of defending against both classical and quan-
tum cryptanalytic advances in the future. Therefore, hybrid public-key schemes have
become a focus of current research in the context of PQC, with particular emphasis on
key-encapsulation mechanisms (KEMs) and digital signatures. The systematic mapping
study of Giron et al. [8] highlights the growing interest in hybrid PQC key-exchange. Note
that the term “hybrid encryption” is more commonly used for the combination of KEMs
and data encapsulation mechanisms (DEMs). In this case, both components have to be
secure in order to securely exchange data. We use the terms “multiple encryption”, “hybrid
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encryption”, or “(hybrid) combiner” interchangeable for “public-key multiple encryption”
when the context is clear.

While hybrid KEMs and hybrid digital signatures have recently received increased
attention in the context of PQC, the research into hybrid asymmetric encryption has been
more or less neglected. This research gap is filled by the paper at hand providing an
overview of plain public-key multiple encryption and its development over the past
decades. We summarize the state of the art in this area, provide a deeper understanding of
hybrid public-key schemes and identify open questions in the field. Besides presenting the
constructions of the most relevant multiple encryption schemes in detail, we also discuss se-
curity, efficiency, and complexity of the schemes. At the end, we provide recommendations
for selecting multiple encryption schemes based on common use cases. This document
provides guidance for decision making while choosing hybrid encryption schemes in the
design of new security protocols.

The remainder of the paper is organized as follows. The related work with emphasis on
public-key multiple encryption is presented in Section 2. In Section 3, we provide the relevant
background—namely definitions and security notions—to make this work self-contained. The
category of sequential hybrid schemes is presented in Section 4, while parallel hybrid schemes
are presented in Section 5. Section 6 discusses combined sequential–parallel constructions.
The advantages and disadvantages of the individual schemes as well as recommendations are
discussed in Section 7. Conclusions are drawn in Section 8, and Section 9 offers an outlook for
future work.

2. Related Work

The combination of multiple security schemes dates back to Shannon [9], who pro-
posed the use of the “product” of two secrecy systems in order to enhance the overall
security. This sequential construction—sometimes called cascade cipher—was later the
focus of research on block ciphers [10,11] and lead to the development and security analysis
of Triple DES [12,13].

In the context of public-key cryptosystems, one of the earliest multiple encryption
schemes was proposed by Asmuth and Blakley [14], who used the XOR operator to mask
the plaintext message once for each individual component cipher. Herzberg [15] studied
the security of multiple “folklore” combiners, such as the XOR-input combiner or the
public-key sequential construction. The biggest weakness of all these natural constructions is
that they are not secure against adaptive chosen-ciphertext attacks (IND-CCA). This is mainly due
to the fact that the natural constructions are not able to check for malicious ciphertexts during the
decryption. Consequently, Zhang et al. [16] and Dodis and Katz [17] presented independently
new IND-CCA secure asymmetric multiple encryption schemes. While Zhang et al. used hash
functions to construct an IND-CCA secure scheme from weaker components in the random
oracle model (ROM), Dodis and Katz made use of additional primitives, such as secret
sharing schemes and digital signatures, to provide an IND-CCA secure scheme in the
standard model. Fujioka et al. [18] presented an IND-CCA secure sequential cipher that is
more efficient than previous schemes and shows more similarities to the natural sequential
combiner. Hohenberger et al. [19] also offered an IND-CCA secure construction from
weaker components. Their focus was on defining a detectable-CCA (IND-dCCA) security
and using this to achieve IND-CCA security. The drawback of their construction is that
each component must remain secure. Recently, Goncalves and Mashatan [20] presented
the first public-key multiple encryption scheme that is secure in the quantum random oracle
model (QROM). Currently, their hybrid scheme remains the only one that has been analyzed
in the ROM and in the QROM.

The concept of the combination of multiple schemes was formalized by Herzberg [15]
and Harnik et al. [21] as (k, n)-robust combiners, where n is the number of all components
and k is the threshold number of secure components. Their definition has the disadvantage
that it is limited to using the same security notion for the entire hybrid scheme and
the individual underlying encryption schemes. This does not allow the construction of
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hybrid schemes from weaker components, and it is not possible to further adapt the
security notions for the multiple encryption setting. Stronger security notions were defined
in [17,18,22] that allow the reception of more information by the adversary or the oracle in
the indistinguishability games. These notions are further discussed in Section 3.5.

Hybrid combiners are also applicable to other primitives and domains, including
oblivious transfer [21], obfuscation [23] and functional encryption [24].

With the advent of quantum computers, hybrid schemes are becoming more interesting
for two cryptographic primitives in particular: key encapsulation and digital signatures.
Giacon et al. [25] considered hybrid KEM combiners while focusing on classical adversaries.
Bindel et al. [26] considered key exchange and encapsulation against quantum and classical
adversaries. They formalized the concept of quantum adversaries and their capabilities. The
efficient construction of hybrid PQC-KEM combiners from weaker PKEs as a generalization
of the Fujisaki–Okamoto (FO) transform was considered by Huguenin–Dumittan and
Vaudenay [27]. A systematic mapping study for post-quantum hybrid key exchange was
conducted by Giron et al. [8].

The development of hybrid post-quantum schemes has also been advanced by tech-
nology companies. In 2016, Google temporarily integrated a hybrid key exchange into an
experimental build of its web browser Chrome [28] using elliptic curve Diffie–Hellman
(ECDH) and the PQC scheme NewHope [29]. A follow-up experiment was conducted
in 2018, this time using the scheme HRSS [30] for the post-quantum part and the ECDH
algorithm X25519 for the classical part. The identical combination is now used by Google
to secure its internal Application Layer Transport Security [31]. Other companies con-
tinue to develop hybrid schemes and their integration in real-world infrastructures, like
Cloudfare [32], Microsoft Research [33], and Amazon [34].

3. Preliminaries

In this section, we introduce the necessary preliminaries for the remainder of this
paper. We first cover the used notation before formally defining public-key (multiple)
encryption and the corresponding security notions.

3.1. Notation

We denote by A(x1, x2, . . .) the output of a probabilistic algorithm A on inputs
x1, x2, . . . where the required randomness is determined by internal random coin tosses that
are uniformly at random. If needed, the outcome r of the random coin tosses is given as an
auxiliary input toA, denoted byA(x1, x2, . . . ; r). The notation y← A(·) assigns the output
of A to y. A subroutine of an algorithm A is called by A.Subroutine(·). We let S be a set;
then, b $← S assigns to b a uniformly at-random chosen element from S . All adversaries for
the indistinguishability security are considered to be probabilistic polynomial time (PPT)
algorithms in their input length. We call function ε : N→ R negligible if for all c > 0 there
exists an integer kc such that ε(k) ≤ k−c for all k > kc.

The concatenation of two strings a, b is denoted by a||b. The bit-wise exclusive or
(XOR) of two strings a, b is denoted by a⊕ b. The magnitude of a set S is given by |S|, and
the bit-length of a string a is given by |a|.

3.2. Public-Key Multiple Encryption

We first offer the definition of public-key encryption (PKE), before defining public-key
multiple encryption (M-PKE).

Definition 1 (Public-Key Encryption Scheme). A public-key encryption scheme Π is given
by a triple of algorithms (K, E ,D) defined over a key space X , a message spaceM and a ciphertext
space C, where

• K, the key generation algorithm, is a probabilistic algorithm that takes as the input a security
parameter k, k ∈ N as 1k, generates system parameters P for Π and outputs a related pair
(pk, sk) of public and secret keys.
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• E , the encryption algorithm, is a probabilistic algorithm that takes as the input a public key
pk and a message m ∈ M and outputs a ciphertext c ∈ C. If necessary, we explicitly state
the randomness r used for the encryption as c =: E(pk, m; r). Otherwise, the randomness is
internally chosen uniformly at random.

• D, the decryption algorithm, is a deterministic algorithm that takes as the input a secret key sk
and a ciphertext c ∈ C and outputs a message m ∈ M or a designated rejection symbol ⊥ to
indicate a failed decryption.

For readability, we omit the key space and the system parameters from now on.
Correctness of PKE. We consider encryption schemes whose decryption sometimes

fails. This consideration is particularly relevant for PQC schemes, which typically have a
small probability of decryption failure. Informally, a PKE scheme is correct if the probability
that the decryption does not return the original message is negligible. More formally, we
say that a PKE Π is ε-correct if we have

Pr
[
m 6= Π.D(sk, c) : (pk, sk)← Π.K(1k); c← Π.E(pk, m)

]
≤ ε (1)

for all messages m ∈ M. If ε = 0, we call Π perfectly correct.

Definition 2 (Public-Key Multiple Encryption Scheme). Let Π1, . . . , Πn be n public-key en-
cryption schemes with corresponding message spacesMi and ciphertext spaces Ci. Call Πi the ith
component cipher. A public-key multiple encryption scheme Πn composed of Π1, . . . , Πn is
given by a triple of algorithms (Kn, En,Dn) defined over a message spaceMn and a ciphertext
space Cn, where

• Kn = Π1.K × . . . × Πn.K, the key generation algorithm, is a probabilistic algorithm that
takes as the input a security parameter k, k ∈ N as 1k and generates n keypairs (pki, ski) ←
Πi.K(1k) for 1 ≤ i ≤ n. The output of Kn is the multiple encryption keypair (PK, SK) =
((pk1, . . . , pkn), (sk1, . . . , skn)).

