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Abstract: This paper presents a new threshold signature scheme based on Damgaard’s work. The
proposed scheme allows for changing the message signature threshold, thereby improving the
flexibility of the original Damgaard scheme. This scheme can be applied as a user authentication
system using wearable devices. Based on the hardness of lattice problems, this scheme is resistant
to attacks on a quantum computer, which is an advantage over the currently used multi-factor
authentication schemes. The scheme’s security relies on the computational complexity of the Module-
LWE and Module-SIS problems, as well as the Shamir secret sharing scheme’s security.
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1. Introduction

Distributed systems are becoming very popular these days. To ensure the security of
such systems, threshold cryptographic schemes are used, for instance, threshold encryption
or threshold signature. A threshold signature (t, n) is a cryptographic digital signature
scheme in which any t or more of n possible participants can sign a message, but a smaller
number of participants are not capable of it. Each participant keeps a part of the private
signature key with which they partially sign the message.

Threshold schemes have found their application for multi-factor authentication using
wearable devices [1]. Nowadays, wearable devices have become very popular and are
used by hundreds of millions people daily. Therefore, it is essential to make these devices
secure. Since they have low memory, processing capabilities and power, it is feasible to use
lightweight cryptography to protect communications [2].

Lightweight cryptography is a subfield of cryptography where algorithms are de-
signed for resource-constrained devices. According to the NIST report [3], lightweight
cryptoprimitives include hash functions, block ciphers, stream ciphers, and message au-
thentication codes (MAC). However, this list cannot be considered exhaustive.

There are some works about cryptographic primitives for secure communication
between wearables. In [4], authors analyze the feasibility of using cryptographic primitives
for wearable devices such as bilinear pairings. The impact of using lightweight block and
stream cipher algorithms on power consumption is reviewed in [5]. Several papers are
devoted to the safety of wearable medical devices [6–8]. Most works use elliptic curves
cryptography (ECC) to ensure secure communication.

At the same time, it is reasonable to consider using other cryptoprimitives for wearable
devices to solve various tasks. For example, consider a multi-factor authentication system.
As illustrated in Figure 1, user authentication is performed through wearable devices, such
as a smartwatch or a smartphone. Here, there are n different wearable devices, such as
smart glasses or smartwatches. The main idea is to authenticate in the system using t
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different wearable devices which provide information from the sensors. The user decides
which device to use in for authentication. Threshold signature authentication is used to
enable user authentication in the absence of one of the devices and also will not allow an
attacker who has taken possession of one of the devices to authenticate.

Figure 1. Authentication based on partial signatures of wearable devices.

Due to the advent of quantum computers and the invention of the quantum Shor’s
algorithm [9], the development of new post-quantum cryptographic schemes that will
replace the existing ones has become an urgent task. Therefore, creating a post-quantum
analog for the threshold signature scheme is also necessary.

Nowadays, there are five main mathematical constructions on which modern post-
quantum cryptographic algorithms are based: error-correcting codes, isogenies, hash
functions, multivariate equations, and lattices.

Code-based cryptography dates back to 1978 when the American scientist Robert
McEliece presented a cryptosystem based on the syndrome decoding problem [10]. The first
attempts to build a digital signature on the error-correcting codes belong to Alabbadi [11]
and Wang [12]. However, it has been proven that such schemes are not secure [13]. The first
secure algorithm in this area was the Courtois–Finiasz–Sendrier algorithm, published in
2001 [14]. However, in this scheme, there is the possibility of not signing the message the
first time. Building a secure and efficient scheme based on error-correcting codes is still an
area for improvement due to the inability to balance the sizes of keys, signatures, and the
time spent on the signature.

Isogeny-based cryptography is a relatively new area—the first algorithm was pre-
sented in 2002 by Rostovtsev and Makhovenko [15]. Nowadays, there exist several signa-
ture algorithms, the main algorithms are CSI-FiSh [16] and SQISignHD [17]. Threshold
variants of CSI-FiSh signature [18,19] were also presented. The main disadvantage of such
algorithms is a long signature and key generation running time. However, the key sizes of
such algorithms are the smallest compared with other post-quantum classes.

Hash-based cryptography is a special class of post-quantum cryptography where
the construction of signature schemes on hash functions does not depend on complex
mathematical and algorithmic problems in algebra or number theory. In 1979, Leslie
Lamport published the concept of one-time signatures [20]. In the same year, Ralph Merkle
described the MSS [21], the security of which is based on the security of the hash function
used. Nowadays, the main algorithm is SPHINCS+ [22], although key sizes are very large.
It is possible to use hash functions in many different applications. However, creating a
threshold signature based on hash functions is impossible, and it requires an additional
mathematical problem.
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Multivariate cryptography dates back to 1988 when Matsumoto and Imai presented a
cryptosystem that could be practically implemented [23]. However, this scheme was broken
in 1995 by Patarin [24]. Nowadays, the most promising signature algorithm is Rainbow [25].
Several threshold signature schemes are based on multivariate equations [26,27]. The main
issue of these schemes is large key sizes.

