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Abstract: Cryptographic designs are vulnerable to side-channel analysis attacks. Evaluating their
security during design stages is of crucial importance. The latter is achieved by very expensive
(slow) analog transient-noise simulations over advanced fabrication process technologies. The main
challenge of such rigorous security-evaluation analysis lies in the fact that technologies are becoming
more and more complex and the physical properties of manufactured devices vary significantly
due to process variations. In turn, a detailed security evaluation process imposes exponential
time complexity with the circuit-size, the number of physical implementation corners (statistical
variations) and the accuracy of the circuit-simulator. Given these circumstances, what is the cost of
not exhausting the entire implementation space? In terms of simulation-time complexity, the benefits
would clearly be significant; however, we are interested in evaluating the security implications.
This question can be formulated for many other interesting side-channel contexts such as for example,
how would an attack-outcome vary when the adversary is building a leakage template over one
device, i.e., one physical corner, and it performs an evaluation (attack) phase of a device drawn
from a different statistical corner? Alternatively, is it safe to assume that a typical (average) corner
would represent the worst case in terms of security evaluation or would it be advisable to perform a
security evaluation over another specific view? Finally, how would the outcome vary concretely?
We ran in-depth experiments to answer these questions in the hope of finding a nice tradeoff between
simulation efforts and expertise, and security-evaluation degradation. We evaluate the results
utilizing methodologies such as template-attacks with a clear distinction between profiling and
attack-phase statistical views. This exemplary view of what an adversary might capture in these
scenarios is followed by a more complete statistical evaluation analysis utilizing tools such as the
Kullback–Leibler (KL) divergence and the Jensen-Shannon (JS) divergence to draw conclusions.

Keywords: corners; device mismatch; worst case security evaluation; side-channel analysis; template
attacks; simulation; statistical distance

1. Introduction

Security evaluation methodologies for cryptographic devices have evolved rapidly to face the
rapid rise in side-channel attacks (SCAs). In many organizations they have become mainstream,
even in non security-oriented design houses. Specifically, methodologies based on advanced attacks
and statistical worst-case evaluation metrics are co-progressing at-speed with countermeasures and
the related expertise is expanding in both academia and in industry. However, security evaluation
standards have not followed suit, and attacks based on physical information (leakage) are constantly
improving through the use of sophisticated attack vectors. The nature of the leakage depends
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on the device type but also on the countermeasures embedded within it. Although side-channel
attack countermeasures and attacks have attracted considerable attention, a point which is rarely
considered in literature is SCA-security implications related to the statistical nature of the manufactured
devices. This manuscript aims to take a step forward in understanding the security degradation of
such statistical behavior, and provide a better understanding of how to approach design-stage security
evaluation and its expected time costs.

In the semiconductor industry, companies utilize traditional corner-based signoff methodologies,
e.g., by evaluating more standard design metrics such as propagation delay and energy consumption
in several distinct manufacturing statistical-corners. Initially, in old manufacturing processes there
were only 2 corners, the worst and the best case. As process nodes move to lower geometries,
the number of corners has grown exponentially (e.g., consider Figure 1b). Nowadays, for advanced
technologies, both analog and digital circuit verification is done by multi-mode/multi-corner (MMMC)
analysis, where mode typically implies sets of possible voltages and temperatures and the different
corners reflect physical transistors and routing statistical geometry changes. In turn, for advanced
system-on-a-chips (SoCs), the verification time increases exponentially while evaluating these sets of
conventional design metrics [1].

(a) (b)
Figure 1. Security evaluation time costs: (a) Digital, Analog and transient noise Simulation Time vs.
circuit size and (b) exponential increase in # of physical corners versus process technology.

The main difference between a security evaluation and a standard very large scale integration
(VLSI) digital circuit evaluation, is that in the former case design-abstraction is robust and effective.
Figure 1a shows the simulation time versus the circuit size verifying a complex design through digital
timing/energy checks has a rather low computational (time) cost and this verification is sufficient for
traditional electronic designs. However, for security evaluation analysis in the context of SCA attacks,
even much slower analog transient simulations are not sufficient to capture the statistical nature of
the leakages, the noise level etc. These characteristics play a significant role in security evaluation
methodologies and must be accurately evaluated by advanced transient-noise simulations. The gray
curve in Figure 1a clearly shows that the cost of this analysis is exponential with the circuit size (x-axis).
Here the x-axis is in units of the number of cryptographic 4-bit Sboxes evaluated in this example,
i.e., 8 reflects 32 bits of a symmetric-encryption state variable processed by eight 4-bit Sboxes.

Taking both factors into account, i.e., the exponential number of corners (routing corners and
devices/transistors corners) and the time complexity of transient noise simulations, it is clear that
a detailed analysis would be out-of-reach or too expensive for many companies and organizations,
especially during design stages and given the limited time-to-market constraints.