• En = Π1.E × . . .×Πn.E , the encryption algorithm, is a probabilistic algorithm that takes
as the input a multiple encryption public key PK and a message m ∈ Mn and outputs a
ciphertext C ∈ Cn using Π1.E(pk1, ·), . . . , Πn.E(pkn, ·). If necessary, we explicitly state
the randomness ri used for the encryption as Πi.E(pk, ·; ri). Otherwise, the randomness is
internally chosen uniformly at random.

• Dn = Π1.D × . . .×Πn.D, the decryption algorithm, is a deterministic algorithm that takes
as the input a multiple encryption key SK and a ciphertext C ∈ Cn and uses Π1.D(sk1, ·), . . . ,
Πn.D(skn, ·) to output a message m ∈ Mn or a designated rejection symbol ⊥ to indicate a
failed decryption using.

Correctness of M-PKE. The correctness of an M-PKE scheme depends on the failure
probability of the individual component ciphers of the scheme. If the decryption of one
of the components fails, then the entire decryption of the M-PKE fails. We let probability
Pr[Πi fails] that the decryption of the ith component fails be as in Equation 1. We say that
an M-PKE scheme Πn is ε-correct if we have

Pr[Πn fails] = Pr

[∨
i

Πi fails

]
≤∑

i
εi

def
= ε (2)

for all messages m ∈ Mn, where the inequality follows from the union bound. We call Πn

perfectly correct if ε1 = . . . = εn = 0.

3.3. Design Principles of Multiple Encryption

The multiple encryption definition is a general definition that does not describe
precisely how the individual encryption and decryption algorithms are used, since this
is specific to each scheme. Nevertheless, multiple encryption schemes for public-key
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encryption can be categorized into two main designs. The first design principle used to
combine the different encryption schemes is to construct an encryption chain using the
output of one scheme as the input for the next scheme. This is called sequential multiple
encryption or cascade encryption and follows the design principle of Shannon (see Section 2).
Sequential constructions are discussed in Section 4. The second design principle is to pre-
process the plaintext by splitting it into multiple shares and encrypt each share in parallel
using a different encryption scheme. We note that the plaintext must be split in such a way
that all shares are present in order to reconstruct the plaintext during decryption. This
principle is called parallel multiple encryption and is further discussed in Section 5. It is also
possible to mix the two design principles and create combined sequential–parallel multiple
encryption as discussed in Section 6. Throughout this paper, we talk about combining
different encryption schemes into a new M-PKE scheme. We note that it is also possible to
use the same encryption scheme multiple times for an M-PKE, but with different sets of key
pairs, similar to the symmetric key block cipher Triple DES. The security of such M-PKE
schemes then depends on the different sets of keys, and not on the different underlying
hard mathematical problems.

3.4. Indistinguishability Notions for Public-Key Encryption

We now describe the standard indistinguishability notions first for PKE schemes and
then for M-PKE schemes. In general, the goal of the ciphertext indistinguishability security
notion of an encryption scheme is that an adversary should not learn any information from
a given ciphertext besides the length of the message. Usually, three different standard
indistinguishability notions are used, IND-CPA, IND-CCA1, and IND-CCA2. These notions
are modeled as games in order to evaluate their security. The only difference between the
notions is whether or not the attacker has access to a decryption oracle during the game
phases. We note that IND-CCA2 is commonly referred to simply as IND-CCA. We use this
notation for the remainder of this paper when the context is clear. First, we describe the
IND-CCA notion, before highlighting the differences between the various notions.

Definition 3 (IND-CCA Security of PKE). We define the IND-CCA security for a PKE Π as a
game between an adversary A and a challenger C. The challenger generates a key pair (pk, sk) for
Π and gives the public key pk to the adversary, and the secret key sk to a decryption oracle O. In
the first phase, A can query O with arbitrary ciphertexts c to obtain m = Π.D(sk, c). At the end of
the first phase, A selects two messages m0, m1 of equal length and gives them to C. Then, C chooses
a random bit b ← ${0, 1}, encrypts mb to the challenge ciphertext c∗, and sends c∗ to A. In the
second phase, A can query O again with ciphertexts c 6= c∗. At the end of the second phase, A
outputs a guess b′ to which message was encrypted to c∗. The adversary A wins the game if b = b′.

The advantage Adv of A in the IND-CCA game with regard to Π is defined as
AdvIND−CCA

A,Π (k) = 2 · Pr[b = b′] − 1, where k is the security parameter. We say that Π is
secure in the sense of IND-CCA if the function AdvIND−CCA

A,Π (k)(·) is negligible for any PPT
adversary A.

IND-CPA. In the indistinguishability under chosen-plaintext attack, the adversary is not
allowed any queries to the decryption oracle.

IND-CCA1. In the indistinguishability under non-adaptive chosen-ciphertext attack, the
adversary can query the decryption oracle on any ciphertexts in the first phase, that is,
before A sends the two messages to the challenger.

IND-CCA2. In the indistinguishability under adaptive chosen-ciphertext attack, the adver-
sary can additionally query the decryption oracle in the second phase after receiving the
challenge ciphertext c∗. The only constraint is thatA cannot send c∗ to the decryption oracle.

For more formal definitions and information on standard security notions, we refer to
the work of Bellare et al. [35] and Katz and Young [36]. Sometimes the IND-CCA notion is
seen as too strong, allowing the adversary decryption of all ciphertexts but the challenge.
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Therefore, relaxed variants of the CCA security exist, for example, replayable CCA (IND-
rCCA) [37], generalized CCA (IND-gCCA) [38], or detectable CCA (IND-dCCA) [19]. These
variants additionally reject ciphertexts in the second phase of the game that seem useful to
the adversary. Adaptations and proofs exist for some multiple encryption schemes under
the rCCA, gCCA, or dCCA security; see, for example, [15,22,39].

3.5. Indistinguishability Notions for Multiple Public-Key Encryption

We now extend the indistinguishability security for the multiple public-key encryption
setting. When defining the security of multiple encryption schemes, it is important to take
into account additional points. Most importantly, some of the used component encryption
schemes can become partially or completely broken, or the corresponding keys can be
exposed. Additionally, one must consider the flavor of different decryption oracles that
an adversary can query and what these oracles can detect and reject. There exist different
approaches for these considerations in the literature.

Harnik et al. [21] and Herzberg [15] model the breaking of schemes by defining the
term (k, n)-robust combiner, where n is the total number of used encryption schemes and
k is the number of secure schemes. They call a combiner robust if it uses k secure schemes
for a security specification s and the resulting combiner also fulfills s. Zhang et al. [22]
model the breaking of a scheme by using a designated key exposure oracle that can be
queried by the adversary, whereas Dodis and Katz [17] and Fujioka et al. [18] hand the
secret keys to the adversary in the setup phase of the indistinguishability games. In both
models, the number of queries or keys handed over is limited to n− k.

The number of different decryption oracles and their abilities are discussed by Dodis
and Katz [17]. They define three indistinguishability games for multiple encryption
schemes, a weak variant IND-wMCCA, a standard variant IND-MCCA, and a strong
variant IND-sMCCA, for parallel multiple encryption. Fujioka et al. [18] extend these no-
tions for sequential multiple encryption. These notions focus on the increasing abilities of
the attacker. Other literature mostly uses security notions similar to the IND-wMCCA defi-
nition, which is equivalent to IND-CCA for PKE. But sometimes the oracles reject additional
ciphertexts, like the rCCA extension of Zhang et al. [22]. A similar extension of rCCA is de-
fined by Herzberg [15], but without the rejection of component ciphertexts; see Section 4.1
for details. Herzberg himself notices the discrepancy between the different security notions
and different definitions of combiners, multiple encryption, and hybrid schemes. We note
that there is a research gap in the literature, in particular a unified definition or framework
for the security of multiple encryption, which is still an open question.

We now review the definition of the security notions from Dodis and Katz as well
as Fujioka et al. in a generalized way. Whenever possible, we map the security of other
schemes in this paper to these notions for consistency. If this is not possible, we make the
differences clear and refer the reader to the original definitions. The indistinguishability
games for multiple encryption proceed in the same way as the games for the PKE notions,
where the adversary A has access to one or multiple decryption oracles during the two
phases. A wins each game by correctly guessing the bit b that indicates which of the two
messages was encrypted by the challenger C.

IND-wMCPA. In the indistinguishability under weak multiple chosen-plaintext attack, the
adversary A is not allowed any queries to the decryption oracles.

IND-wMCCA1. In the indistinguishability under weak multiple non-adaptive chosen-
ciphertext attack, the adversary A can send queries to a decryption oracle O for a multiple
encryption ciphertext C in order to receive its decryption. A cannot see any partial or inter-
mediate decryption results. In the second phase, A is not given access to any decryption
oracles. This notion is equivalent to the IND-CCA1 notion for PKE.

IND-wMCCA2. In the indistinguishability under weak multiple adaptive chosen-ciphertext
attack, the adversary A can send queries to a decryption oracle O for a multiple encryption
ciphertext C. A then obtains the plaintext of C without seeing any partial or intermediate
decryption results. In the second phase, A can query O again, but is not allowed the
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sending of the challenge ciphertext C∗. This notion is equivalent to the IND-CCA2 notion
for PKE.

IND-MCCA. In the indistinguishability under (regular) multiple adaptive chosen-ciphertext
attack, the decryption oracle O behaves slightly differently. After sending the query cipher-
text C, A obtains the intermediate decryption values m1, . . . , mn back. What exactly these
values are depends on the individual multiple encryption scheme and is clarified in the
respective descriptions of the schemes. In the second phase, A can query the oracle O
again, but is not allowed the submission of the challenge ciphertext C∗.

