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Abstract: For a blockchain, consensus is the foundation protocol that enables cryptocurrencies
such as Bitcoin to maintain state. Additionally, to ensure safety and liveness for a publicly
accessible and verifiable ledger, fault tolerance must be robust. However, there appears to be
a degree of misunderstanding about how consensus is applied across blockchains. To assist
researchers considering variations between them, this study presents a rational classification of
consensus methods applied to current blockchains. The study provides a survey of 19 methods
classified by the scarce resource they employ: clock-cycles, bits, tokens, votes, time, and biometrics.
Blockchain implementations are split between consensus algorithms requiring proof of resource and
those that use majority voting to update the ledger.
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1. Introduction

The emergence of new forms of computing technology tend to follow a fairly predictable cycle.
From its initial appearance, if a new technological advancement solves a problem in a unique manner
it will capture the attention of the community. Adoption and adaptation will follow and users will
define the scope as it manifests and stabilises into a reliable technology. Those that have been involved
with computing will have seen a number of significant technological cycles; the emergence of relational
databases, the internet, and cloud computing, to name a few. Since 2009, with the arrival of Bitcoin [1],
blockchain technology has fit this cycle, borrowing from mature technologies, such as database systems,
distributed computing, decentralised systems, cryptography, game theory, and economics.

A blockchain is a data structure representation of an append-only ordered list that usually
comes with some additional properties, such as immutability, transparency, censorship resistance,
and decentralisation. Every node in the network maintains a copy of the ledger to verify transactions.
Security is upheld by the peer-to-peer (p2p) network through incentivising participants to play by the
rules. At the heart of a blockchain lies the consensus method, which is a protocol for maintaining the state
of the ledger. The role of a consensus method in a blockchain context is two-fold: order the transactions
in the ledger, and prevent double-spending. This second role—prevent double-spending—is what
makes Bitcoin unique; it was the first implementation for digital cash that did not need a trusted
authority to mediate disputes.

In this paper, a review and classification of a fundamental component of a blockchain—consensus
methods—is presented. As expected with a new technology cycle, the incidence of peer reviewed
published material was initially limited but in the years 2014–2020 the number of articles published
about blockchains, cryptocurrencies, and related applications increased rapidly. The rise in blockchain
popularity has meant more networks, nodes, and transactions, but has uncovered performance
limitations. For example, the scaling of blockchains to accommodate more users and transactions
is closely tied to the consensus mechanism built into the protocol [2]. The analysis of consensus
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mechanisms and the development of a taxonomy created thematic groups to identify opportunities
for research. Blockchain research is a growing field and the effort in this study has been to accurately
organise consensus algorithms that have emerged in the decade since Bitcoin.

The paper is organised as follows, in Section 2, consensus is introduced in both a centralised
and blockchain context. In Section 3 the methodology applied to the development of a taxonomy
is presented. In Section 4, the taxonomy of blockchain consensus methods is presented followed by
case-studies in Section 5. Themes are discussed in Section 6 with the conclusion in Section 7.

2. Consensus

Many blockchains operate as a distributed computing system, often with orders of magnitude
more nodes than their traditional counterpart. How these nodes communicate with one another and
maintain truth in the presence of faults is known as consensus. First, consensus relevant to distributed
computing is described, followed by the present-day case of blockchains.

One strategy to handle updating the state involves replicating the database across multiple
instances and comparing the information. The state of the system is a sequential list of commands that
is replicated between all nodes in the network. Coming to consensus on the state means every node
executes the linearly ordered log arriving at the same result. A consensus algorithm must maintain
consistent copies of the state across all nodes and process updates proposed by any of those nodes.
Figure 1 illustrates consensus as a state diagram that seeks to identify who is proposing an update and
how agreement is to be achieved.

all nodes must agree
some nodes must
propose updates

how?

who?

Figure 1. A state diagram for a distributed computing system including a blockchain. A consensus
algorithm answers the questions of how? and who?

The difficulty comes from broadcasting local write operations on potentially slow and unreliable
networks in a reliable manner [3]. There are two properties that must hold for consensus:

Safety means that two processors will agree on the same value, in addition to the value having been
proposed by one of the processors. Agreement is sometimes referred to as consistency, and a
processor proposing a value as validity. Valid means the processor decided on a value and
proposed it, although it does not necessarily need to be correct.