The specific objective of this manuscript is to initiate a debate relating to the following issues:

I1 What would the hardware-security over/under estimation be in cases of local/global corners?
I2 How bad would a bad template be? That is, if a template was built on one physical realization

(corner) and it is being used to attack a device from a different corner, what would the result be?
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For a security evaluation would the overly pessimistic approach of using a “perfect” template
induce very small security margins which are not statistically meaningful? If the converse is the
case it would have unpleasant implications.

I3 During design stages (or pre-fabrication SoC design evaluation), what is the best way to approach
a genuine security guarantee? i.e., would a cornered adversary be more/less efficient? which corner
would typically be more sensitive and would security evaluation results change significantly?

I4 What are the consequences when facing a standard adversary with low means and computational
abilities as compared to when the adversary is considered strong and resourceful?

Our experimental results, which can only be simulated, are aimed at providing initial answers to
this set of questions. Throughout this manuscript we present the variability effects in the context of
SCA gradually, by using more standard template attacks and log-likelihood distinguishers (Although
the maximum likelihood distinguisher is not perfect when the noise is not Gaussian), and while doing
so we evaluate more statistically informative and visual tools to demonstrate and illustrate different
features related to the full distribution of the side channel leakage.

Paper organization. We start with a short presentation of security implications of being
non-exhaustive in simulations for security evaluation. The delicate balance between simulation-effort
and reliable security evaluation is emphasized (Section 2). In Section 2.2 the tools we use for security
analysis are described concisely providing the rationale in context of this research. This section also
describes the evaluation setup of our simulation environment. Section 3 discusses results relating
to the variability caused by the different corners for a leaking device and their effect in a Maximum
Likelihood attack scenario. In Section 4 we explore the differences between the leakage distribution
of different corners quantitatively in terms of their differences and qualitatively in terms of the
magnitude of the effect. This is done by evaluating statistical distance as a metric and in an attack
scenario. Finally Section 5 discusses the possible consequences arising from previous sections. Section 6
provides conclusions and discusses future work.

2. Motivation: The Cost of Being Lazy or Non-Exhaustive

This motivational section is aimed at discussing the security implications (and cost) of being
non-exhaustive in simulations for security evaluation.

Data growth, the increases incommunication traffic and computational requirements are pushing
digital devices to scale-down and increase parallelism to make gains in data-bandwidth.These rapid
changes have led to challenges relating to the underlying physical layers of silicon devices. To cope
with the variability of devices geometry and interconnects (routing) in advanced nodes, a single design
is represented with many so-called physical views, where each is characterized in a different process
corner corresponding to a different type of physical fabrication mismatch than the gold standard
design (pre-fabrication). Several characteristics such as max-current, delay and power-dissipation are
abstracted and are represented with fewer details and accuracy for each corner view, so they can be
integrated within digital design-flows and thus contribute to a much faster design cycle. Similarly,
software design tools also need to support the growth of such views to reliably capture the statistical
distribution of the design characteristics after fabrication (e.g., Cadence’s Multi-Mode-Multi-Corner
simulations and testing environment, used for both analog and digital representations [2]).

In essence, most companies use such corners views to verify designs in a fully-digital abstraction,
rapidly and accurately [3]. Statistical assurance is guaranteed and provided by such views (libraries).
Replicating these abstracted flows for SCA security verification is strongly discouraged, though very
attractive. Physical design characteristics such as the ones that need to be evaluated for hardware
security are not fully covered by digital views to date [4]. Even if some parameters are characterized,
e.g., standard cells current models, they are not specifically tailored to reflect security-related
sensitivities nor are provided with the required resolution. For example, consider Side-Channel
adversarial threats measuring the device’s current/voltage under external parameters variations and
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process internal variations; these need to be carefully specified and not only statistically bounded,
worst-case estimated, etc.

In addition to accuracy and the increased number of corners, cost- and time-related factors are
also crucial; attempting to analog-simulate a large post-layout design is the bottleneck for analog
verification. However, analog layout-based circuit simulations are the most accurate and reliable
choice to validate security features. To date, Analog Spice/FastSPICE-like platforms [5–8], deliver very
accurate results, are very comprehensive and suitable for the high-performance verification required
for SCA evaluation. They are foundry-certified, accurate and are constantly put to the test for the most
advanced chips and technologies. However, the analog verification-time bottleneck is impossible to
meet for most companies and designs as technology progresses and design-size increases. Moreover,
considering SCA’s characteristics, where the effect of physical noise is crucial [9,10], noise-simulations
are required. These are far more time and computationally costly.

Thus analog noise simulations are crucial for security evaluations but are very costly. Another
challenge is related to the IP; there are concrete scenarios where it is impossible for a company to
perform a full analog evaluation of a design. For example if an IP is embedded into its chip, it forces
them to perform some digital verification which fail to capture side-channel characteristics. The last
aspect to consider is that physical security evaluation criteria, metrics and tools are constantly evolving
(e.g., [11–14], for just a few) and it is almost impossible to specify which criteria are robust for all
designs, and are comprehensive and exhaustive enough to evaluate hardware security levels for
differently protected and unprotected designs. Therefore, the ability to evaluate designs through
analog transient-noise simulations in-house is still a must.