IND-sMCCA. In the indistinguishability under strong multiple adaptive chosen-ciphertext
attack, A gains access to additional decryption oracles ODi. These oracles accept queries to
the decryption subroutines of the individual PKE components of the M-PKE scheme. This
way, A obtains even more information about parts of the ciphertext. However, the second
phase requires additional restrictions for the oracle queries. A can again query the oracles
in this phase. But now A is forbidden from submitting C∗ to the usual decryption oracle
O and submitting intermediate ciphertexts c∗i of C∗ to ODi. The exact meaning of what
intermediate ciphertexts are depends on the individual multiple encryption scheme.

Definition 4 (Security of M-PKE). We let I ∈ {wMCPA,wMCCA1, wMCCA2, MCCA, sMCCA}.
The advantage Adv of an attacker A in the IND-I game with regard to the M-PKE Πn is defined as
AdvIND−I
A,Πn = 2 · Pr[b = b′]− 1. We call a multiple public-key encryption (k, n)-secure in the sense of

IND-I if the following holds:

1. At least k of the n component ciphers of Πn are secure PKEs with regard to some security
notion.

2. The function AdvIND−I
A,Πn is negligible for any PPT adversary A.

4. Sequential Multiple Encryption

One of the two basic designs for multiple encryption is the sequential multiple encryption,
sometimes called the cascade cipher. A sequential multiple encryption is a chain of usually
different ciphers, where the plaintext is encrypted by the first component cipher. The
resulting ciphertext of each cipher is given as the input for the next one. The output of
the last cipher in the chain is the ciphertext of the combined scheme. The individual
encryption schemes of the sequential multiple encryption can be chosen independently;
the only limitation is that the range of an encryption component must be compatible with
the domain of the next component. The advantage of the sequential constructions is the
small ciphertext, that is, just the size of the last ciphertext in the encryption chain.

In the context of PKE, the natural sequential construction is studied by Herzberg [15],
who shows multiple positive and negative results for different security notions. The main
disadvantage of the natural sequential construction is that it is not IND-wMCCA secure.
Fujioka et al. [18] overcome this disadvantage by proposing a sequential construction that
uses hash functions in order to derive pseudo-random values from a ciphertext for the
next component cipher in the sequential construction. Their construction is IND-wMCCA
secure in the ROM. Zhang et al. [16] propose an IND-wMCCA secure sequential scheme
that encrypts random values and uses the resulting ciphertexts XORed with the plaintext.

In this section, we first present the construction of the natural sequential multiple
encryption, before showing the constructions of Fujioka et al. and Zhang et al.

4.1. Natural Sequential Multiple Encryption

The natural sequential multiple encryption uses only the individual encryption schemes
and no additional computations or cryptographic primitives. The ciphertext of the ith
component cipher is given as the input for the i + 1th component cipher. The input for the
first component is the plaintext m and the output of the last component is the ciphertext C.
The structure of the natural sequential combiner is depicted in Figure 1.
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Π1.Em c1 Π2.E . . . cn−1 Πn.E cn =: C

Figure 1. Scheme of the natural sequential multiple encryption procedure.

Definition 5 (Natural Sequential Multiple Encryption). Let Π1, . . . , Πn be n PKE schemes
with corresponding message spaces Mi and ciphertext spaces Ci. Let the range of Πi be in the
domain of Πi+1, i.e., Ci ⊆Mi+1. The natural sequential multiple encryption scheme defined
over the message space Mn = M1 and the ciphertext space Cn = Cn is given by a triple of
algorithms (Kn, En,Dn), where

• Kn, the key generation algorithm, is a probabilistic algorithm that takes the security parameters
(k1, . . . , kn) as the input. It invokes the key generation algorithm of each PKE component
in order to obtain n keypairs (pki, ski) ← Πi.K(1ki ). The output of Kn is (PK, SK) =
((pk1, . . . , pkn), (sk1, . . . , skn)).

• En, the encryption algorithm, is a probabilistic algorithm that takes as the input a multiple
encryption public key PK and a message m ∈ Mn and computes the ciphertext C ∈ Cn as
follows: Set c0 = m for i = 1 to n perform ci ← Πi.E(pki, ci−1). Output C = cn.

• Dn, the decryption algorithm, is a deterministic algorithm that takes as the input a multiple
encryption secret key SK and a ciphertext C and decrypts the message as follows. Set cn = C
and compute for i = n to 1 the individual decryption of ci−1 ← Πi.D(ski, ci). Return
m′ = c0.

The security of the natural sequential multiple encryption is studied in depth by
Herzberg [15]. Zhang et al. [16] also discuss different security notions of the natural
sequential combiner. The natural sequential multiple encryption is not (n− 1, n)-secure
in the sense of IND-wMCCA, even if all encryption components are IND-CCA secure.
Hence, a single exposed key is enough to break the IND-wMCCA security of the natural
sequential multiple encryption. We suppose the secret key of the last component Πn
becomes exposed; then, a re-encryption attack can be launched. In the first step, the last
ciphertext c∗n is decrypted with the exposed secret key to c∗n−1. In the second step, c∗n−1 is
then encrypted again, resulting in a different ciphertext c′n due to the probabilistic nature of
modern PKE schemes. A decryption oracle in the IND-wMCCA game does not notice the
difference between c∗n and c′n and returns the decryption of c′n, breaking the IND-wMCCA
security of the natural sequential multiple encryption. We note that all the natural construction
are vulnerable to re-encryption attacks. But the sequential multiple encryption achieves (1, n)
security for the IND-wMCCA1 notion, if at least one component remains IND-CCA1 secure.

For the non-standard security notions, sequential multiple encryption is IND-rCCA
secure [15]. In the case of IND-gCCA, the security depends on the definition of the notion
for multiple encryption. Zhang et al. [16] use a ciphertext relation function r(·, c∗) which
calls the corresponding relation functions ri for each component cipher. In this way, the
decryption oracle rejects the decryption of a ciphertext if only one intermediate ciphertext
relates to one intermediate ciphertext of the challenge ciphertext c∗. Herzberg [15], on
the other hand, uses an IND-gCCA security definition, whose ciphertext relation function
r(·, c∗) considers the sequential chain as a whole, similar to the IND-wMCCA security
notion. Thus, the relation function cannot detect intermediate relations of the ciphertexts.
The natural sequential multiple encryption is therefore IND-gCCA secure for the definition
in [16] and it is not IND-gCCA secure for the definition in [15].

4.2. Hashed Sequential Multiple Encryption

The hashed sequential multiple encryption of Fujioka et al. [18] increases the security of
the natural sequential multiple encryption by using hash functions between the encryption
steps. The hashed construction is very similar to the natural construction in Section 4.1
and mimics its simplicity. In order to prevent re-encryption attacks, it uses the hash values
of intermediate ciphertexts as random coins for the next encryption component. More
precisely, the i + 1th component cipher obtains the ith ciphertext ci as the input and the
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hash value of the ith ciphertext H(ci) as random coins. Only the random coins for the
first encryption component are chosen uniformly at random. This idea of de-randomizing
a probabilistic encryption is akin to the construction of Fujisaki and Okamoto [40] for
increasing the security of PKE schemes. The structure of the hashed sequential combiner is
depicted in Figure 2.

Π1.Em c1

r1

Π2.E . . . cn−1 Πn.E cn =: C

H2 Hn

Figure 2. Scheme of the hashed sequential multiple encryption procedure.

Definition 6 (Hashed Sequential Multiple Encryption). Let Π1, . . . , Πn be n PKE schemes
with corresponding message spaces Mi and ciphertext spaces Ci. Let the range of Πi be in the
domain of Πi+1, i.e., Ci ⊆Mi+1. Let H2, . . . , Hn be n− 1 hash functions, where Hi : {0, 1}∗ →
{0, 1}rleni(ki) and rleni(ki) is the required number of random coin tosses for Πi. The hashed
sequential multiple encryption scheme defined over the message spaceMn = M1 and the
ciphertext space Cn = Cn is given by a triple of algorithms (Kn, En,Dn), where

• Kn, the key generation algorithm, is a probabilistic algorithm that takes the security parameters
(k1, . . . , kn) as the input. It invokes the key generation algorithm of each PKE component
Πi in order to obtain n keypairs (pki, ski) ← Πi.K(1ki ). The output of Kn is (PK, SK) =
((pk1, . . . , pkn), (sk1, . . . , skn)).

• En, the encryption algorithm, is a probabilistic algorithm that takes as the input a multiple
encryption public key PK and a message m ∈ Mn and computes the ciphertext C ∈ Cn as
follows. Choose r1

$← {0, 1}rlen1(k1) and compute c1 ← Π1.E(pk1, m; r1). For i = 2 to n,
perform ci ← Πi.E(pki, ci−1; Hi(ci−1)). Output C = cn.

• Dn, the decryption algorithm, is a deterministic algorithm that takes as the input a multiple
encryption key pair (PK, SK) and a ciphertext C′ and decrypts the message as follows: Set
c′n = C′ and compute for i = n to 2 the individual decryption of c′i−1 ← Πi.D(ski, c′i). After
each decryption step, check if c′i = Πi.E(pki, c′i−1; Hi(c′i−1)) and return ⊥ if not. Finally,
decrypt the last ciphertext c′0 ← Π1.D(sk1, c′1) and return the message m′ = c′0.