Lattice theory is also one of the promising areas of post-quantum cryptography.
The first ideas were presented in 1997 by Ajtai, Dwork [28] and Goldreich, Goldwasser,
and Halevi [29]. Nowadays, the most promising lattice-based signature algorithms are
Falcon [30] and Crystals-Dilithium [31], which were presented in the NIST post-quantum
algorithms competition.

As the review above showed, building an efficient signature based on error-correcting
codes is hard. Signing on isogenies requires much time and may not apply to constrained
devices. Hash-based cryptography cannot be applied for threshold signatures itself and
requires additional use of a mathematical problem. Multivariate cryptography, compared
with lattices, has larger key sizes. In this paper, we propose using lattice-based cryptogra-
phy to build an effective threshold signature scheme.

Currently, several works are already offering lattice-based threshold signature schemes.
One of the first threshold signatures on lattices can be considered in [32]. The authors
present this work as an improvement of their previous threshold signature scheme based
on error-correcting codes. The security of the previous scheme was based on the syndorme
decoding problem, in the new work, the authors transformed the problem into an ISIS
(inhomogeneous short independent solution) problem on a lattice. The CLRS scheme,
conventionally named after its authors’ initials, is an interactive threshold signature scheme.
In this case, the signature creation algorithm is presented as an interactive proof protocol,
where the “Prover” is the signer. The main disadvantage of this scheme is the large size of
signatures. In [33], Bettaib and Sherk improve this algorithm by reducing the signature size.

The threshold signature scheme described in [34], called Feng’s scheme, had an
additional property, namely the ability to change the threshold required for signing a
message. This scheme is based on NTRUSign [35], and its main disadvantage is the
sequential signature of the message, which does not allow parallelizing the signing process.
In [36], the authors propose a centralized threshold signature scheme. In [37], a threshold
scheme is proposed, where the original message is divided into several blocks signed
randomly. One of the most recently developed lattice-based threshold signature schemes
presented in [38] deserves special attention. This scheme is based on the previously
proposed lattice-based secret sharing scheme described in [39] by the same group of
authors. The scheme’s security is based on the Micciancio and Peikert function presented
in [40], namely, on the SIS problem. The main drawbacks of this scheme are that the scheme
is centralized and the secret sharing scheme is not verifiable, which means that an attacker
can easily disrupt the process of signing a message by substituting the wrong part of
the secret.

In [41], an anonymous and verifiable threshold signature scheme is presented, in which
the private key is shared using a lattice-based threshold multi-stage secret sharing scheme.
In [42], a universal approach was presented for generating a threshold signature based
on the existing signature schemes using fully homomorphic encryption schemes, but this
scheme is quite labor-intensive. One of the well-known paradigms for constructing signa-
tures on lattices is the Fiat–Shamir with abortions paradigm, mentioned for the first time in
the work of Lyubashevsky [43,44]. This paradigm is based on Schnorr’s signature [45] and
is used in a standardized signature algorithm [31].

In 2022, Damgaard [46] published a new (n, n) threshold signature scheme. This
scheme is a two-round protocol based on the Fiat-Shamir with aborts paradigm. The pro-
tocol is a distributed version of the Dilithium-G signature scheme, used with the Baum
commitment scheme [47]. This commitment scheme is additively homomorphic and allows
for generating a commitment key with a trapdoor. Due to such properties of the commit-
ment scheme and its security and resistance to quantum attacks, this distributed scheme
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was built and proved to be secure. This scheme is based on the Module-LWE and Module-
SIS tasks, and its theoretical security of UF-CMA (unforgeability against chosen-message
attacks) is proven in the original work. The main disadvantage of the Damgaard scheme is
the inability to change the message signature threshold. That is, only all users of the system
can sign a message.

The scheme proposed in this paper extends the Damgaard scheme and adds a thresh-
old change property. To implement this property, the Shamir secret sharing scheme [48]
is used. However, it is also possible to use the secret sharing scheme on the Newton
polynomial [49].

The rest of this paper is organized as follows. Section 2 gives some definitions in
lattice theory. Section 3 shows the threshold signature scheme and the corresponding
commitment scheme algorithms. Section 4 provides the security analysis of the scheme.
Section 5 discusses the benefits and drawbacks of the proposed scheme. Section 6 concludes
the paper.

2. Preliminaries

Definition 1 (Lattice [50]). The set of all integer combinations of n linearly independent vectors
b1, . . . , bn ∈ Rm, where n ≤ m, is called a lattice. The vectors are called the basis of the lattice.
Formally, it can be written as follows:

L(b1, . . . , bn) = {
n

∑
i=1

bi · xi : xi ∈ Z}. (1)

The basis vectors can be represented as a matrix B = [b1, . . . , bn], where vectors are repre-
sented as vector-columns, and then the definition of the lattice looks like this:

L(B) = {B · x : x ∈ Zn}. (2)

One of the important lattice invariants is the minimum distance. The minimum
distance of a lattice L is the length of the shortest nonzero vector, denoted as λ1:

λ1 = min
v∈L\0

‖v‖. (3)

Cryptographic schemes do not use classical integer lattices but use either q-ary lattices
or special algebraic lattices.