Liveness is the property that any sent message is eventually delivered. A system that has stalled
waiting for a message is “dead” because it cannot make progress. This can be thought of as
“eventually something good happens”, where eventually is loosely defined as finite [4].

Indicative of a traditional approach, it is assumed in the description above that all nodes are
honest and trustworthy, regardless of delays or failures. Any commands that are delivered must be
both appended to the log and committed so that if a node crashes, the remaining nodes will maintain
the log until it recovers. Examples of the application of crash-fault tolerance include two-phase commit
(2PC) [5], Viewstamped Replication [6], and Paxos [7]. Furthermore, derivatives of Paxos include
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multi-Paxos and fast-Paxos. These can all survive c crash-faults given 2c + 1 nodes. Both Google’s
BigTable and Amazon’s DynamoDB have been developed based on Paxos.

Crash-fault tolerance does not account for the possibility of nodes behaving arbitrarily.
A dishonest or malicious node attempting to have a false value committed to the ledger is exhibiting
Byzantine behaviour [8]. To be Byzantine-fault tolerance (BFT), given f faulty processors, the number
of honest processors must be n > 3 f + 1 [9]. Agreement among the n processors is impossible without
some timing assumption, such as a message timeout [10].

As the name suggests, a popular BFT implementation is Practical Byzantine Fault Tolerance
(PBFT) which guarantees safety and liveness for up to f Byzantine nodes of 3 f + 1 replicas [11].
PBFT is partially-synchronous, meaning there is essentially no bound on when messages may be
delivered [12]. PBFT has been implemented on fault-tolerant distributed storage, certificate authorities,
secure multi-party computation, and reputedly in the Linux-based systems SpaceX used to dock the
Dragon capsule with the International Space Station.

In an open p2p network, every participant exists at an equivalent hierarchical level. This affects
the way that agreement is achieved and adds complexity because there is no restriction on who may
join or leave the network. The decentralised public network may have a large number of nodes
which increases communication complexity, latency, and the attack surface. In this regime there is no
upper bound on the time to update state and so consensus cannot be guaranteed deterministically.
The question of who gets to propose a block is crucial because there are no trusted identities and a
Byzantine actor could attempt to direct consensus.

Blockchain consensus was not possible until the concept of Proof of Work (PoW) where the process
of proposing updates by finding cryptographic hashes was applied to a p2p network [1]. The approach
was originally conceived as a puzzle designed to limit the spread of email spam by having the user
expend some computational work to find a partial collision in a hash function [13,14]. In PoW, the
winner of the race condition can append the next block to the chain and is rewarded for doing so.
The nodes reach agreement by building on the chain representing the greatest proof of computational
work, and should someone attempt to build consensus on a shorter or forked chain they will not be
eligible for the block reward, having spent computational clock-cycles in the process. Myriad answers
to the questions in Figure 1 have resulted in the variety of methods surveyed here.

Maintaining consensus is vital to a blockchain network. In the short-term, disagreement between
nodes will result in a fork of the chain where both branches are valid [15]. Eventually, one branch will
become longer and therefore have a higher chance of earning the block reward, resolving the fork. If
the protocol has a design flaw, or misaligned incentives, then the chain may continue to fork without
reaching consensus. In this worst-case scenario the users will exit the chain, possibly losing any value
associated with it, and the chain will stagnate.

3. Methodology and Initial Results

Creating a taxonomy is a multi-stage process. First the literature is collected and assessed in a
process similar to a literature review. Present taxonomies in the field of blockchain consensus are
identified to ensure a meaningful contribution can be made to the field. The final stage applies the
method by Nickerson et al. [16] for developing the taxonomy. This is a well-known method within
information systems research for designing and refining a taxonomy [17].

To identify the candidate blockchain consensus methods the AIS, IEEE, and ACM databases
were searched for published papers. The search included studies that have been reviewed in a
secondary source, plus blockchain AND consensus AND/OR decentralised AND/OR database AND/OR
system. From the found set, the following exclusion criteria were applied:

• Papers focussed on blockchain applications including, but not limited to finance and internet
of things (IoT) as these did not analyse methods themselves, rather their applicability to the
chosen application;

• Papers that did not address blockchain consensus or were inconsistent;
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• Papers proposing new algorithms (primary research).