The work of Fujioka et al. [18] contains multiple proofs for the hashed sequential
construction in the ROM. They extend the security notion from [16] to adapt it to the
stronger security notions from [17]. The hashed sequential multiple encryption is shown
to be (1, n)-IND-wMCCA secure constructed from n weaker IND-CPA secure encryption
components. If the underlying encryption components are IND-CCA secure, the hashed
sequential multiple encryption is even (1, n)-IND-sMCCA secure in the ROM. In this case,
the IND-sMCCA security can be reduced to the IND-CCA security of the one remaining
secure encryption component.

4.3. XOR Sequential Multiple Encryption

The XOR sequential multiple encryption of Zhang et al. [16] bases its encryption of the
plaintext on the XOR operation of random values and the intermediate ciphertexts. In
each step, a random value is encrypted with a component cipher. The hash of this random
value is XORed with the ciphertext from the previous step. At the end of each step, the
ciphertext consists of the ciphertext of the random value and the XOR value. Finally, the
output of the last step is the ciphertext of the XOR sequential multiple encryption. The
random coins for the PKE components are derived from the n random values and the
message in order to assure the knowledge about these values during decryption. This
measure prevents re-encryption attacks on this scheme. The decryption is then performed
with a re-encryption check after the decryption of the message and all the random values.
The structure of the XOR sequential multiple encryption is depicted in Figure 3.
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m = c0 c1,2 c1 c2,2 c2 . . . cn =: C

G1(r1)

r1

H1(h)

Π1.E c1,1

G2(r2)

r2

H2(h)

Π2.E c2,1

Figure 3. Scheme of the XOR sequential multiple encryption procedure, where h = m || r1 || . . . || rn

and the final ciphertext is C = cn.

Definition 7 (XOR Sequential Multiple Encryption). Let Π1, . . . , Πn be n PKE schemes with
corresponding message spacesMi and ciphertext spaces Ci. Let H1, . . . , Hn and G1, . . . , Gn be hash
functions, where Gi : {0, 1}∗ → {0, 1}|Gi−1| × Ci, Hi : {0, 1}∗ → {0, 1}rleni(ki), and rleni(ki) is
the required number of random coin tosses for Πi. The XOR sequential multiple encryption scheme
defined over the message spaceMn of arbitrary length and the ciphertext space Cn = {0, 1}|Gn |×Cn
is given by a triple of algorithms (Kn, En,Dn), where

• Kn, the key generation algorithm, is a probabilistic algorithm that takes the security parameters
(k1, . . . , kn) as the input. It invokes the key generation algorithm of each PKE component
Πi in order to obtain n keypairs (pki, ski) ← Πi.K(1ki ). The output of Kn is (PK, SK) =
((pk1, . . . , pkn), (sk1, . . . , skn)).

• En, the encryption algorithm, is a probabilistic algorithm that takes as the input a multiple
encryption public key PK and a message m ∈ Mn and computes the ciphertext C ∈ Cn as
follows: Choose random values ri

$← Mi, 1 ≤ i ≤ n and compute h = m || r1 || . . . || rn.
Set c0 = m. For i = 1 to n, perform ci,1 ← Πi.E(pki, ri; Hi(h)) and ci,2 ← ci−1 ⊕ Gi(ri).
Set ci = (ci,1, ci,2). Output C = cn.

• Dn, the decryption algorithm, is a deterministic algorithm that takes as the input a multiple
encryption key pair (PK, SK) and a ciphertext C′ = (c′n,1, c′n,2) and decrypts the message
as follows: Decrypt each intermediate ciphertext for i = n to 1 by computing first the
decryption of r′i ← Πi.D(ski, c′i,1) and second c′i−1 ← c′i,2 ⊕ Gi(r′i). Set m′ = c′0. For
the re-encryption check, concatenate h′ = m′ || r′1 || . . . || r′n. For i = 1 to n, check if
c′i = (Πi.E(pki, r′i ; Hi(h′)), c′i−1 ⊕ Gi(r′i)) and return ⊥ if not. If all checks pass, return the
message m′.

Initially, the idea of this scheme was only sketched by Zhang et al. in their conference
paper [22], where they presented a parallel multiple encryption scheme (see Section 5.2).
They expanded this idea in the extended version [16] of the conference paper, but the
description is incomplete. Fujioka et al. [18] present an updated sketch of the XOR sequen-
tial construction after correspondence with Zhang et al. Here, we presented the complete
formal description of the XOR sequential multiple encryption. The XOR sequential multiple
encryption has a major disadvantage regarding its ciphertext size. In each step, the overall
ciphertext size increases by the ciphertext size of the current component cipher. Therefore,
the resulting ciphertext is just as large as for a parallel multiple encryption.

Zhang et al. claim that their construction is (1, n)-IND-wMCCA secure. Unfortunately,
they prove the propositions only for their improved natural parallel construction; even the
extended paper does not include a proof for the XOR sequential multiple encryption. So
far, there are no published security proofs for the XOR sequential multiple encryption.

5. Parallel Multiple Encryption

The second basic design principle for multiple encryption schemes is the parallel
multiple encryption. Here, n PKE-schemes Πi are invoked in parallel to encrypt a plaintext in
a secure way. The plaintext m must be pre-processed and split into multiple shares mi,1≤i≤n,
such that all shares must be present in order to reconstruct the original plaintext. Without
the pre-processing, the benefit of the multiple encryption is already lost with one broken
scheme. After splitting m, each share mi is encrypted by a different encryption scheme. The
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ciphertext of a parallel multiple encryption usually consists of all the individual ciphertexts
Πi.E(mi), 1 ≤ i ≤ n. When decrypting a parallel multiple encryption ciphertext, the
receiver first decrypts the individual shares mi and then recovers the plaintext m.

This natural approach is formally described by Zhang et al. [22], where the splitting
is performed by an all-or-nothing tranform (AONT) [41,42]. “An AONT is an unkeyed,
invertible, randomized transformation, with the property that it is hard to invert unless all
of the output is known” [42], and fulfills the conditions for parallel multiple encryption
message splitting. Usually, an AONT is combined with an encryption scheme to hinder
brute-force key search attacks [41]. In this context, more efficient AONTs are developed,
for example, in [43,44]. Since the natural parallel multiple encryption is not IND-wMCCA
secure, Zhang et al. present an improved scheme that is IND-wMCCA secure in the
ROM. For this improved scheme, they use additional hash values to allow a re-encryption
check during decryption. It is also possible to replace the AONT transform with a secret
sharing scheme [45,46]. This is described by Dodis and Katz [17] as “folklore” parallel
multiple encryption. A generic construction that is IND-sMCCA secure in the standard
model is presented by Dodis and Katz [17], where the AONT is replaced by an (n− 1, n)
secret sharing scheme, and one-time signature schemes are used to bind the individual
ciphertexts together.

Besides the generic schemes with pre-processing, there is a group of parallel multiple
encryption schemes that use the XOR operation to mask or directly encrypt the message
without any prior splitting. In fact, the earliest published M-PKE scheme is the XOR-
combiner by Asmuth and Blakely [14], which directly XORs the plaintext with two random
values. Only these random values are individually encrypted by the scheme’s component
ciphers. This scheme is vulnerable to re-encryption attacks and is not IND-wMCCA secure.
A slightly different version of the XOR-combiner for two encryption components recorded
by Herzberg [15]. Here, the message is XORed with a random value and then encrypted by
the first component cipher. The second component cipher encrypts only the random value.
Herzberg proves that this construction is IND-wMCCA1 secure but not IND-wMCCA2 secure.

The parallel design is a space-time trade-off when compared to the sequential design,
where the size of the ciphertext is increased but the run time can be decreased drastically
by parallel execution of the PKE components. This section describes the parallel multiple
encryption schemes in the order listed above.

5.1. Natural Parallel Multiple Encryption

The natural parallel multiple encryption uses an AONT T to pre-process the message m
into n shares mi,1≤i≤n, such that all shares must be present to reconstruct m. If even one
share is missing, it is infeasible to find out any information about m. Each share mi is then
encrypted by a PKE scheme Πi in parallel. The ciphertext of this scheme consists of all
individual ciphertexts Πi.E(mi) concatenated together. For the decryption, the recepient
must first decrypt each share mi and then apply the inverse AONT T −1 to all shares to
obtain the message m. The structure of the natural parallel multiple encryption is shown in
Figure 4.
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Figure 4. Scheme of the natural parallel multiple encryption procedure.

Definition 8 (Natural Parallel Multiple Encryption). Let Π1, . . . , Πn be n public-key encryp-
tion schemes with corresponding message spacesMi and ciphertext spaces Ci. Let T : {0, 1}∗ →
M1 × . . .×Mn be an AONT. The natural parallel multiple encryption scheme defined over the
message spaceMn of arbitrary length and the ciphertext space Cn = C1 × . . .× Cn is given by a
triple of algorithms (Kn, En,Dn), where

• Kn, the key generation algorithm, is a probabilistic algorithm that takes the security parameters
(k1, . . . , kn) as the input. It invokes the key generation algorithm of each PKE component
Πi in order to obtain n keypairs (pki, ski) ← Πi.K(1ki ). The output of Kn is (PK, SK) =
((pk1, . . . , pkn), (sk1, . . . , skn)).