Figure 2 illustrates the type of security-assurance possible in terms of the practical constraints
which impede a detailed, exhaustive and rigorous simulation campaign. A non-exhaustive view of the
simulation-space can be attributed to: (a) economical reasons such as the time-to-market requirements
of the devices, the cost of a large number of licences for simulation tools and computational or data
limitations for small start-ups, (b) digital/analog-IP issues restricting the abstraction of simulations,
which is more apparent in software startups, medium size companies and integration-houses and (c)
the required expertise which might not exist in all organizations, e.g., analog simulation/designer or
hardware security evaluation abilities or knowledge.

Figure 2. Illustration of the SCA security assurance level versus cost and expertise for several ‘abstract’
example organizations.

We assess the impact of being lazy or non exhaustive in that sense.
On the one hand large firms may enjoy exhaustive analysis of analog noise simulations across

corners using vast resources, knowledge and expertise which yield a high security assurance level.
However, most mid-echelon hardware/software companies and start-ups are not able to invest these
resources. This in turn can culminate in bad/dangerous security-assurance level, as illustrated in
Figure 2.
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From a Security Perspective:
In sum, by nature, evaluating SCA security requires accurate analog information which can

only be obtained by exhaustive statistical simulations (during the design stages). On a positive note,
VLSI simulators are ultra-accurate. Theoretically, there is no viable reason why we should not use
such accurate analog tools for security analyses. However, as always, cost and resources are limited,
it would be preferable to use abstract models for security to reduce these limitations but to date such
“hardware-security”-abstraction remain out of reach.

Below we examine whether it is enough to evaluate security but not over the entire
statistical-fabrication space. Specifically, (1) how do the security-evaluation results distribute across
this space, (2) how would utilizing one device to build a template and attack another device vary
statistically, (3) which corners and scenarios would be preferable for security-evaluation with smaller
security margins and better assurance; and can we recommend general guidelines for designers.

2.1. Security Analysis Tools We Use and Why

In this subsection we briefly list the main tools we use in this manuscript, as we move from an
attack based approach (which is the one most commonly performed in industry) to a statistical analysis
view with the aim of visualizing the statistical characteristics of leakages in different corners, etc.

Let Y be an n-bit sensitive variable manipulated by a cryptographic algorithm (and let y be its
realization). During device operation it leaks information which is associated with data manipulation
and physical and/or environmental parameters throughout side-channels. For simplicity we focus
on the power-supply current leakage. The security-level of a device corresponds to the abilities of
the adversary; thus, as is traditionally done, we assume that the adversary exploits a divide and
conquer approach over a sub set of the secret variable of s bits (s ≤ n). We denote a leakage trace
by a set of measurements at T time points, ti, i ∈ {1...T}. The leakage trace is associated with some
internal variable manipulated within the hardware, here the manipulation of y: L = {Lt1, Lt2, ..., LtT}.
For simplicity, in what follows we focus on a univariate analysis of the leakage distribution, although,
theoretically there are scenarios which strictly require multivariate analysis, e.g., when shuffling [10]
or Masking [15,16] countermeasures are embedded. In our simulation environment we incorporate
no such countermeasures, thus making a univariate analysis natural to respond to the goal of first
answering more inherent questions and leaving room for further investigation.

Signal to Noise Ratio, SNR:

The SNR in the side-channel sense, which was first proposed by Mangard [17] and utilized
in numerous works, indicates the univariate informativeness of a leakage time sample. To do so,
signal and noise components are estimated. The Signal (i.e., the nominator) is estimated by first
averaging out the noise per secret variable state (y), and then computing the variance over y. The Noise
(i.e., the denominator) first captures the level of noise (variance) for each y state, and averages over
the states. Formally, the SNR is defined as:

SN̂R(t) =
vâry(Êi(L

i,t
y ))

Êy(vâri(L
i,t
y ))
·

Note that because the univariate SNR and DPA attacks utilize some simplifying statistical
assumptions regarding the leakage distribution, it still serves as a viable tool to identify
points-of-interest (POI) in time when the manipulation of a secret variable takes place. In turn,
it constitutes a tool for valuable speedup in security evaluations.

2.1.1. Template Attacks

Template attacks [18] are performed in two subsequent (or interleaved) phases of profiling and
attack. It is assumed that the adversary got hold of one device for which it can program (or control) the



Cryptography 2020, 4, 36 6 of 17

secret key and therefore profile the leakages and another target device from which it tries to extract
information on the underlying key. Note that an attack procedure can be done simultaneously with
measurements (on-line).