Definition 2 (q-ary lattice [50]). Given a matrix A ∈ Zm×n
q , for the given numbers q, m, n, two

q-ary lattices can be defined:

Lq(A) = {y ∈ Zm : y = A · x, x ∈ Zn}, (4)

L⊥q (A) = {y ∈ Zm : AT · y ≡ 0 mod q}. (5)

The first lattice is given by a linear combination of the rows of the matrix A, and the
second lattice is orthogonal modulo q to it. However, in order for the q-ary lattice to cover
the entire Euclidean space, a special construction A [51] is used to construct the lattice.

Definition 3 (Construction A [51]). Given a matrix A ∈ Zm×n
q , for the given numbers q, m, n

we define a lattice Lq(A) = A ·Zn
q + q ·Zm. Alternatively, we can define it as

Lq(A) = {y ∈ Zm : y = [A|qIm] · x, x ∈ Zn+m}. (6)

Let R = Z[X]/(XN + 1) be a ring of polynomials modulo a polynomial of degree
N, where N is a power of two, then Rq = Zq[X]/(XN + 1) is a ring of polynomials with
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coefficients of {0, . . . , q− 1}. Module lattices are defined in a similar way as q-ary lattices.
We define the necessary sets of polynomials:

• A set of keys S with the parameter η, consisting of polynomials with small coefficients:
Sη = {x ∈ R : ‖x‖∞ ≤ η}, where ‖x‖∞ = max0≤i≤N−1 |xi|;

• A set C with parameter k consisting of binary and sparse polynomials: C = {c ∈ R2 :
‖c‖1 = k}, where ‖c‖1 = ∑0≤i≤N−1 |ci|.
There are classical computational problems in lattice theory. The main problems are

SVP (shortest vector problem) and CVP (closest vector problem). However, these problems
are hard in the worst case [52–54] and can not be used in cryptography. Therefore, average-
case hard problems were formulated, such as LWE (learning with errors) and SIS (short
integer solution). In [55], the reduction from the LWE problem to the Gap-SVP problem
was proved. The developed scheme is based on two average-case hard computational
problems, namely, module learning with errors (M-LWE) and module short integer solution
(M-SIS) [56–58].

These problems are based on special module lattices. A module is a special algebraic
structure constructed over a ring that generalizes rings and vector spaces, and a module
lattice, in turn, generalizes both arbitrary and ideal lattices (lattices constructed on the ideal
in the polynomial ring). Let the matrix B ∈ Rn×n

q of rank n be the basis of the module M,
then the module M over the ring Rq is given by the following formula [57]:

M = {B · x : x ∈ Rn
q}. (7)

In turn, modular lattices are defined as embeddings of the module vectors by coef-
ficients in the Zn·N , or canonical embeddings in Cn·N . The LWE problem for modules is
defined as follows.

Definition 4 (M-LWEn,m,q,n [57]). Given a matrix A ∈ Rm×n
q and a vector t ∈ Rm

q , it is required
to find a vector s ∈ Sn

η such that t = A · s + e, where the vector e is obtained from a discrete
Gaussian distribution Dm

s with mathematical expectation 0 and standard deviation s.

The discrete Gaussian distribution with mathematical expectation v ∈ Rm and with
standard deviation s is defined as follows:

Dm
v,s(z) =

ρv,s(z)
ρv,s(Rm)

, (8)

where ρv,s(z) = e(
−π‖x−v‖2

s2 ) is a Gaussian function and ρv,s(Rm) = ∑x∈Rm ρv,s(x). Let us
define Dm

s as a discrete Gaussian distribution with mathematical expectations equal to 0.
If the rank of the basis of the module is equal to 1, then such a basis sets an ideal over

the ring, and the M-LWE problem is now considered within the framework of ideal lattices;
in the literature, such a problem is called Ring-LWE [59]. Another problem built on integer
lattices, SIS, can also be defined on module lattices.

Definition 5 (M-SISn,m,q,B [57]). Let a random matrix A ∈ Rm×n
q be given, it is required to find a

nonzero vector z ∈ Rm
q such that ‖z‖ ≤ B and A · z ≡ 0 mod q, where ‖z‖ =

√
∑0≤i≤m−1 z2

i .

According to the M-SIS problem definition, for signature validity in the proposed
scheme, we define the upper bound B of ‖z‖, which is a signature vector. From [44] this
bound is defined for parameter γ > 1 as follows:

B = γσ
√

mN, (9)

where σ = s√
2π

is a standard deviation of Gaussian function. Parameter γ is chosen such

that the probability γmNemN(1−γ2)/2 is negligible.
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The (t, n) threshold scheme that we use in our scheme was proposed by Shamir in
1979 [48]. In his work, he gives it the following definition:

Definition 6 ((t, n) threshold scheme [48]). Let D be secret data, our goal is to divide D into n
pieces D1, . . . , Dn in such a way that:

1. Knowledge of any t or more Di pieces makes D easily computable;
2. Knowledge of any t− 1 or fewer Di pieces leaves D completely undetermined (in the sense

that all its possible values are equally likely).

Such a scheme is called the (t, n) threshold scheme.