• En, the encryption algorithm, is a probabilistic algorithm that takes as the input a multiple
encryption public key PK and a message m ∈ Mn and computes the ciphertext C ∈ Cn

as follows: Compute the shares of the message as (m1, . . . , mn) ← T (m). For i = 1 to n,
perform ci ← Πi.E(pki, mi). Output C = (c1, . . . , cn).

• Dn, the decryption algorithm, is a deterministic algorithm that takes as the input a multiple
encryption key pair (PK, SK) and a ciphertext C′ = (c′1, . . . , c′n) and decrypts the message
as follows: Decrypt the individual shares by computing for i = 1 to n the decryption of
m′i ← Πi.D(ski, c′i). Recover the message by computing m′ ← T −1(m′1, . . . , m′n) and
return m′.

Zhang et al. [22] prove that the natural parallel multiple encryption is vulnerable to
re-encryption attacks and is therefore not (n− 1, n) IND-wMCCA secure. We note that
Zhang et al. use the term “IND-ME-wMCCA” to describe a different security notion than
IND-wMCCA. Their notion “IND-ME-wCCA” is a relaxed version of IND-wCCA, which
applies the IND-gCCA security notion to the multiple encryption setting. They show,
additionally, that the natural parallel multiple encryption is (1, n)-secure for the extended
IND-gCCA notion, where the decryption oracle has the additional ability to check for the
intermediate decrypted values of mi.

5.2. Improved Natural Parallel Multiple Encryption

The improved natural parallel multiple encryption follows the natural parallel construction
from the previous section, but it prevents the malleability of ciphertexts to increase the
security. This is due to the fact that the randomness is explicitly part of the encryption
process. Each message share mi is XORed with the hash of a random value ri, which itself
is encrypted with a PKE component. The randomness for the PKE components is derived
from the original message and the random values ri,1≤i≤n. During the decryption, it is
then possible to check for the consistency of the randomness and prevent re-encryption
attacks. The structure of the encryption process of the improved natural parallel multiple
encryption is illustrated in Figure 5.
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Figure 5. Scheme of the improved natural parallel multiple encryption procedure. The final ciphertext
is C = (c1, . . . , cn).

Definition 9 (Improved Natural Parallel Multiple Encryption). Let Π1, . . . , Πn be n public-
key encryption schemes with corresponding message spaces Mi and ciphertext spaces Ci. Let
T : {0, 1}∗ → Mn

AONT be an AONT, where the range MAONT can be chosen arbitrarily.
Let H1, . . . , Hn and G1, . . . , Gn be hash functions, where Gi : {0, 1}∗ → {0, 1}|MAONT |, Hi :
{0, 1}∗ → {0, 1}rleni(ki), and rleni(ki) is the required number of random coin tosses for Πi.
The improved natural parallel multiple encryption scheme defined over the message spaceMn of
arbitrary length and the ciphertext space Cn = ({0, 1}|MAONT |, C1)× . . .× ({0, 1}|MAONT |, Cn)
is given by a triple of algorithms (Kn, En,Dn), where

• Kn, the key generation algorithm, is a probabilistic algorithm that takes the security parameters
(k1, . . . , kn) as the input. It invokes the key generation algorithm of each PKE component
Πi in order to obtain n keypairs (pki, ski) ← Πi.K(1ki ). The output of Kn is (PK, SK) =
((pk1, . . . , pkn), (sk1, . . . , skn)).

• En, the encryption algorithm, is a probabilistic algorithm that takes as the input a multiple
encryption public key PK and a message m ∈ Mn and computes the ciphertext C ∈ Cn as
follows: Compute the shares of the message as (m1, . . . , mn)← T (m). Choose random values
ri

$← Mi, 1 ≤ i ≤ n and compute h = m || r1 || . . . || rn. For i = 1 to n, encrypt ri
as ci,1 ← Πi.E(pki, ri; Hi(h)) and XOR the message share mi to ci,2 ← mi ⊕ Gi(ri). Set
ci ← (ci,1, ci,2). Finally, output the ciphertext C = (c1, . . . , cn).

• Dn, the decryption algorithm, is a deterministic algorithm that takes as the input a multiple
encryption key pair (PK, SK) and a ciphertext C′ = (c′1, . . . , c′n) and decrypts the message as
follows: For i = 1 to n, perform the following steps: Parse c′i to (c′i,1, c′i,2) and decrypt the ran-
dom value r′i ← Πi.D(ski, c′i,1). Then, compute the message share m′i ← c′i,2 ⊕ Gi(r′i). After
the loop, recover the message by computing m′ ← T −1(m′1, . . . , m′n). Then, check the validity
of the ciphertext by first computing h′ = m′ || r′1 || . . . || r′n. If c′i,1 = Πi.E(pki, r′i ; Hi(h′))
and c′i,2 = m′i ⊕ Gi(r′i) for i = 1 to n, return the plaintext m′. Otherwise, return ⊥ as the
ciphertext is not valid.

Zhang et al. [22] show that their improved natural parallel multiple encryption is (1, n)-
secure for the IND-wMCCA notion in the ROM. Notably, they also prove that the improved
scheme can be constructed from weaker One-Way-CPA (OW-CPA) component ciphers.

5.3. Secret Sharing Signature Parallel Multiple Encryption

The secret sharing signature multiple encryption from Dodis and Katz [17] is an extension
of the natural parallel scheme that utilizes multiple additional cryptographic primitives
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to increase the security in the standard model. It uses a secret sharing scheme to split
the message and then uses a signature scheme to bind the individual ciphertexts together.
The ciphertext of the scheme consists of the component ciphertext, the signature of these
ciphertexts, and the corresponding verification key. In addition, the component ciphers
must be able to use labels during their operations. This binds the signature verification
key to the ciphertext. During decryption, the attached signature is verified to ensure the
validity of the ciphertext.

We shortly recall the functionality of secret sharing and signature schemes to the extent
necessary to understand this particular multiple encryption scheme. A secret sharing scheme
SS is given by a tuple of algorithms (S ,R). The probabilistic sharing algorithm S takes as
the input message m and splits it into n shares (m1, . . . , mn)← SS .S(m). The deterministic
recovery algorithm R takes as the input n shares m′1, . . . , m′n and outputs some message
m′ ← SS .R(m′1, . . . , m′n). The correctness property states that SS .R(SS .S(m)) = m, for
all m. A (t, n)-secure secret sharing scheme splits the message into n shares, where t is the
maximum number of shares that do not reveal any information about m. Secret sharing
schemes were introduced by Shamir [46] and Blakley [45]. More efficient secret sharing
schemes can be found, for example, in [47,48]. Ding et al. [49] presented a scheme that
reduces the decoding bandwidth and operates with smaller share sizes.

A signature scheme Σ consists of a triple of algorithms (K,S ,V). The probabilistic key
generation algorithm Σ.K takes as the input a security parameter 1k and outputs a related
pair (sk, vk), consisting of a signing-key sk and a verification-key vk. The probabilistic
signing algorithms Σ.S take as the input a signing-key sk and a message m and output a
signature σ. The deterministic verification algorithm Σ.V takes as the input a verification-
key vk, a message m, and a signature σ. It outputs 1 if and only if σ is a valid signature for
m. The signature scheme Σ must satisfy Σ.V(vk, m, Σ.S(sk, m)) = 1, for all m.

The structure of the encryption procedure is shown in Figure 6. The verification key of
the signature scheme is used as label during encryption. A label contains data that may
be implicit from the context, but should be bound to the ciphertext in a non-malleable
way [50].

m

SS .S

m1
. . . mi

. . . mn

Π1.Evk
pk1

Πi.Evk
pki

Πn.Evk
pkn

c1 ci cn

H(c1, . . . , cn)

Σ.S σsk C = (c1, . . . , cn, σ, vk)

Figure 6. Scheme of the secret sharing signature parallel multiple encryption procedure. It uses a
secret sharing scheme SS , a signature scheme Σ with corresponding verification-key vk, and a hash
function H, in addition to the usual component ciphers. The key vk is also used as a label during the
individual encryptions. The final ciphertext is C = (c1, . . . , cn, σ, vk).
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Definition 10 (Secret Sharing Signature Parallel Multiple Encryption). Let Π1, . . . , Πn be
n PKE schemes with corresponding message spaces Mi and ciphertext spaces Ci. Let SS be a
secret sharing function, Σ a one-time signature scheme, and H a hash function. The secret sharing
signature parallel multiple encryption scheme defined over the message spaceMn of arbitrary length
and the ciphertext space Cn is given by a triple of algorithms (Kn, En,Dn), where

• Kn, the key generation algorithm, is a probabilistic algorithm that takes the security parameters
(k1, . . . , kn) as the input. It invokes the key generation algorithm of each PKE component
Πi in order to obtain n keypairs (pki, ski) ← Πi.K(1ki ). The output of Kn is (PK, SK) =
((pk1, . . . , pkn), (sk1, . . . , skn)).

• En, the encryption algorithm, is a probabilistic algorithm that takes as the input a multiple en-
cryption public key PK and a message m ∈ Mn and computes the ciphertext C ∈ Cn as follows:
Compute the shares of the message as (m1, . . . , mn)← SS .S(m). Generate a signature-key
pair (sk, vk) ← Σ.K(1k1 , . . . , 1kn). For i = 1 to n, perform ci ← Πi.E vk(pki, mi). Then,
compute the hash of the individual ciphertexts h = H(c1, . . . , cn) and sign that value as
σ = Σ.S(sk, h). Output the ciphertext C = (c1, . . . , cn, σ, vk).