Let l | yi (or lxi ,k for e.g., an Sbox output, yi) be a leakage trace measured while the value of
yi is processed within the device. To perform a template attack, one chooses a target intermediate
variable to template the probability density function (PDF), f(xi, k), associated with a known/chosen
plaintext chunk xi and secret key subset k. A set of Lp profiling traces of size Np is first used in
order to estimate the leakage distribution parameters for each intermediate value of y, denoted as
M̂y. For the attack phase, a fresh set of new traces from a different device Latt of size Natt are used.
In most cases in the literature (and in practice) the PDF is assumed to follow a Gaussian distribution,
f (l | y) = N

(
µ̂l|y, σ̂l|y

)
. In practice, distributions from ASICs are not normal and do not follow

nice leakage functions (e.g., Hamming-weight HW); we illustrate such cases in Section 3. However,
the simplicity of such a model, low computational effort and speed makes it a very popular de- f acto
tool. Finally, the secret key (byte/chunk) k∗ which maximizes the univariate Maximum Likelihood
(denoted by LH) is chosen:

k∗ = argmax
k

LH(k) = argmax
k

Natt

∏
j=1

(f (li | yi)) . (1)

For practical computational reasons and numerical errors, the log-likelihood (LLH) is used [19]
k∗ = argmax

k
LLH(k) = argmax

k
∑Natt

j=1 log (f (li | yi)).

Note that any other {Distinguisher, Model}-pair can be used instead of the ML distinguisher and
the a-priori Gaussian modeled probabilities, e.g., a correlation distinguisher with a Hamming-Distance
distinguisher or a Moments-Correlating Profiled DPA (MCP-DPA) which are very useful when masked
implementations are considered with leakages stemming from higher statistical moments [20].

As done commonly, in this manuscript we build templates for manipulation of y; however,
group leakage measurements which correspond to the y value, e.g., the Hamming-Weight W(y),
instead of y (identity) can considerably reduce time, memory and complexity of the analysis.

2.1.2. Mutual Information

The Mutual-Information (MI) metric [21,22] is traditionally used to quantify the amount of
information an adversary can capture from a leakage trace. It can be used to approximate the attack
success rate (SR) with multiple measurements.

MI(Y; LY) = H(Y)− ∑
yi∈Y

Pr(yi) · ∑
l∈LY

f̃dua(l|yi) · log2(fpro f (yi|l)). (2)

where H(Y) is the entropy of the sensitive variable Y. The conditional probability, Pr(yi|l), can be
computed by Bayes’ theorem as done in [21,23]. The subscripts prof and dua are used to distinguish
the profiled setting in which the leakage distribution is characterized over one device, to obtain a
profiled model, prof ; however, the attack phase (secret extraction), is done over the other device
under evaluation, dua. Because leakage distributions are continuous (can never be exhausted),
there are model-estimation errors (e.g., histograms and kernels) the theoretical MI can never compute
(only estimated), so that the perceived information is what we typically compute [14].

However, even-though this an analysis is the most “theoretically” sound approach, information
theoretic based metrics are computationally hard to evaluate. Therefore the main tool we use in
this work is a measure of the statistical-distance which is highly associated with the MI but easier
to compute and provides a more visually easy interpretation. We admit that for an actual rigorous
analysis information theoretic metrics can be evaluated. However, we stress that according to our
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examination here, this should only be done for specific scenarios and corners so as to reduce the
computational effort associated with it.

2.1.3. Probability Distance Measures

The main questions we tackle relate to the differences between leakage distributions of the
profiling versus attack trace-sets and the different process-corners of the device in each of them.
Therefore, the most natural tool to use for evaluation is a probability-distance measure. The relative
entropy or the Kullback–Leibler (KL) divergence [24] is one measure of the probability distance
between two distributions, though it is not a metric and is not symmetric:

D(X‖Y) = ∑
z

Pr(X = z) log2

(
Pr(X = z)
Pr(Y = z)

)
where X and Y represent two PDFs over the shared support (z ∈ Z).

The Jensen–Shannon divergence (JSD) is a smoothed and symmetric transform of the KL
divergence: DJS(X‖Y) = D(X‖M) + D(Y‖M), where M is the arithmetic mean of X and
Y, M = 0.5 (X + Y). As the measure is weighted with probabilities, it is better suited here than distance
measures such as the norm-1 distance (or total variation distance) (Note that other metrics exist for the
Statistical-Distance (SD) (e.g., see the discussion in [25,26] and in the side-channel context in [12]).).
Note that the probability distance and more generally, the Statistical Distance (SD) are actually tightly
related to the MI, MI(Y; L) = D(Pr(y, l)‖Pr(y)Pr(l)).

In this manuscript we use the divergence and the visual representations of the PDFs at a
time point-of-interest (POI) to inspect, justify and exemplify the challenges of using one simulated
scenario for generating profiles (e.g., a corner), versus possibly a different one inflicted upon an
adversary/evaluator while conducting an evaluation or executing an attack campaign.

These measures are very efficient to compute and fast for design-stage evaluation
(i.e., to understand which corner we need to focus on). They also provide intuitive and visual insights
for designers.