Nine surveys have been used as a basis for the taxonomy. Some of the general themes on
how classification schemes may be derived emerge in the papers: the grouping of consensus
methods as proof-of-any-type method (PoX) versus any other concept such as virtual methods and
hybrid models [2,18]; a framework for blockchain consensus consisting of information propagation,
incentivisation, block proposal, validation, and finalisation [19], where proposal, validation,
and finalisation are the steps for consensus but incentivisation is not relevant to the consensus
algorithm; comparing the functionalities provided in private blockchains [20] or by comparing fault
models [21]; other means for classification include topics criticising blockchains, such as energy
usage [22]; identifying differences between specific blockchains rather than protocols [23–25].

The selected surveys provide 69 consensus methods as empirical data points in the taxonomy.
Table 1 lists the blockchains by name (e.g., Hyperledger); however, this could also refer to the protocol
maintaining consensus (e.g., BFT SMaRt), or the name of the company (e.g., Ripple). The lack of
a naming convention is confusing for researchers looking for a concise summary—for example,
Hyperledger is mentioned in six of the surveys but it is not clear what variant is referred to.
Hyperledger is an umbrella suite of products and offers support for different consensus mechanisms,
including BFT SMaRt and PBFT (Fabric), PoW and PoAuthority (Besu), PoET and PBFT (Sawtooth).
The table is sorted by the consensus family that the method is derived from—for example, PoW—is
the only method mentioned in every survey but the original version used in Bitcoin is just one of many
alternatives. The acronyms used in the table are, in order of appearance:

Po Proof-of— PoET Proof of Elapsed Time
PoW Proof-of-Work BFT Byzantine Fault Tolerant
PoS Proof-of-Stake SMaRt State Machine Replication
PBFT Practical Byzantine Fault Tolerant DAG Directed Acyclic Graph
FBA Federated Byzantine Agreement 2PC Two-Phase Commit
DPoS Delegated Proof-of-Stake

Table 1. Blockchain projects surveyed and sorted according to the consensus family the protocol was
derived from.

Name Consensus Family [21] [2] [20] [22] [23] [24] [25] [18] [19]

PoW (Bitcoin) PoW • • • • • • • • •
Bitcoin NG PoW • • •
PoBurn PoW • •
Decor + hop PoW •
Ghost PoW •
Scratch-off puzzles PoW •
PoParticipation and Fees PoW •
Spectre PoW •
PoPublication PoW •
PeerCensus PoW 1 • •
ColorCoin PoW 1 •
Counterparty PoW 1 •
Hyperspace (prev. Synereo) PoW 1 •
Multichain PoW 1 •
NameCoin PoW 1 •
Omni Layer (prev. MasterCoin) PoW 1 •
Po eXercise PoW 2 • •
PoUseful Work PoW 2 •
PoStake PoS • • • • • • • •
Algorand PoS • • •
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Table 1. Cont.

Name Consensus Family [21] [2] [20] [22] [23] [24] [25] [18] [19]

Ouroboros ( + Praos) PoS • • •
PoActivity PoS • • •
Snow White PoS • • •
Casper PoS • •
NXT (Ardor) PoS • •
Chain of Activity PoS •
PoStake Velocity PoS •
Hyperledger PBFT • • • • • •
Implicit Consensus PBFT •
Iroha PBFT 3 •
Kadena (Juno) PBFT 4 • •
Honeybadger PBFT 5 • • •
Hybrid Consensus PBFT + PoW •
Omni Ledger PBFT + PoW •
ByzCoin PBFT + PoW 6 • •
Solidus PBFT + PoW 6 •
Elastico PBFT 7 • •
Chainspace PBFT 8 •
Ripple FBA • • • • • • •
Stellar FBA • • • •
Chain FBA •
DelegatedPoStake DPoS • • • • •
PoAuthority DPoS • • •
PoImportance DPoS • •
Dfinity DPoS •
PoVote DPoS •
Sawtooth Lake PoET • • • • • •
PoLuck PoET • •
Resource Efficient Mining PoET • •
PoOwnership PoET •
Raft Raft • •
PoTrust Raft •
Quorum (JPMorgan) Raft 9 •
Tendermint BFT • • • • • •
Cosmos BFT •
Corda (& Enterprise) BFT SMaRt + Raft • •
BFT SMaRt BFT SMaRt • •
Symbiont Assembly BFT SMaRt •
PoCapacity PoCapacity • • • •
IOTA Hash DAG • •
Hashgraph (Swirlds) Hash DAG •
Paxos Paxos •
PoHumanWork PoBiometrics •
PoMemory (memory-hard) PoMemory •
Ethash PoMemory •
PoSpace PoSpace • • • • •
Filecoin PoSpaceTime •
Peercoin PoS + Coin Age • •
RSCoin 2PC •

1 based on Bitcoin, 2 useful, 3 based on Bchain, 4 Scalable BFT, 5 asynchronous, 6 with a committee, 7 with
sharding, 8 flexible, 9 Istanbul BFT.