Shamir’s work presents a mechanism for dividing a secret into n parts and assembling
it from t or more parts. The Lagrange interpolation formula is used for this. This scheme is
centralized; that is, the dealer who owns the secret divides it between the participants, who
are gathering together (or sending their parts to the dealer) to collect the secret. The scheme
consists of the following algorithms:

• Secret sharing.
Let p is a prime number such that p > D, the dealer builds a ring of polynomials Zp[x]
on it and generates a polynomial f (x) of degree t− 1 as follows:

f (x) = at−1xt−1 + at−2xt−2 + · · ·+ a1x + D, (10)

where ai ∈ Zp.
Let each user have their unique identifier uidi, such that there are no two uidi and
uidj such that uidi ≡ uidj mod p; the dealer sends each participant his share of the
secret as the value of the previously generated polynomial f (x) at the point of his uidi,
calculated as follows:

yi = f (uidi) mod p. (11)

Thus, each participant eventually gets a pair (uidi, yi), which is his part of the secret.
• Recovering a secret.

In order to recover the secret, a group of t participants gathers together and calculates
a polynomial using the Lagrange interpolation formula. Each user computes the
Lagrange coefficient, using uidi of each user, which is known by the following formula:

li = (−1)t−1 ∏
j 6=i,1≤j≤t

uidj

uidi − uidj
. (12)

Next, the polynomial f (x) is restored using the following formula:

f (x) = ∑
1≤i≤t

yi · li. (13)

The resulting polynomial f (x) as a free term will contain a secret value D, i.e., the
group of participants successfully obtains the secret data.

3. Threshold Lattice-Based Signature Scheme

As mentioned earlier, the proposed scheme is based on the work of Damgaard [46].
The paper also uses a lattice-based commitment scheme with a trapdoor, presented in [47].

Commitment schemes are used when there is a need to fix some values at the current
stage without disclosing them. The received commitment value is disclosed. When the
moment comes, and the values are revealed, anyone can ensure they are not being deceived,
and indeed the correct values have been used to create a commitment in the past.

In threshold signature, the commitment scheme is used for the scheme’s security.
After all, if users sent messages to each other without commitments, then an attacker
who compromised one of the users would be able to choose parameters based on the
received messages and send messages to other users in such a way that it is possible to
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find out the other users’ private keys or forge the signature. However, when using the
commitment scheme, users first send each other commitments and then the values that
they have calculated. In this case, the attacker cannot select such parameters that allow him
to break the system if the commitment scheme is secure and unbreakable. For this purpose,
this work also uses a lattice-based commitment scheme because breaking the commitment
scheme will completely violate the system’s security. However, this commitment scheme
can also generate a trapdoor corresponding to the commitment key, which allows one to
calculate the randomness of a commitment and the corresponding message. This property
of the commitment scheme will be used to prove the security of the signature scheme.

The trapdoor commitment scheme consists of the following algorithms:

1. Parameter setting. Receives the security parameter λ, which defines the security level
of the scheme, as input and returns the parameters (q, N, k, l, w, η) [47].

2. Key generation. Generates the commitment key ck, consisting of matrix Â ∈ R2×(l+2w)
q ,

which is defined as follows:

Â =

[
a11 a12 a13 . . . a1(l+2w)

0 1 a23 . . . a2(l+2w)

]
, (14)

where aij ∈ Rq and a11 is invertible in Rq.
3. Commitment generation. Receives a value x ∈ Rq as input, randomly calculates r ←

Dl+2w
s , where ‖r‖ ≤ B, and returns the commitment f ∈ R2

q:

f = Â · r +
[

0
x

]
. (15)

It is known from [47] that the commitment scheme has the binding property; that is, it
is hard for a published commitment f, obtained by the vector r and the value x, to find
the vector r′ and the value x′ for which f′ = f since it reduces to solving the Ring-SIS
problem, which is a hard problem. It is also proved in [47] that the commitment
scheme has the hiding property since the distribution Â · Dl+2w

s is close to uniform.
4. Commitment opening. Receives a commitment, a value x ∈ Rq , and a random vector r

as input and checks that ‖r‖ ≤ B and the Equation (15) is being fulfilled.
5. Key generation with a trapdoor. Generates the matrix Ā according to (14) and randomly

chooses a trapdoor, td, which is equal to a matrix R← Dl×2w
s . Then, the commitment

key tck is formed as follows tck = Â = [Ā|G− Ā|R], where G ∈ R2×2w is a gadget
matrix, which is defined as follows:

G =

[
1 2 . . . 2w−1 0 0 . . . 0
0 0 . . . 0 1 2 . . . 2w−1

]
. (16)

6. Commitment generation with a trapdoor. Randomly chooses a vector f ∈ R2
q and outputs

as a commitment.
7. Equivocation algorithm. Uses the trapdoor td and the Micciancio–Peikert algorithm [40] in

order to generate a vector r from a discrete Gaussian distribution on the coset of the
lattice Λ⊥u (Â), which is defined as follows:

Λ⊥u (Â) = {z ∈ Rl+2w : Â · z ≡ u mod q}, (17)

where u = f−
[

0
x

]
.