2.2. Evaluation Setup

In order to extract the experimental dataset a simple simulation environment is required to target
a circuit that is as small as possible; as discussed above, transient noise simulations over a very large
number of statistical corners and experimental tests take quite long time for high accuracy. The chosen
synthesized design embeds a simple 4 bit Sbox of the present cipher [27] along with peripheral and
control circuitry. The chosen 65 nm technology is highly mature and commonly used. Standard-cells
from a library characterized for supply voltage of 1.2 V were chosen. The design was imported to
an analog simulation environment and the current consumption of the main supply was measured
for each simulation. In each simulation a key-addition followed by the Sbox was presented with
different pairs of keys and plain texts. For the analysis presented in this paper we ran the simulation
with 5 representative corners, each with a different process corner ∈ {TT, FF, FS, SF, SS} due to
deviations in the semiconductor fabrication process. Here, {T,S,F} stands for the typical, slow and fast
statistical corners of devices, respectively. The first element represents n-MOS devices and the second
p-MOS devices.

For template creation and the dua attack campaigns discussed in this manuscript we collected
3000 traces in each run, and 50 multiple runs (repetitions) with transient-noise simulations with very
high accuracy and low tolerances. This yielded a total of 150,000 traces (per corner). Each trace of
900 time samples incorporated the serial processing of different {xi, k} pairs. Each of the pairs was
processed within a pipeline of 3 clock cycles where the Sbox output is computed in one stage of the
pipe. The clock frequency was set to 1Ghz and the sampling frequency was set to 100 GHz, yielded 100
samples per cycle. Of the 9 cycles in a trace, 7 contained computations of the Sbox (after pipeline-fill).
Note that with 65 nm and a relatively small 4-bit Sbox design 1GHz represents a not-too-tight timing,
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and that very large timing slacks were present to enable correct functionality even in the worst possible
corner. Overall, our data set had 1.05 × 106 traces per corner, and 5.2 × 106 traces in total. Note that
producing such a high-accuracy data-set from simulations is quite a different task than doing so from
actual measurements, since the latter can be done in a day/s whereas the former can easily take months
even for such small circuitry (depending on the resources: #simulator licences and servers strength).

The profiling phase involved classification according to multiple grouping functions; namely,
the Hamming-Weight, HW, Hamming Distance, HD, and their multiplication, HW·HD of the
Sbox’s output for each of the intermediate variables in each trace. The leakages were categorized
by these classes as traditionally done and the templates were evaluated per category. Note that
we only illustrate results from the HW·HD classification which was the most informative for the
process-technology discussed.

3. Variability of Template Attacks

After post-processing the leakage traces from the simulation, the POI of each corner could be
extracted by using the SNR. When looking at a trace with HW·HD = 1 (l|HW · HD = 1) Figure 3a,
as expected, it is clear that the leakage was significantly different for each corner, there are corners for
which the leakage was greater than others owing to the different physical realization of the devices
in each. In Figure 3b a leakage traces of HW·HD = 14 (l|HW · HD = 14) is shown for the different
corners; it is apparent that there are much greater differences between the corners’ traces due to
the greater logical activity which sums to greater differences between corners. That is, there were
3 signals changing from 0 to 1, and each drew a current affected by more process mismatched elements,
whereas in the previous case only 1 signal changes from 0 to 1.

(a) (b)
Figure 3. Leakage for different y values for each corner, with marked POI values: (a) leakage trace for
HW·HD = 1, (b) leakage trace for HW·HD = 14.

The SNR shown in Figure 4a illustrates the peak at the SNR, which was used as our POI;
these values are also presented in Figure 3. It is clear in Figure 4b, with a zoomed-in view of the SNR
peak, that the POI of the corner {FF} appears in earlier time samples compared to the other corners,
and that the POI of {SS} corner is naturally the last (the slowest devices), and that the other corners’
POI locations only vary slightly. The results are exactly as anticipated since in the {FF} (resp. {SS})
corner we expected to capture faster (resp. slower) responses of the circuits to input changes. Note as
well that the highest SNR value is different for each corner, and that for corners {SS} and {FS} the
SNR(POI) provides a higher value as compared to the other corners. This implies that these corners
leaks more information (if the noise is actually normally distributed) in these specific points.
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(a) (b)
Figure 4. SNR for each corner with marked POI: (a) zoom out, (b) zoom in.

To identify the variability between the different corners let us examine the leakage distribution
graph. Clearly, this is a more informative representation as it captures the full distribution (Pr(l|HW ·
HD)) and not only anticipates informativeness from simplified metrics like the SNR (which only makes
sense when the noise is Gaussian). We can see that for HW·HD = 1, when taking the distribution for
each corner in the corner’s POI Figure 5a, the leakage values and distributions are very different from
each other. Furthermore, when looking at the leakage distribution for the same value of HW·HD = 1,
but now using only one corner’s POI (in this example the {TT} corner), the distribution map varies
significantly. That is, Figure 5b shows that the distributions are completely different now. This view
represents a case where an adversary utilizes the POI from one device, used for a template, in an attack
campaign against another device from a different corner. Clearly, it faces a much tougher scenario.
Relatively speaking, the POIs vary considerably as well as the leakage “model”.