• Dn, the decryption algorithm, is a deterministic algorithm that takes as the input a multi-
ple encryption key pair (PK, SK) and a ciphertext C′ = (c′1, . . . , c′n, σ′, vk′) and decrypts
the message as follows: Compute h′ = H(c′1, . . . , c′n) and verify the attached signature
Σ.V(vk′, h′, σ′). If the signature is not valid, return ⊥. Otherwise, continue by decrypting the
individual shares m′i ← Πi.Dvk′(ski, c′i), for i = 1 to n. Recover the message by computing
m′ ← SS .R(m′1, . . . , m′n) and return m′.

Dodis and Katz [17] introduced multiple security notions for multiple encryption.
The strongest one is the IND-sMCCA security, where the adversary also has access to
the decryption values of the individual shares m′i. They proved that their secret sharing
signature multiple encryption is (n− t, n)-secure for the IND-sMCCA notion, if SS is a
(t, n)-secure secret sharing scheme, Σ is a secure one-time signature, and Πi is IND-CCA
secure, for i = 1, . . . , n. Notably, the secret sharing signature scheme is the only multiple
encryption scheme that is IND-sMCCA secure in the standard model.

5.4. Natural XOR Parallel Multiple Encryption

The earliest known combiner for public-key encryption is the natural XOR parallel
multiple encryption by Asmuth and Blakely [14], which uses only the component PKEs and
the XOR operation. In the original paper, the message m is XORed with two random values
r1, r2. The random values are then encrypted with the component ciphers and the XOR
value is transmitted directly to the receiver. We define a generalized version of the natural
XOR combiner for n component ciphers. The structure of the natural XOR parallel multiple
encryption is depicted in Figure 7.

m⊕ r1 ⊕ . . .⊕ rn r1 . . . rn

c0

Π1.E

c1

Πn.E

cn

Figure 7. Scheme of the natural XOR parallel multiple encryption procedure. The values r1, . . . , rn

are chosen at random and the final ciphertext is C = (c0, c1, . . . , cn).

Definition 11 (Natural XOR Parallel Multiple Encryption). Let Π1, . . . , Πn be n public-key
encryption schemes with corresponding message spacesMi and ciphertext spaces Ci. The natural XOR
parallel multiple encryption scheme defined over the message spaceMn ⊆ {0, 1}min{log2 |Mi|:1≤i≤n} and
the ciphertext space Cn =Mn×C1× . . .×Cn is given by a triple of algorithms (Kn,En,Dn), where
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• Kn, the key generation algorithm, is a probabilistic algorithm that takes the security parameters
(k1, . . . , kn) as the input. It invokes the key generation algorithm of each PKE component
Πi in order to obtain n keypairs (pki, ski) ← Πi.K(1ki ). The output of Kn is (PK, SK) =
((pk1, . . . , pkn), (sk1, . . . , skn)).

• En, the encryption algorithm, is a probabilistic algorithm that takes as the input a multiple
encryption public key PK and a message m ∈ Mn and computes the ciphertext C ∈ Cn as
follows: Choose n random values ri

$←Mi, 1 ≤ i ≤ n. Encrypt the XOR value of the message
m with all ri as c0 ← m⊕ r1 ⊕ . . .⊕ rn. For i = 1 to n, perform ci ← Πi.E(pki, ri). Output
C = (c0, c1, . . . , cn).

• Dn, the decryption algorithm, is a deterministic algorithm that takes as the input a multiple
encryption key pair (PK, SK) and a ciphertext C′ = (c′0, c′1, . . . , c′n) and decrypts the message
as follows: Decrypt the random values by computing for i = 1 to n the decryption of r′i ←
Πi.D(ski, c′i). Recover the message by computing m′ ← c′0 ⊕ r′1 ⊕ . . .⊕ r′n and return m′.

Since the natural XOR parallel multiple encryption is vulnerable to re-encryption
attacks if one secret key is leaked like the other natural constructions, it is not IND-wMCCA
secure. Other than that, there are no known security proofs for indistinguishability notions.

5.5. XOR-Input Parallel Multiple Encryption

The XOR-input parallel multiple encryption is a parallel multiple encryption that utilizes
the XOR operation to mask the plaintext before encryption. Its construction is similar to the
natural XOR parallel multiple encryption form Section 5.4. The difference is that the XORed
plaintext is not transmitted directly, but first encrypted using a component cipher. The
random values used to mask the plaintext are encrypted using the other n− 1 component
ciphers. The structure of the XOR-input parallel multiple encryption is depicted in Figure 8.
We note that the literature often treats the XOR-input parallel multiple encryption and the
XOR parallel multiple encryption as the same construction, even though this is not the case.

m⊕ r2 ⊕ . . .⊕ rn r2 . . . rn

Π1.E

c1

Π2.E

c2

Πn.E

cn

Figure 8. Scheme of the XOR-input parallel multiple encryption procedure. The values r2, . . . , rn are
chosen uniformly at random and the final ciphertext is C = (c1, . . . , cn).

Definition 12 (XOR-Input Parallel Multiple Encryption). Let Π1, . . . , Πn be n public-key
encryption schemes with corresponding message spacesMi and ciphertext spaces Ci. The XOR-
input parallel multiple encryption scheme defined over the message space Mn ⊆ M1 and the
ciphertext space Cn = C1 × . . .× Cn is given by a triple of algorithms (Kn, En,Dn), where

• Kn, the key generation algorithm, is a probabilistic algorithm that takes the security parameters
(k1, . . . , kn) as the input. It invokes the key generation algorithm of each PKE component
Πi in order to obtain n keypairs (pki, ski) ← Πi.K(1ki ). The output of Kn is (PK, SK) =
((pk1, . . . , pkn), (sk1, . . . , skn)).

• En, the encryption algorithm, is a probabilistic algorithm that takes as the input a multiple
encryption public key PK and a message m ∈ Mn and computes the ciphertext C ∈ Cn as
follows: Choose n − 1 random values ri

$← Mn, 2 ≤ i ≤ n. Encrypt the XOR value of
the message m with all ri as c1 ← Π1.E(pk1, m⊕ r2 ⊕ . . .⊕ rn). For i = 2 to n, perform
ci ← Πi.E(pki, ri). Output C = (c1, . . . , cn).

• Dn, the decryption algorithm, is a deterministic algorithm that takes as the input a mul-
tiple encryption key pair (PK, SK) and a ciphertext C′ = (c′1, . . . , c′n) and decrypts the
message as follows: Decrypt the random values by computing for i = 2 to n the decryption
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of r′i ← Πi.D(ski, c′i). Recover the message by computing h′ ← Π1.D(sk1, c′1) and return
m′ = h′ ⊕ r′2 ⊕ . . .⊕ r′n.

Herzberg [15] studied the security of the XOR-input combiner in depth. He showed
that the combiner is (1, 2)-IND-wMCPA and (1, 2)-IND-wCCA1 secure but not (n, n)-IND-
wMCCA2 secure. This is the case even if all of the component ciphers are IND-CCA secure
and there is no leakage of secret keys. Herzberg also provec that the XOR-input combiner
is not secure under his non-standard notions of IND-rCCA and IND-gCCA security in
the multiple encryption setting. In contrast, Zhang et al. [16] used a slightly different
definition for IND-gCCA, in which the decryption oracle was given the ability to also detect
intermediate malicious queries (see security discussion in Section 4.1). With this extended
oracle ability, the attacks of Herzberg cannot be applied to the IND-gCCA game of Zhang
et al. Hence, the proofs of Zhang et al. for the natural parallel construction with the AONT
can be used for the XOR-input combiner. Therefore, the XOR-combiner is secure under the
IND-gCCA notion of Zhang et al. and implicitly under a corresponding IND-rCCA notion.
Another non-standard security notion was proven by Zhang et al. [39]. They showed that
the XOR-combiner is also IND-dCCA secure, in which an additional detection function can
detect malicious queries to the oracle. The IND-dCCA secure scheme can then be used to
construct an IND-wMCCA secure scheme. However, this approach has the disadvantage
that additional PKEs with different security notions must be used and, additionally, all
components must remain secure.

6. Sequential–Parallel Multiple Encryption

Sequential–parallel multiple encryption combines the two basic design principles of
sequential (Section 4) and parallel (Section 5) multiple encryption into new combined
schemes. This allows for more flexibility when designing new multiple encryption schemes,
since one can balance between run time and ciphertext size. One can imagine the structure
of a sequential– scheme as a tree, where each node represents an encryption component.
A sequential part is added to the tree if a node has only one child. If a node has multiple
children, a parallel part is added.

In this section, we describe two sequential–parallel multiple encryption schemes. The
first one is by Hohenberger et al. [19], which is based on PKE components with different
security notions. The second one is by Goncalves and Mashatan [20], which is secure in the
QROM model and is based on different cryptographic primitives.

6.1. Detectable Sequential–Parallel Multiple Encryption

The detectable sequential–parallel multiple encryption of Hohenberger et al. [19] uses three
component ciphers with different security notions. The authors introduce a new security
notion of detectable CCA (IND-dCCA). In this relaxed version of IND-CCA, the decryption
oracle is able to detect “dangerous” queries and reject them. First, an IND-dCCA PKE is
used to encrypt the message m and two random values, which are used as random coins
for the subsequent encryptions. The resulting ciphertext is encrypted two times, once with
an 1-bounded-IND-CCA (1b-INC-CCA) secure scheme and once with an IND-CPA secure
scheme. During decryption, a re-encryption check is performed to assure the validity of
the ciphertext. The structure of the detectable sequential–parallel multiple encryption is
depicted in Figure 9.
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m||r2||r3

Π1.E

c1

Π2.E Π3.E

c2 c3

r2 r3

Figure 9. Scheme of the detectable sequential–parallel multiple encryption procedure. The final
ciphertext is C = (c2, c3).