Next, we describe the threshold signature scheme itself. It includes the following algorithms:

1. Parameters setting. Having received the security parameter λ as input, the public
parameters of the system are generated, namely, the rings of polynomials, the public
matrix rank l and dimension k, the sets S and C, the parameters of distributions,
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the boundary B for the length of the signature vector, as well as random oracles
H0 : {0, 1}∗ → C, H1 : {0, 1}∗ → {0, 1}l1 , H2 : {0, 1}∗ → {0, 1}l2 and H3 : {0, 1}∗ →
Sck [46].

2. Key generation. After initializing public parameters, keys are generated, consisting
of two phases: matrix generation and key pair creation. All subsequent steps of the
algorithm are performed by each Pi user of the system, where i ∈ {1, . . . , n} and n is
the total number of users.

(a) Matrix generation

i. A random matrix Ai ← Rk×l
q is calculated and a commitment gi = H1(Ai, i)

is generated and sent to other users.
ii. After receiving all gj for each j 6= i, Ai matrix is sent out for each one.
iii. After obtaining all Aj matrices for each j 6= i, the equalities gj = H1(Aj, j)

are checked. If at least one equality is not met, then an ABORT is
sent, otherwise a public matrix Ā = [A|I] ∈ Rk×(k+l)

q is set, where
A = ∑

1≤j≤n
Aj.

(b) Generation of a key pair

i. A secret vector si ← Sl+k
η is randomly selected, and a part of the public

key is calculated: ti = Ā · si. A commitment g′i = H2(ti, i) is generated
and sent to other users.

ii. After receiving all gj for each j 6= i, the vector ti is sent to other users.
iii. After obtaining all vectors tj for each j 6= i, the equalities g′j = H2(tj, j)

are checked. If at least one equality is not met, then an ABORT is sent,
otherwise a public key t = ∑

1≤j≤n
tj is set.

If the protocol does not return ABORT, then each user, Pi, gets (ski, pk) =
(si, (A, t)).

3. Secret sharing. To separate the secret, the Shamir secret sharing scheme is used [48].
The Pi user has a unique own uidi and knows the uidj of other users. Then it performs
the following actions:

(a) Generates k + l polynomials f i
z (z ∈ {1, . . . , k + l}; i is an index of Pi) of degree

(t− 1), where free terms are specified as entries of secret vector si.
(b) For each user Pj, including himself, the user Pi generates a vector consisting of

polynomials generated in advance with uidj values substituted in them, which
is a vector fi

j = ( f i
1(uidj), f i

2(uidj), . . . , f i
k+l(uidj)), and sends this vector only

to user Pj.

(c) After receiving all the vectors fj
i for each j 6= i, user Pi calculates his secret key

share xi = ∑
1≤j≤n

fj
i , with which he will then carry out the signature procedure.

As it can be seen, users, in this case, perform distributed secret sharing; that is, they
get the share of a common secret without calculating the secret polynomial directly.
This approach differs from the classical one when the dealer forms a secret polynomial
and distributes shares of the secret to users.

4. Signature generation. For signing message µ t users are selected. Let the users {Pi, i ∈
{1, . . . , t}} be selected. Each Pi receives a unique session ID (sid) and a message µ
that needs to be signed. The user checks that the sid has not been used before and
calculates locally the key for the commitment scheme ck = H3(µ, pk). A new random
oracle function is also used for the signature procedure H4 : {0, 1} → {0, 1}l4 . Next,
the user performs the following actions.

(a) Randomly selects a vector yi ← Dl+k
s and calculates wi = Ā · yi .

(b) Calculates the commitment comi = Commitck(wi, ri), where ri ← D(Sη),
and sends it to all other users.
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(c) After receiving all comj calculates com = ∑
1≤j≤t

comj.

(d) Next, the user calculates the Lagrange coefficient

li = (−1)t−1 ∏
j 6=i,1≤j≤t

uidj(uidi − uidj)
−1

and the value ȳi = yil
−1
i by modulo q.

(e) Then receives the challenge c = H0(com, µ, pk) and calculates the partial signa-
ture zi = cxi + ȳi. For the next step user also computes vector z′i = csi + yi.

(f) For the received value z′, the user checks that ‖z′‖ < B; if the condition is not
met, then the user sends out RESTART. If the condition is met, then the user
with the probability

min (1, Dl+k
s (z′i)/(M · Dl+k

csi ,s(z
′
i)) (18)

generates g′′i = H4(zi, ri) and sends out it, or otherwise sends RESTART
and returns to step (a). This rejection sampling technique is used to counter
statistical attacks that can restore the secret csi vector by obtaining multiple zi.

(g) After obtaining all g′′j for each j 6= i, the partial signature (zi, ri) is sent to
other users.

(h) After receiving all the partial signatures (zj, rj), checks that g′′j = H4(zj, rj), and if
all conditions are met, calculates the values z = ∑

1≤j≤t
zj · lj and r = ∑

1≤j≤t
rj. Then,

calculates w = Āz− ct, checks that ‖z‖ ≤ t · B and Openck(com, r, w) = 1.
If errors occur, then send ABORT.