A review of papers that present taxonomies of blockchain consensus protocols shows some
common trends. The approaches reviewed are thorough but including everything into a taxonomy,
as most try to do, is ultimately unwieldy and fails to include additional elements that may be
blockchain-specific but that provide nuance. With the exception of one that categorises blockchain
applications rather than the protocol to maintain the ledger [26], most include consensus as just
one category. For example, providing a taxonomy from a systems-architecture viewpoint where
consensus is one dimension among others, so a systems designer can choose an appropriate blockchain
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style [27]. Two taxonomies attempt to categorise all the components of a blockchain [25,28] and
consensus is included as a dimension among others, like the open-source nature of the codebase
and the financial classification of the token. A comprehensive survey is found in [18] but offers
no formal classification and has some confusing categories. The authors delineate consensus into
four categories—permissionless consensus, PoW-style, proof-of-resources, and proof-of-concept
for performance improvement—while categorizing PoS separately. The last survey provides a
first-principles approach by creating a classification tree structure with the underlying network
assumptions at the root so that point-to-point methods among authenticated channels are separate
from the p2p network [29]. In this case, the taxonomy tree illustrates that consensus is branched with
public/private setup, computational assumptions, and communication cost. So while examples of PoS
in the p2p setting are provided, a fine-grained distinction between blockchain protocols is not present.

In general terms, a taxonomy is an attempt to gain understanding of a group of instances by
grouping and categorising apparent features or characteristics and creating an abstract model that
may be used to compare with newly found instances. The characteristics, when categorised, allow
for the identification of meta-characteristics from which the model is comprised. A new instance,
when compared to existing instances, may then be considered in respect of what is already known
and a taxonomy may be refined or developed as new knowledge is accrued. Thus, taxonomies tend
to emerge once a researcher has sufficient experience with a field to see subtle distinctions between
characteristics.

To develop the taxonomy, an iterative three-step approach has been applied that is based on
design science [16]. The apparent characteristics identified for the development of this taxonomy
reflect the understanding that blockchain consensus is about maintaining the state of a ledger that
has been replicated across many nodes in a decentralised system. Implementation specifics are not
included in the taxonomy.

Step 1 Derive the principal meta-characteristic for categorisation; the methodology for maintaining
a distributed ledger at a high-level. Characteristics, similar to deterministic finality, or
committee-based voting, are included in this category.

Step 2 An inductive approach that determines which characteristics may be grouped into dimensions
empirically by identifying characteristics within the meta-characteristic and subsequently
selecting dimensions to group them together [30]. The conceptual-to-empirical approach
provides the opportunity to hypothesise about new dimensions that can be tested with data.

Step 3 Checks whether there are characteristics left unresolved or uncategorised and iterates if
necessary, back to either an empirical-to-conceptual or conceptual-to-empirical strategy.

4. Taxonomy

In this section, the taxonomy is described along with the process for building it.

4.1. Derivation of Categories

As described in the previous section, a three-step process is applied to derive the taxonomy
where the meta-characteristic is defined as a high-level methodology for maintaining state of a
distributed ledger. Table 1 lists consensus categories that provide an empirical starting point for
the taxonomy. The blockchains in Table 1 are sorted by the number of occurrences in literature to
derive a prominence ranking (Table 2). While the number of mentions is a crude means for deriving
prominence, it does afford some degree of conscious acknowledgement of importance in the community.
Nineteen consensus categories are identified and provide a basis for the first iteration. The taxonomy
incorporates the methods from Table 2.
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Table 2. Consensus methods ranked by occurrence in literature. For the acronyms refer to the list
above Table 1.

Consensus Method Occurrences (Continued)

PoW 33 BFT SMaRt 4
PoS 27 PoCapacity 4

PBFT 20 Hash DAG 3
FBA 13 Honeybadger 3

DPoS 12 PoCoinAge 2
PoET 11 PoMemory 2
Raft 8 2PC 1

Tendermint (BFT) 7 Paxos 1
PoSpace 5 PoBiometrics 1

PoSpaceTime 1

As a feature, PoW was the key to solving the double-spending problem for a cryptocurrency
by incentivising the longest-chain rule. Thus, this is the first dimension in the taxonomy and
represents a finite resource (that is, a limited resource from which value may be apportioned).
Characteristics of this dimension can be determined directly from Table 2, for example: the stake in
PoS represents the proportion of the total tokens that a node has dedicated to consensus, therefore
tokens is the characteristic.