This phenomenon can be explained by the SNR depicted in Figure 4b, in which the POI of each
corner is marked. It is clear that for {FS, SF, TT} corners, the POIs approximately appear in the same
time sample, so for those corners we expect to get similar results following an attack. For example
for the {SS} corner, the POI appears later on the graph, but it still correspond to the {FS, SF, TT}
peaks. This in turn implies that when using the template of the {SS} for those corners, we still expect
to achieve a decent outcome in the attack results. The converse is not identical since the POIs of these
corners does not match the peak of the {SS} corner’s SNR which implies that we will fail or obtain
poor results in an attack campaign of a {SS} device with a template of a {FS, SF} or {TT} device.
In terms of the {FF} corner, the POI appears earlier in the SNR graph, and is not correlated with the
peaks of the other corners, so when using a {FF} device template to attack a device of any other corner
we expect to obtain poor results, etc.

We further examine the variability between the corners by looking at the mean, µ, and standard
deviation, σ, of the leakages for each corner, at the POIs of each corner. We do so for different values of
HW ·HD, as shown in Figure 6a. These values are used to create templates for the maximum-likelihood
attack. Figure 6b illustrates the parameter distributions while using the {FF} corner POI to profile
devices drawn from other corners. It is worth noting that there are situations in which there is no
overlap of the model parameters with the different corners. This can result in inaccurate results
when attacking a device using one template with a different implementation realized statistically in
different corners.
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(a) (b)
Figure 5. leakage distribution for HW·HD = 1, for each corner with different POI sources: (a) using the
corner’s POI, (b) using the {TT} corner’s POI.

(a) (b)
Figure 6. Mean and variance of the leakage for each y value: (a) using each corner’s POI, (b) using the
{TT} corner’s POI.

Thus overall, the variability between the corners is significant and concerning. The leakage
distributions for the different corners are not the same, and leads to a greater effect when examining
distribution for higher HW·HD values. Temporal effects also makes it significantly more challenging
in the SCA context; POIs used for one corner may easily result in unsuccessful attacks. But the more
alarming feature is the concrete change in the shape of the leakage distribution, implying that a
simple univariate sweep with one model (corner) over the attack-set leakages of a different corner will
be futile.

The next section discusses the perspective of an SCA adversary but also the perspective of a
design-stage security evaluator that aims at reduce the cost of an exhaustive examination of the entire
simulation space. In other words, we aim to capture what would reflect a minimal evaluation set with
high certainty.



Cryptography 2020, 4, 36 11 of 17

3.1. An Attack Perspective: Maximum Likelihood

In this subsection we describe an exemplary attack campaign utilizing the ML distinguisher using
our generated profiles over the entire corner-space.

In each attack campaign we took a different pair of template-corners and an attacked device
corner, under the assumption of a normal distribution for the template’s leakage distribution which
was generated by using the standard procedure of profiling mean-variance pairs for the template
devices (corners). For this experiment, the POI of the device under evaluation, dua, was chosen to
be the POI of each of the templates used to attack; namely a (simplified) space of 5 × 5 scenarios.
Note that we only illustrate a subset of the actual results for readability and to better convey our main
message. In fact, we performed evaluations with different voltages, temperatures and parasitic RC
corner scenarios as well.

Figure 7a shows the maximum values for the ML attack, where labels on the figure indicate
whether the attack succeeded. For some pairs whose corner pairs are at extremes to each other,
the attack failed. For example, for {SS} template corner and {FF} dua corner we obtained an incorrect
key result (black region). Note the non-symmetric map of failures: one might expect that “remote”
corners would fail equally but, sometimes mismatch effects were stronger for faster vs. slower corners
than for slower vs. faster corners.

(a) Maximum likelihood for the correct key (b) Maximum likelihood distance from the correct to the
second-best key

Figure 7. Maximum Likelihood results for the different profiling vs. dua corners.

The figure illustrates a rather systematic behavior where mostly maximum values appear on the
diagonal of the graph, which is reasonable since the distribution of a template with a specific corner
is the most similar to the distribution of the dua in the same corner. There is one special case where
a device is attacked from a {FF} corner with the template of the {FS} corner: it indicates that there
may be cases where attacking a device from a different corner may give away more information than
when attacking with the same corner. This is a problematic scenario from an evaluator’s perspective,
and these are exactly the cases we would like to pinpoint.

In Figure 7b the ML distance between the value achieved with the correct key and the second-best
key is shown. Figure 7a shows that the distance on the diagonal is high for the lowest ML maximum
value, which makes sense. However, there are some extreme distance values on the right column and
the lowest row, but these also achieve the worst ML max value.