Definition 13 (Detectable Sequential–Parallel Multiple Encryption). Let Π1 be an IND-
dCCA-secure PKE, Π2 an 1b-IND-CCA-secure PKE, and Π3 an IND-CPA-secure PKE with
corresponding message spacesMi and ciphertext spaces Ci, 1 ≤ i ≤ 3. The detectable sequential–
parallel multiple encryption scheme defined over the message spaceM3 =M1 and the ciphertext
space C3 = C2 × C3 is given by a triple of algorithms (K3, E3,D3), where

• K3, the key generation algorithm, is a probabilistic algorithm that takes the security parameters
(k1, k2, k3) as the input. It invokes the key generation algorithm of each PKE component Πi
in order to obtain three keypairs (pki, ski) ← Πi.K(1ki ). The output of K3 is (PK, SK) =
((pk1, pk2, pk3), (sk1, sk2, sk3)).

• E3, the encryption algorithm, is a probabilistic algorithm that takes as the input a multiple
encryption public key PK and a message m ∈ M3 and computes the ciphertext C ∈ C3 as
follows: Choose two random values ri ← {0, 1}rleni(ki) for i ∈ {2, 3}, where rleni(·) returns
the required number of random coin tosses for Πi. First, compute c1 ← Π1.E(pk1, m||r2||r3).
Then, for i ∈ {2, 3}, perform ci ← Πi.E(pki, c1; ri). Output C = (c2, c3).

• D3, the decryption algorithm, is a deterministic algorithm that takes as the input a multiple
encryption key pair (PK, SK) and a ciphertext C′ = (c′2, c′3) and decrypts the message as
follows: Decrypt the first ciphertext by computing the decryption of c′1 ← Π2.D(sk2, c′2).
Recover the message and the random coins by computing (m′, r′2, r′3)← Π1.D(sk1, c′1). Verify
the validity of the ciphertext by checking if c′i = Πi.E(pki, c′1; r′i) for i ∈ {2, 3}. If both checks
pass, return the message m′. Otherwise, return ⊥.

Hohenberger et al. proved that their construction is (3, 3)-IND-wMCCA secure in the
ROM, designed from weaker component ciphers. But for this to be the case, all component
ciphers must remain secure with respect to their required security notion.

6.2. Quantum Augmented KEM-DEM Multiple Encryption

The quantum augmented KEM-DEM multiple encryption from Goncalves and Mashatan [20]
is the first combiner whose security has been proven in the QROM. It expands the KEM-
DEM paradigm for constructing secure PKEs of Cramer and Shoup [51]. In this classical
KEM-DEM construction, the asymmetric key-pair of the KEM is used as the key-pair for
the resulting PKE. The KEM is used to derive a symmetric key for the DEM, which then
encrypts the message. The resulting ciphertext consists of the encapsulated KEM-key and
the DEM-ciphertext. This paradigm is extended in the quantum augmented KEM-DEM
by encrypting the DEM-ciphertext a second time with a PKE component. Similar to the
other M-PKE schemes, a random value is used as random coins for the KEM and the PKE.
This allows checking of the validity of the ciphertext during the decryption and prevents
re-encryption attacks.



Cryptography 2023, 7, 49 19 of 26

We shortly review the functionality of KEMs for completeness. A KEM κ is given
by a triple of algorithms (K, E ,D). The probabilistic key generation algorithm κ.K takes
as the input a security parameter 1k and outputs a decapsulation and an encapsulation
key (dk, ek) ← κ.K(1k). The probabilistic key encapsulation algorithm κ.E takes as the
input an encapsulation key ek and outputs a shared secret k and its encapsulation c. The
decapsulation algorithm κ.D takes as the input a decapsulation key dk and an encapsulated
key c and outputs the shared secret k. An IND-CCA secure KEM can be constructed from
weaker PKEs [52,53].

The encryption structure of the quantum augmented KEM-DEM multiple encryption
is depicted in Figure 10.

κ.E

cKEM
Πsym.E

cDEM

Πasym.E

cPKE

m||r r

H1

H2

k

Figure 10. Scheme of the quantum augmented KEM-DEM multiple encryption procedure. The final
ciphertext is C = (cKEM, cPKE).

Definition 14 (Quantum Augmented KEM-DEM Multiple Encryption). Let κ be a KEM,
Πasym a PKE, and Πsym a DEM, with corresponding message spacesMi and ciphertext spaces
Ci, i ∈ {KEM, asym, sym}. Let H1 : {0, 1}l → {0, 1}rlenKEM(kKEM) and H2 : {0, 1}l →
{0, 1}rlenasym(kasym) be two hash functions, where rlen(·) returns the required number of random coin
tosses for the KEM and PKE, respectively. The quantum augmented KEM-DEM multiple encryption
defined over the message spaceM2 =Msym and the ciphertext space C2 = CKEM ×Casym is given
by a triple of algorithms (K2, E2,D2), where

• K2, the key generation algorithm, is a probabilistic algorithm that takes the security parameters
(kKEM, kasym) as the input. It invokes the key generation algorithm of the KEM and the
PKE component in order to obtain two keypairs (pk, sk)← Πasym.K(1kasym) and (dk, ek)←
κ.K(1kKEM ). The output of K2 is (PK, SK) = ((pk, ek), (sk, dk)).

• E2, the encryption algorithm, is a probabilistic algorithm that takes as the input a multiple
encryption public key PK and a message m ∈ M2 and computes the ciphertext C ∈ C2 as
follows: Choose a random value r $← {0, 1}l and call the key encapsulation function to obtain
(k, cKEM)← κ.E(ek; H1(r)). Use the generated shared secret to encrypt the message m and r
with the DEM, cDEM ← Πsym(k, m||r). Then, encrypt the ciphertext from the DEM again
with the PKE, cPKE ← Πasym.E(pk, cDEM; H2(r). Output as ciphertext C = (cKEM, cPKE).

• D2, the decryption algorithm, is a deterministic algorithm that takes as the input a multiple
encryption key pair (PK, SK) and a ciphertext C′ = (c′KEM, c′PKE) and decrypts the message
as follows: Decrypt the asymmetric ciphertext and obtain c′DEM ← Πasym.D(sk, c′PKE).
Decapsulate the shared secret k′ ← κ.D(dk, c′KEM). Recover the message and the random
coins by computing (m′||r′) ← Πsym.D(k′, c′DEM). Verify the validity of the ciphertext by
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checking if c′KEM = κ.E(ek; H1(r′)) and c′PKE = Πasym.E(pk, c′DEM; H2(r′)). If both checks
pass, return the message m′. Otherwise, return ⊥.

The quantum augmented KEM-DEM multiple encryption is proven by Goncalves and
Mashatan [20] to be an M-PKE that is (1, 2)-secure for the IND-wMCCA notion in the ROM
and in the QROM. For this, the KEM or the PKE component must be IND-CCA secure in the
ROM or in the QROM, respectively. A drawback of this scheme is that it uses three different
cryptographic primitives (KEM, DEM, and PKE). We refer the reader to Bindel et al. [26]
for more information on the QROM and how adversaries and attacks are modeled therein.

7. Discussion and Recommendations

In this section, we provide an evaluation of the M-PKE schemes covered in this paper.
We focus on discussing the properties of security, efficiency, and complexity of the schemes.
We also provide recommendations for M-PKE schemes based on some common use cases.
A general overview of the M-PKE schemes discussed in this paper is provided in Table 1.

7.1. Security

Simply encrypting a message multiple times with different encryption algorithms
does not necessarily mean that the result is more secure. This “careless” combination can
even break a combined scheme altogether, if only one secret key is leaked or one algorithm
is broken. Therefore, it is important to analyze M-PKE schemes based on cryptographic
standards. The most secure notion in the context of multiple encryption is the (1, n)-IND-
sMCCA notion. Here, all but one of the encryption components are broken or the keys are
leaked, and the adversary additionally has access to intermediate decryption values from
the decryption oracle. Even in this “worst case”, the confidentiality of the plaintext must be
preserved. Two of the presented schemes, the hashed sequential M-PKE (Section 4.2) and
the secret sharing signature M-PKE (Section 5.3), achieve this highest security level.

Unfortunately, there are no strict established standards for M-PKE security notions
in the research community. It is therefore possible that other M-PKE schemes may also
achieve this level of security. The standard security level for PKE schemes is the IND-CCA2
security notion. In the M-PKE setting, this translates to the IND-wMCCA2 notion. There
are several schemes that achieve this level of security: the detectable M-PKE (Section 6.1),
which can be constructed from weaker components, but has the disadvantage that all
components must remain secure; the improved parallel M-PKE (Section 5.2), which can
even be constructed from much weaker components; and the quantum augmented M-PKE
(Section 6.2), which uses IND-CCA2 components.

Most of the ciphers are proven to be secure in the ROM, with the exception being the
secret sharing signature M-PKE (Section 5.3), which is proven to be secure in the standard
model. As is usually the case with schemes in the standard model, this combiner is more
complex than others and requires additional cryptographic primitives. As we move into
the quantum era and transition to post-quantum schemes, it is also important to study the
security of schemes in the QROM. Such schemes remain secure as long as the underlying
components remain secure against quantum algorithms. So far, the only M-PKE scheme that
is secure in the QROM is the quantum augmented M-PKE (Section 6.2). Which of the other
M-PKE schemes can be proven to remain secure in the QROM remains an open question.
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Table 1. Overview of the presented M-PKE schemes.