At least one iteration is required when a new dimension is identified. The approach applied
is to begin with a concept and drill down to derive empirical outcomes. One survey begins with a
distinction made between networks that operate in an open p2p manner and those that require trusted
channels [29]. Thus, a dimension for network communication is included with the characteristics of
trusted channels and p2p.

4.2. Derivation of Dimensions

Seven dimensions are derived by their characteristics and are listed in the taxonomy of
blockchain consensus methods (Table 3). The dimensions are scarce resource, fault tolerance,
block proposal, transaction finality, network timing, network accessibility, and network communication,
as defined below.
Scarce Resource A resource that is difficult to replace, access, or create and thus scarce, accrues value
as it is consumed or exploited. The potential for the growth of value is a motivation that encourages
acceptable behaviour in the emergence of consensus. Six types of resource are identified.

1. Clock-cycles have non-zero cost, meaning the computational work done to find a hash value
that is subject to a target requirement. The computational work cannot be recovered or undone.
A cryptographic requirement is that the hash function is one-way, so the originating data cannot
be inferred, but is easily verifiable.

2. Tokens held by a user may be committed to maintaining a protocol. PoS allocates users a stake
in the system proportionate to their number of tokens. In general, tokens that are held as stake
cannot be used in transactions. Honesty is encouraged by both advantaging nodes that validate
transactions and create blocks at the risk of forfeiting their stake (slashing) for dishonest behaviour.
A variation, DPoS, hands block production responsibility to a set of validators, or delegates,
which are a subset of the network. Often the validators must be known to the network and thus
subject to ridicule if they behave maliciously as in proof-of-authority.

3. Votes are used to determine a majority and is a common method for gaining consensus with
nearly half of the methods in Table 3 employing votes as the scarce resource. A BFT system
must determine consensus by the replicas voting on the state. Votes have no tradable value and
generally a node is permitted one vote per round, although an additional vote may be permitted
in each subsequent round. Classical consensus methods that maintain state in a non-blockchain
system, such as PBFT, use voting or a round-robin style to elect leaders.
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4. Bits represent the state of a transistor and occupy a finite amount of space in storage.
PoCapacity methods allocate a user some stake in the system by requiring that a proportion of
storage is kept aside. If the computer is a blockchain node, the allocation cannot be used for
other purposes. PoMemory requires access to volatile storage; Ethash (Ethereum) commits a
pseudorandom dataset to a DAG which grows linearly resulting in access that is limited by the
memory bandwidth [18]. Storage volumes tend to scale more slowly than computer processor
clock-cycles and can reduce the domination of performance-enhanced processor architectures,
such as Application Specific Integrated Circuits (ASICs).

5. Time is independent of computing advances. As clock-cycles and read/write times reduce,
blockchains secured by these resources may be exposed to unforeseen factors. Thus, PoET
processors provide additional execution environments or enclaves, that cannot be accessed by the
system. These modules can return a random delay to a process that can then be used to assign
block proposers.

6. Biometrics are a range of indicators that can verify identity or life. Similar to a PoW hash function
requiring a known average number of clock-cycles, a blockchain based on proof-of-biometrics can
require a unique biological solution. While biometrics are typically understood to be consistent
parameters, such as facial, iris, voice, and fingerprint recognition systems, other systems
may include affordances available only to humans or to specific humans. To be successful,
such a system must be easy to use, require minimal input, and validate or authenticate rapidly.
For example, the Completely Automated Public Turing test to tell Computers and Humans Apart
(CAPTCHA) system is easy for humans to solve but difficult for a computer.

Fault Tolerance At the base level, fault tolerance refers to crash-fault tolerance where a node can fail
and will resume operation once it has been brought back online. These nodes cannot exhibit arbitrary
behaviour, such as sending faulty information and so if a single node becomes compromised, the entire
system is compromised. Consensus requires a majority of nodes—for example, with 2PC up to c nodes
can crash, requiring 2c + 1 replicas. Systems, such as Google’s Bigtable, are guaranteed five replicas
and can tolerate two failures. If the replicas can be subverted and send incorrect information the
system must be Byzantine-fault tolerant. PBFT and its derivatives can handle up to f Byzantine faults
of 3 f + 1 replicas.