If the protocol is not interrupted, the signature σ = (com, z, r) will be received at the
end of the protocol.

5. Signature verification. Having received the message µ, signature σ and public key pk,
the commitment key is generated ck = H3(µ, pk), and the challenge is calculated
c = H0(com, µ, pk) and restored w = Āz− ct. The signature is accepted if ‖z‖ ≤ t · B,
and Openck(com, r, w) = 1.

Let us show the correctness of the scheme. Let ‖z‖ ≤ t · B, then

Ā · z = Ā · ∑
1≤j≤t

zj · lj = ∑
1≤j≤t

Ā · xj · c · lj +
Ā · yj · lj

lj
. (19)

According to the Shamir secret sharing scheme ∑1≤j≤t xj · lj = ∑1≤j≤n sj = s, thus,

∑
1≤j≤t

Ā · xj · c · lj +
Ā · yj · lj

lj
= Ā · s · c + ∑

1≤j≤t
wj = t · c + w. (20)

4. Security

To prove the security of the scheme, we introduce the concepts of the forking lemma
proposed in [60].

Lemma 1 (Forking lemma [60]). Let (G, S, V) be a digital signature algorithm with a security
parameter k. Let A be a probabilistic, polynomial–time Turing machine whose input data are public.
We will denote as Q the number of requests that A can send to a random oracle. Suppose that
during time T, machineA can generate a valid signature (m, σ1, h, σ2) with probability ε ≥ 7Q/2k.
Then there is another Turing machine that controls machine A, generating two valid signatures
(m, σ1, h, σ2) and (m, σ1, h′, σ′2) such that h 6= h′ , in time T′ ≤ 84480TQ/ε.

Now we formulate a theorem about the security of the system.
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Theorem 1. Let us assume that the trapdoor commitment scheme is secure, as well as additively
homomorphic. Then, if there is an algorithm A such that it can forge the signature of the system
with a non-negligible probability ε, then there is an algorithm B such that it can solve the M-SIS
problem with a non-negligible probability ε.

Proof. The proof is based on a random oracle model and uses definitions of some oracles
from Damgaard’s work [46]. Algorithm B simulates the work of an honest user of the
system, and algorithmA is a signature forgery algorithm and is an adversary, and it controls
t− 1 users of the system. AdversaryA can send to B requests for the use of random oracles
H0, H1, H2, H3, H4, as well as requests for the signature generation of the message.

First, we define the simulation of the random oracles H0, H1, H2, H3, H4. For each of
the oracle, we create tables HT0, HT1, HT2, HT3, HT4, in which values are stored as a key-
value pair, and for oracle H3, we also create a TDT table in which trapdoors for the created
commitment keys are stored. The tables are supplemented when referring to the oracles.
The simulation of the oracles H0, H1, H2 can be generally described as generating random
values for input data and setting them into the corresponding tables. The simulation of a
random oracle H3 consists in generating a commitment key, also with a certain probability
ω, and a trapdoor is generated for the obtained commitment key, which is placed in the
TDT table, and the commitment key is placed in the HT3 table. A more detailed description
of the simulation of random oracle algorithms is described in Damgaard’s work [46]. Here,
we detail the simulation of the random oracle H4.

H4(x):

1. Split the incoming value x into (z, r);
2. If HT4[z, r] = ⊥ then set HT4[z, r]← {0, 1}l4 ;
3. Return HT4[z, r].

Now let us describe the simulation of the algorithms for generating the key and signing
the message by B. Let the input of algorithm B be a matrix A′, for which it is required
to solve the M-SIS problem. For the key generation algorithm, B takes the matrix A′ and
presents it in the following form: A′ = [A|t|I], where A is used as the open matrix of the
whole system, and t is used as the public key of the system.

Since all requests to access a random oracle are displayed in the corresponding tables,
when generating a public matrix and a public key, algorithm B takes data from the tables
HTi and restores the values of partial public keys and matrices of each user and forms its
partial matrix and partial key according to the following formulas:

At = A−
n

∑
j=1,j 6=t

Aj, (21)

tt = t−
n

∑
j=1,j 6=t

tj, (22)

where At and tt are the matrix and the public key of B, respectively. Thereby, parameters
for which B wants to solve the M-SIS problem are set as general parameters of the system.
A more detailed description of these algorithms can be found in Damgaard’s work [46].

Now let us describe a signing simulation algorithm. Before B starts generating the
signature, B locally calculates the commitment key without using the trapdoor ck← Sck.
Next, B receives on input a unique session ID sid and a message µ, which has to be signed.
The user checks that the sid has not been used before and calculates locally the commitment
key tck ← H3(µ, pk). If TDT[µ, pk] = ⊥; that is, instead of generating a key with a
trapdoor, the previously generated key ck was obtained, then the signature generation
process ends with an error. Otherwise, it receives a trapdoor for the newly generated key
td← TDT[µ, pk]. Next, B performs the following actions.