3.2. Environmental Views

It is clear that environmental views play a major role in increasing the side-channel signal,
for example by increasing the power-supply voltage of a device which leads to larger currents and
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thus a larger SCA-signal. In addition it is also clear that it is possible to tailor environmental factors to
concretely reduce the noise level of the measurements, for example by lowering the temperature.

As will be shown next, our investigations indicate that the {SS} corner is perhaps the most
sensitive statistical view. Since we would like pre-select specific profiling-dua pairs for security
evaluation, inquired whether the intuition from the previous paragraph would be borne out through
experimentation.

Figure 8a shows the {SS} corner. We first evaluate the SNR for different modes; i.e.,
temperatures and voltage levels. The POIs of each mode is depicted in the figure. Counter-intuitively,
the low-temperature and low-voltage {SS} mode resulted in the highest SNR(POI) value, and the
lowest value was achieved for high-temperature with low-voltage which actually fits the intuition
above. Figure 8b presents the results of a ML attack campaign for these different modes. These results
fit nicely on the diagonal to what is captured by the SNR values in Figure 8a. However, off the diagonal
it is shown that generally increasing the voltage increases ML values as well as reducing the ambient
environmental temperature.

(a)
(b)

Figure 8. Maximum Likelihood results for various temperature and external voltage conditions:
(a) SNR for each mode (b) Maximum-Likelihood values.

The most crucial point to discuss is that monitoring environmental parameters by an evaluation lab
is indeed an easy task (e.g., by using temperature chamber and regulated power supply), regardless of
the fact that in many scenarios this type of control is beyond the abilities of the adversary. For concrete
security-evaluations, the significant effects of these factors must be considered both in design stages
and post-fabrication. Therefore, reducing the evaluation-space complexity to only a few modes is
a key challenge.

4. Statistical Evaluation Utilizing Statistical Distance Measures

In this section we report statistical distance measures to examine the complete distribution
differences among corners. In this form of evaluation we do not need any assumptions relating to
the shape of the distribution (unlike in maximum likelihood). This should provide a better and more
accurate understanding of the variability and serve to evaluate the effect on the informativeness of
one corner-view on another, regardless of the statistical tools or assumptions used by the adversary.
Before we look at the JS-distance results we examine the distribution of the leakages for different pairs
of corners for template- and dua-pairs.

• Figure 9a represents the baseline, where we illustrate both typical-typical (nominal) distributions
from the attack and profiling sets. It is clear that the distributions are almost identical.
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The differences are natural and due to the different numbers of traces in each set and noise
factors which can be improved by longer phases (more measurements).

• Figure 9b illustrates a case where the profiled device is in the {SS} realization corner, and the
attacked device is in {FF}. These corners manifest in extremely different (remote) distributions,
both in shape and amplitude.

• Figure 9c illustrates a case where the profiled device is in {SF}, and the attacked device is in
{FS}. We expect the distributions to only vary slightly since these corners behave relatively the
same e.g., when using tools such as the SNR. However, the statistical distance (difference between
the plots) is also considerable.

• Finally, Figure 9d illustrates a {TT} corner and a {FF} corner distribution. Clearly and intuitively
this case reflects a difference midway from both extreme cases in Figure 9a,b.

(a) distribution of HW·HD = 9 for TT vs TT corners (b) distribution of HW·HD = 9 for SS vs FF corners

(c) distribution of HW·HD = 9 for SF vs FS corners (d) distribution of HW·HD = 9 for FF vs TT corners

Figure 9. Comparison of leakage distributions between different corners. The statistical distance
between the distributions is shown in red.

In the following we consider Figure 10a, where the JS statistical divergence results for the same
{profile, dua}-coordinates are illustrated. In addition the JS-Divergence, DJS, was also used as a
distinguisher in an attack scenario. In other words, we looked for the key k∗ which minimizes the
distance k∗ = argmin

k
DJS(Pr(l|k)||Pr(l|kcorrect)). Figure 10b shows whether the attack succeeded or

not for the different pairs. An attack that failed clearly indicates that DJS for the correct key was greater
than for the incorrect key. This information is used to complement Figure 10a.
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(a) (b)
Figure 10. JS-Divergence results: (a) JS-Divergence per {profile, dua} corner (b) DJS used as a
distinguisher - successful attack indicated in black.

Figure 10b indicates that the distinguisher always fails when utilizing any non {SS}-template
with an {SS}-dua. It also always fails when utilizing {FF}-templates to tackle a non {FF} realization.
This extreme effect corresponds to the explanation relating to the quite substantial drift of the POI and
the distribution share for ‘remote’ corners (i.e., it relates to the SNR and distribution considerations
above). Figure 10a shows that as we get closer to the upper left corner or the bottom right corner
the values of DJS get higher. There are some cases though in which the minimum values are not on
the diagonal. Recall that by intuition an adversary would want to use the same profile corner as the
dua corner, and as an evaluator this is typically what is done (especially in academic pre-fabrication
studies). However, there are several contradictory cases: the usage of an {FS} or {SF} profile when
attacking a {TT} device, and another example, when using an {FS} profile to attack an {FF} device.