M-PKE Scheme Ref. Design Security Implication Proof Model Ciphertext Size Additional Primitives

Natural Sequential Herzberg [15] and
Zhang et al. [16] Sequential

IND-CCA1
⇒

(1, n)-IND-wMCCA1
Standard |c| -

Hashed Sequential Fujioka et al. [18] Sequential
IND-CCA2
⇒

(1, n)-IND-sMCCA
ROM |c| Hash functions

XOR Sequential Zhang et al. [16] Sequential
OW-CPA
⇒

(1, n)-IND-wMCCA2 *
ROM n · |c|+ |m| AONT and

hash functions

Natural Parallel Zhang et al. [22] Parallel
IND-CCA1
⇒

(1, n)-IND-wMCCA1 *
Standard n · |c| AONT

Improved Natural Parallel Zhang et al. [22] Parallel
OW-CPA
⇒

(1, n)-IND-wMCCA2
ROM n · (|c|+ |mi|) AONT and hash functions

Secret Sharing Signature Dodis and Katz [17] Parallel
IND-CCA2
⇒

(n− t, n)-IND-sMCCA

Standard n · |c|+ |σ|+ |k|
(t, n) secret sharing

scheme and signature
scheme

Natural XOR Asmuth and Blakely [14] Parallel - - n · |c|+ |m| -

XOR-Input Herzberg [15] Parallel
IND-CCA1
⇒

(n− 1, n)-IND-wMCCA1
Standard n · |c| -

Detectable Hohenberger et al. [19] Sequential–Parallel

IND-dCCA,
1b-IND-CCA,

IND-CPA
⇒

(3, 3)-IND-wMCCA2

ROM 2 · |c| PKEs with different
securities

Quantum Augmented
KEM-DEM

Goncalves and
Mashatan [20] Sequential–Parallel

IND-CCA2
⇒

(1, 2)-IND-wMCCA2
ROM and QROM 2 · |c| Hash functions, KEM

and DEM

* Without explicit proof.
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7.2. Efficiency and Complexity

When discussing efficiency of M-PKE schemes, the two most relevant properties are
the asymptotic run time and the size of the ciphertext. In general, the sequential schemes
have a longer run time, but allow for a short ciphertext, while the parallel schemes have a
shorter run time, but increase the size of the ciphertext. Other properties, such as actual
run time, the memory consumption, and the size of the implementation, depend on the
algorithms chosen, the implementation, and the underlying hardware. The asymptotic
run time of the sequential schemes is simply the sum of the individual run times of the
component ciphers, since each encryption step is completely dependent on the result of the
previous step and no parallelization is possible. The parallel schemes have the advantage
that they can be executed in parallel for the most part. Only some pre-computations, such as
choosing random values and splitting the message, cannot be parallelized. In addition, the
secret sharing signature scheme computes a signature of all the ciphertexts. Therefore, the
run time of the parallel schemes depends on the parallelization capabilities of the executing
hardware and on the slowest algorithm. The fastest parallel scheme would be the improved
natural parallel M-PKE (Section 5.2), while achieving IND-wMCCA2 security. The two
combined sequential–parallel schemes have different run times. While the detectable M-
PKE scheme can execute the second layer in parallel, the quantum augmented M-PKE
scheme must run all computations sequentially.

The ciphertext size of the M-PKE schemes is depended on the underlying designs of
the schemes (see Table 1). The sequential schemes have the advantage of their resulting
ciphertext being only the ciphertext of the last encryption step. Therefore, they offer the
smallest possible ciphertext of all M-PKE schemes. In contrast, the parallel schemes must
transmit all ciphertexts of the component ciphers to the receiver. In addition, the natural
XOR M-PKE (Section 5.4) transmits the XOR of the message, and the more secure schemes
require additional information. These can be encrypted random values, XOR values, or
signatures. An overview of the expected ciphertext size of the schemes is given in Table 1,
where |c| is the ciphertext size of a component cipher, |m| is the message size, and |mi|
is the size of a message share after pre-computation. The ciphertext of the secret sharing
signature scheme also transmits a signature (size |σ|) and a corresponding verification key
(size |k|).

The overall complexity of the schemes differs significantly. While the natural schemes
do not require additional functions, the more secure schemes use additional primitives,
such as AONT and signatures. This is important to keep in mind when choosing M-PKE
schemes, especially for computationally restricted devices.

7.3. Recommendations

When it comes to suitable M-PKE algorithms, considering the following properties or
use cases can guide the selection process. In general, we consider schemes with proven
(1, n)-IND-wMCCA security or above (IND-MCCA and IND-sMCCA) to be secure enough.
This corresponds to the standard IND-CCA security for PKE schemes. The following
recommendations refer to asymptotic behavior and do not consider specific PKE selections
and implementations.

• Ciphertext size. If the size of the ciphertext is relevant, we recommend using the
hashed sequential scheme (Section 4.2). It is secure in the sense of (1, n)-IND-sMCCA
from IND-CCA PKE components and only uses hash functions as an additional
cryptographic primitive.

• Run time. If the overall run time of the M-PKE scheme is important, we recommend
using the improved natural parallel scheme (Section 5.2). Note that this advantage is
lost if the PKE components cannot be parallelized, e.g., due to hardware limitations. If
it is not possible to parallelize the computation, the hashed sequential scheme can be
used. In this case, the hashed sequential scheme is just as fast as the improved natural
parallel scheme, but offers smaller ciphertexts.



Cryptography 2023, 7, 49 23 of 26

• Additional primitives. We recommend the hashed sequential scheme (Section 4.2) when
only a limited selection of cryptographic primitives is available. Especially lightweight
cryptographic libraries may lack the support of AONTs or secret sharing schemes.

• Quantum resistance. The only proven M-PKE scheme in the QROM is the quantum
augmented KEM-DEM scheme (Section 6.2). One should be careful when using this
scheme since there is a patent by the authors describing their scheme [54]. It is also
possible to use schemes that are proven to be secure in the standard model, when
they do not rely on cryptographic hash functions being a truly random function, like
the secret sharing signature scheme (Section 5.3). Unfortunately, this scheme uses
digital signatures to ensure the validity of the ciphertext. Therefore, (hybrid) quantum-
resistant digital signature schemes must be used to guarantee the quantum resistance,
which complicates the scheme and may affect the existing security proofs. Currently,
we cannot recommend any M-PKE schemes for quantum-safe use; this is still an open
research question (see Section 9).

8. Conclusions

Multiple encryption is an established method of increasing the security of encryption
schemes by using more than one scheme for the encryption process. This option becomes
more relevant for PKE schemes with the advent of quantum computers, which threaten
public-key cryptography in particular. In this way, novel post-quantum cryptography can
already be integrated into existing systems without compromising current security levels.

In this work, we studied the combination of multiple encryption schemes in the public
key setting. We first provided an overview of the security notions for M-PKE schemes and
covered the current state of M-PKE research for the sequential, parallel, and sequential–
parallel constructions. The schemes were discussed regarding their security, efficiency, and
complexity. In addition to the description and analysis, we identified the most relevant
research directions in order to apply M-PKE schemes to the quantum world.

9. Future Directions

While M-PKE schemes offer an appealing solution for the transition into a quantum-
resistant infrastructure, there are still ongoing challenges to make M-PKE suitable for the
quantum world. Comparing different multiple encryption schemes remains challenging
due to the fact that there are many different security notions for M-PKE. In this paper, we
compared and adapted the various security notions for the presented schemes. Neverthe-
less, several published schemes have not been studied by their authors regarding these
indistinguishability notions, and comparison remains difficult since non-standard PKE
security notions are used for the M-PKE proofs. We believe that a unified model for the
indistinguishability notions for multiple encryption would help comparing existing and
future schemes.

Going forward, the security of the hybrid schemes against quantum adversaries should
be studied in depth. This applies, first of all, to the schemes that are proven to be secure
in the ROM, whose security now must be proven in the QROM. But it can also affect
schemes in the standard model that use additional primitives that are affected by quantum
computers. This is an ongoing research to which all cryptographic primitives and protocols
must adapt.

Although the NIST has announced the first group of PQC winners, there are still
many viable PQC schemes to choose from, especially since the fourth round of the NIST
PQC Standardization Competition is still ongoing. It can also be expected that other stan-
dardization bodies will evaluate and standardize additional PQC schemes. This increases
the number of possible PQC schemes depending on use cases and security expectation.
Therefore, it will be necessary to evaluate real-world implementations and applications
of M-PKE schemes that use a variety of combinations of classical and PQC schemes. Of
consideration should be, among other things, the overall run times, ciphertext sizes, and
implementation sizes of the combined schemes based on different use cases.
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In order to speed up the runtimes of M-PKE schemes even further, the evaluation of
hardware implementations of M-PKE schemes will become increasingly important. To
the best of our knowledge, there has not yet been any significant research on specific
hardware implementations of M-PKE schemes. Nevertheless, hardware implementations
of classical asymmetric schemes (e.g., [55–58]) and asymmetric PQC encryption schemes
already exist (e.g., [59,60]). Combining and utilizing the efficiency and speedup of these
existing hardware implementations in future research will be useful to enhance M-PKE
schemes further, especially for computationally constrained devices.
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