1. The commitment comt ← TCommittck(td) is calculated and sent to other users.
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2. After receiving all comj for each j ∈ [t − 1], the message signature is calculated
as follows:

(a) com = ∑j∈[t] comj is set.
(b) Challenge c← H0(com, µ, pk) is calculated.
(c) g′′t ← {0, 1}l4 is generated randomly and sent to other users.
(d) After receiving all gj” for each j ∈ [t− 1], the following actions are performed:

i. The HT4 table is searched for values (z1, r1), (z2, r2), . . . , (zt−1, rt−1)
according to the obtained g′′j .

ii. Then vector z← Dl+k
s is generated and the Lagrange coefficients li are

calculated.
iii. The vector z′t = z− ∑t−1

j=1 zj · lj is calculated, and then the vector of

partial signature zt = z′t · l−1
t is obtained.

iv. Next, the vector w = Âz− ct is calculated and with the trapdoor td,
and the value of randomness r ← Eqvtck(td, com, w) is obtained.

v. The value of rt = r−∑t−1
j=1 rj is obtained, using the property of homo-

morphism by addition of the commitment function.
vi. If HT4[zt, rt] = ⊥, then signature generation fails, otherwise HT4[zt, rt] = g′′t

is set, and a partial signature (zt, rt) is sent with probability 1/M. Oth-
erwise, RESTART is sent, and the algorithm returns to step 1.

3. After receiving all partial signatures (zj, rj) for each j ∈ [t− 1], the final signature of
the message is formed:

(a) It is checked that g′′j = H4(zj, rj). If all the equalities are met, then the values
z = ∑j∈[t] zj · lj and r = ∑j∈[t] rj are calculated.

(b) Next, the value w = Âz− ct is calculated and it is checked that ‖z‖ ≤ tB and
Openck(comj, rj, w) = 1. If one of the checks fails, an ABORT is sent.

If the simulation algorithm is not interrupted, the output is the final signature (com, z, r).
Thus, the interface of interaction between the adversaryA and algorithm B was configured,
resulting in a valid signature for the message.

Suppose now adversary A has made a certain number of signature and hash requests
to B and issued a signature forgery (com∗, z∗, r∗) for the message µ∗; then, algorithm B
performs the following steps:

1. If µ∗ ∈ Mset, where Mset is the set of messages for which the adversary A requested
a signature from B, then the algorithm B returns ⊥.

2. Next, B calculates ck∗ ← H3(µ
∗, pk) and c∗ ← H0(com∗, µ∗, pk).

3. If Openck(com∗, r∗, Âz− ct) 6= 1 or ‖z∗‖ > t · B, then B returns ⊥.
4. If TDT[µ∗, pk] 6= ⊥, that is, there was a request to generate a commitment key and a

trapdoor for the message µ∗, then B also returns ⊥.
5. If the signature successfully passes checks 1-4, then algorithm B returns

(com∗, z∗, r∗, µ∗, ck∗).

By the forking lemma, let B return two signature forgeries for the message µ∗, namely
(com∗, z∗, r∗, µ∗, ck∗) and (com′, z′, r′, µ∗, ck′). It can be immediately noted that ck∗ = ck′ ,
since the other commitment keys are discarded by algorithm B. The values of com∗ and
com′ are also equal, but the values of the challenges c∗ and c′ are not equal. Since the
signatures are valid, we obtain

Openck(com∗, r∗, Âz∗ − c∗t) = Openck(com∗, r′, Âz′ − c′t) = 1. (23)
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If Âz∗ − c∗t 6= Âz′ − c′t, then the binding property of the commitment scheme on the
key ck is violated, which cannot be from the problem condition (since the commitment
scheme is safe). Therefore, Âz∗ − c∗t = Âz′ − c′t. Rewriting this equation, we obtain

[A|I|t]
[

z∗ − z′

c∗ − c′

]
= 0. (24)

Since the matrix [A|t|I] was submitted to the input of algorithm B, and the vec-

tor
[

z∗ − z′

c∗ − c′

]
is small, we found a solution to the M-SIS problem. Thus, the theorem

is proved.

Based on the proof of this theorem, we can say that the developed threshold scheme is
UF-CMA secure. In addition, it is necessary to consider the classical vectors of attacks on
lattice-based signature schemes, for example, an attack on a lattice using basis reductions.
To counteract these attacks, it is required to select parameters for the system for which
resistance to such attacks has been proven, that is, for example, for which the BKZ algorithm
for a polynomial approximating factor works in exponential time. It is recommended to
take the NIST parameters proposed for the CRYSTALS-Dilithium scheme [31], since the
scheme proposed in this paper is based on this signature scheme.

5. Discussion

In this section, the effectiveness of the developed scheme is analyzed, and its quan-
titative indicators are evaluated. The signature generation and verification consist of
multiplying and adding by modulo q and multiplying polynomials in a polynomial ring.
These operations are not expensive, and with the fast Fourier transform, they are calculated
quickly enough. Therefore this scheme can be used for devices with a limitation on the
processor clock frequency. For example, the Dilithium signature [61], built on the same
paradigm as the presented scheme, uses 508K and 175K CPU cycles, respectively, for the
signature generation and verification processes.

The proposed scheme was implemented using Python with Sagemath to demonstrate
the efficiency and high operational speed of calculations. Algorithms of key generation,
secret sharing, signature generation, and verification were tested on the same device for
different security levels, defined by NIST [31]. Table 1 shows the execution time of each
stage of the scheme for different security levels.