The last interesting point relates to the location of the lowest value which corresponds to the
softest-point for an adversary to exploit and the choice of interest for an evaluator to perform
investigation. It turns out that in fact that point is found using an {SS}-profile and the dua pair.
Recall that in the zoomed-in SNR Figure 4b, the {SS} corner exhibited the highest SNR value in its
POI, which corresponds to the DJS results.

Hence an evaluator that evaluated security with {TT}-leakages would obtain an optimistic
evaluation whereas the (e.g.,) {SS} corner is the wanted pessimistic worst-case evaluation point.

5. Discussion and Risk Taking

These findings have a number of implications in the context of physical security-evaluation during
design-stages or during post-fabrication testing, prior to device-dispatch to the field (e.g., testing
machines). The discussion below is linked to the list of questions from the introduction section ({I1:I4}).

5.1. Optimistic Security Evaluation: A Bad Template Might Be Really Bad

I1 and I2: As shown above, different corners can exhibit very different POIs, considerably different
leakage distributions and different signal levels. However the most alarming point is that it is hard to
anticipate which set will serve as the worst-case for evaluation. The last thing a manufacturer would
want is that the security of a device will depend on the realization corner it was manufactured in.
Therefore, a bad template used for security evaluation might conclude in a considerably easier attack.
Practically, the results indicate that some profiles used for security evaluation can overestimate security
and that quantitatively the differences are not small or negligible.
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5.2. False-Negatives

I4: Consider the case where a device used for profiling was from an {FF} distribution while the
attack campaign was performed on any other dua-corner. An evaluator might think the system is
secured when producing wrong most-likely keys (say with a ML distinguisher); however, it will in-fact
represent a false-negative for a large set of other devices.

5.3. Cost of Design-Stage Security-Evaluation and Security Margins

I3: In both evaluation scenarios we investigated, i.e., maximum likelihood and the Jensen-Shannon
Divergence, for some cases we achieved a better result for the attacking devices in different corners
than devices in the same corner. However clearly the results were not always consistent for both
attacks, and in-fact we cannot guarantee that an adversary using another statistical distinguisher,
another technology or implementing countermeasures within the device would identify the same
sensitivities we have seen, as indicated in the same profile-dua pairs. However, it is evident that
even if all the elements over the “diagonals” of both the ML and DJS distinguishers are not equally
successful, checking all their elements will cover most security-critical points (i.e., a template corner
versus the same dua corner). Clearly, the complexity is only c (where c denotes the number of corners),
as compared to an exhaustive analysis of c2 complexity. If a safe guard is implemented to capture
cases such as the case where {SF} extracts information better from {FF} (e.g., consider Figure 10a),
our results indicate that elements close to the diagonal by single shifts will cover all thoese cases.
The complexity in this scenario would be 3c (for large cs’). Note that standard c values can reach 100
for an advanced technology (e.g., 16 nm).

5.4. Cost of Post Fabrication and Pre-Distribution Testing

On testing machines, there are methodologies to screen devices from the worst corners which
jeopardize standard electronic characteristics such as performance (or timing constraints). However,
it would also be possible to screen devices which correspond to a security-critical corner which might
be entirely legitimate from a digital performance perspective (e.g., {FS} or {FF} corners).

It is crucial to note that examining a TT-corner vs. TT-corner alone (as typically reported in the
literature), is not enough. Recall the low SNR value compared to other corners.

6. Conclusions and Future Work

In this paper, the consequences of statistical variations of manufactured devices on SCA security
evaluation were investigated. As process nodes make technological advances the effect of different
process corners on a device is greater, making it hard to ignore when discussing SCA security
evaluation; the tradeoff between simulation efforts and security evaluation must be taken into account.
We evaluated security estimations considering different device corners, to better understand the effect
of using a bad template when evaluating security, and assessing whether there are sensitive corners
exist which will give an adversary a significant advantage or lull an evaluator into a false sense
of security.

After examining the results of several attack scenarios, we showed that using a bad template for
security evaluation can paint an optimistic view that departs from reality, depending on the corner of
the attacked device. Furthermore an attacker might have much easier job when attacking a device if it
has access to a device with a leakier corner, or that the template device and attacked device are from a
pair of corners which extract better information than the corner pair used for the security evaluation.

Many different adaptations, tests, and experiments could be investigated in the future. Future
work could look at evaluating security with protected devices, by conducting multi variate analysis in
cases which require them, and more importantly by examining the effects for different technologies
and scaling effects, e.g., older nodes as well as more advanced nodes such as 16 nm and 7 nm and
predictive 5 nm models, and finally with different process technologies such as FD-SOI.
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