Table 1. Experimental data on the running time of key generation, secret sharing, signature generation,
and verification for different security levels.

Security Level Algorithm Execution Time, ms

2

Key generation 22.1
Secret sharing 1.1

Signature generation 20.4
Signature verification 2.7

3

Key generation 27.8
Secret sharing 1.5

Signature generation 26.5
Signature verification 2.8

5

Key generation 37.9
Secret sharing 1.8

Signature generation 37.8
Signature verification 4.0

As seen from Table 1, the time spent on key generation, secret sharing, signature
generation, and signature verification operations does not exceed 40 ms for the latest
security level, and the time spent on signature verification and secret sharing is less than
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5 ms. The results obtained during the experiments confirm the high speed of algorithm
operations in lattice theory, which positively distinguishes this area from other areas of
post-quantum cryptography. In addition, it should be said that the speed of calculations
is important in distributed systems, since such systems should process a large amount of
information quickly.

However, the scheme has several shortcomings that must be eliminated in future
research. First, it requires intensive communication between users, which can negatively
affect network congestion. Second, like other lattice-based schemes, the signature size
is significant, requiring additional storage and transmission resources. The stored and
transmitted data sizes were calculated for the recommended parameters from [31,47] and
are presented in Table 2. As can be seen from Table 2, the data sizes are really large in
comparison with the classical threshold elliptic curve digital signature algorithm (ECDSA)
scheme [62]. For example, the amount of data transferred for one user is about 15 kilobytes,
although the scheme on ECDSA requires about 3 kilobytes per user [62]. This is a conse-
quence of using recommended parameters that provide a 128-bit security level. This is
a disadvantage of the system itself, as well as of lattice-based post-quantum schemes in
general. Therefore, reducing the size of keys is an urgent task for all lattice-based systems.

Table 2. Stored and transmitted data sizes.

Parameter Actual Size of Proposed
Scheme, Bytes

Actual Size of tECDSA
Scheme, Bytes

Partial signature size 7360 64

Signature size 11,775 64

Secret data size 13,247 32

Size of transmitted data by
signature generation 15, 700 · t 3300 · t

It is worth noting that the scheme proposed in this paper is more efficient regarding
data sizes than other threshold lattice-based signature schemes. In Table 3, the sizes of
partial and full signatures, secret data, as well as transmitted data for various studied
schemes are shown, and estimates for the developed scheme are also given. The sizes of
stored and transmitted data for each of the schemes were calculated taking into account
the NIST’s recommended parameters.

Table 3. Stored and transmitted data sizes for the observed schemes and comparison with the
proposed scheme.

Parameter CLRS Scheme [32] Feng’s Scheme [34] Choi Scheme [37] PET Scheme [38] Proposed Scheme

Partial signature
size, kB 451 1.8 0.8 · N 40.5 7.2

Signature size, kB 451 · t 1.8 0.8 · N · t 60.4 11.5
Secret data size, kB 128 3.5 1,081,600 275,808 12.9
Size of transmitted
data by signature

generation, kB
451 · t 1.8 · t 0.8 · N · t 40.5 · t 15.3 · t

As seen from Table 3, the developed scheme has one of the best indicators among the
schemes considered. The CLRS scheme and the PET scheme exceed the proposed scheme
in terms of data sizes in all indicators by several times. The Choi scheme greatly exceeds
the size of the secret data, and despite the initially small size of the signature, it increases
rapidly with an increasing number of users in the system and the size of the threshold t.
Therefore, starting with certain parameters, this scheme will greatly lose to the proposed
scheme. However, Feng’s scheme surpasses all schemes in quantitative parameters. Due to
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the centralization of Feng’s scheme and the fact that the original secret is restored during
the signature generation process, this scheme cannot be used in distributed systems from a
security point of view. Thus, the developed scheme is the best of the presented schemes
regarding quantitative indicators.

It is worth noting that since Shamir’s secret sharing scheme is not a verified secret
sharing scheme, an attacker can seize control of one of the nodes and send incorrect
messages to other users, which makes it impossible to form a common signature. Therefore,
to eliminate the third drawback, a special system is required to verify the correctness of
partial signatures and block unwanted participants.

6. Conclusions

The threshold signature scheme developed in this paper is an improvement over the
Damgaard scheme [46]. However, as with other post-quantum threshold schemes, this
scheme has certain drawbacks, such as the large size of the signature and transmitted
data. Despite these disadvantages, the scheme provides significant advantages, including
scalability and resistance to attacks on quantum computers. This makes it a valuable
tool for protecting users’ private keys in distributed systems and providing multi-factor
authentication for wearable devices.

It is worth noting that data compactness is a crucial factor in distributed systems. As a
result, the large size of signatures generated using this scheme can significantly reduce the
efficiency of such systems. Therefore, it is important to continue exploring ways to improve
the effectiveness of the proposed scheme to solve this problem. Future research should
focus on developing methods to reduce the size of signatures while maintaining the same
level of security and resistance to attacks on quantum computers.
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