Above, f and c are integers; whereas for a proofing type method, fault tolerance is the percentage
of total resource that may be sacrificed before consensus is lost. P2p systems assume bad actors will
attempt to subvert the network, possibly colluding with each other, and may only be held off for as
long as there is an honest majority. A 51% attack occurs when adversaries obtain >50% control of the
scarce resource and can then alter, control, predetermine, or direct the consensus process. The selfish
mining strategies of [31] have shown that an actor with <50% can withhold blocks and earn more of
the reward; however, this does not affect liveness or safety.
Block Proposal The question of who gets to propose new blocks (Figure 1) is fundamental to consensus.
Selecting a validator must be fair and secure. A decentralised open system allows any participant the
opportunity to propose blocks and a fair way to accomplish this is by random selection. If peers do not
find out who proposed the block until after it is proposed, this is a leader-free scenario. Leader election
can also be accomplished by using randomized processes at which point the lead replica is responsible
for coordinating the subsequent update. These systems are usually private as replicas require known
IDs. A committee-based system relies on a predetermined set of validators to be responsible for
updates. Participants may join the network but not necessarily be part of the committee.

The exception occurs in the case of the DAG, in which no node is responsible or chosen for
updates and there is no block proposer. A DAG links transactions in a similar manner to a blockchain
with the exception that a graph node can have n outgoing verticies. A traditional family tree satisfies
this condition; however, so does a PoW chain in the presence of n forks (not necessarily in consensus).
With IOTA, the graph breadth continues to grow.
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Table 3. Taxonomy of blockchain consensus methods

Scarce Resource

Consensus
Method

bi
ts
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cl
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cy

cl
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ns

bi
ol

og
y

vo
te

s

Fault
Tolerance

Transaction
Finality

Network
Timing

Block
Proposal

Network
Accessibility

Network
Comm.

Example Blockchain

PBFT • 3f+1 D partial election public/private trusted Hyperledger Sawtooth

BFT-SMaRt • 3f+1 D partial election private trusted R3 Corda

Federated BA • 5f+1 to 3f+1 D partial committee consortium both Stellar, Ripple

Honeybadger • 3f+1 P async. random public/private both POA Network

2PC • 2c+1 D async. none private trusted RSCoin

Paxos • 2c+1 D async. election private trusted none

Raft • 2c+1 D async. election private trusted Quorum

Hashgraph • 3f+1 P async. none private p2p Hashgraph, IOTA

DPoS • • 3f+1 to 2f+1 P synch. committee all trusted Steemit, EOS, Bitshares

PoS • 3f+1 P s,p committee all trusted Ethereum, Decred

Tendermint • 3f+1 D partial election private both Cosmos

PoW • 50% P synch. random public p2p Bitcoin

PoCoinAge • • 50% P synch. random public p2p Peercoin/Ppcoin

PoElapsedTime • 2c+1 P synch. random public trusted Hyperledger Sawtooth

PoRetrievability • 50% P synch. random public p2p Permacoin (PoR)

PoSpace • 50% P synch. random public p2p Spacemint

PoSpaceTime • • 50% P synch. random public p2p Filecoin

PoMemory • • 50% P synch. random public p2p Zcash, Beam

PoHumanWork • • - - - - - - none
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Transaction Finality There are two approaches to determining a transaction is complete. The first is
deterministic and guarantees the data are written and committed to the blockchain as soon as the block
is posted. The second is probabilistic, where a transaction is confirmed with increasing probability as
more blocks are added—e.g., with PoW. There is a chance that transactions are added to a fork of the
chain that does not represent the most computational work. Over time the longest chain will emerge
and forked blocks become orphaned. Bitcoin’s proof-of-work is often called Nakamoto or emergent
consensus because the more chain work that is done after a transaction is in a block, the more likely it
is to be committed to the ledger. PoS systems, such as Ethereum’s Casper [32] have checkpoints before
which all data finality is probabilistic. After a checkpoint is reached, the transactions are finalised.
Network Timing The timing considerations may be synchronous, asynchronous, or partially
synchronous. Networks such as PoW and proof-of-capacity are generally considered synchronous
because they are guaranteed to update the state upon completion of every round. What is not
guaranteed is that every round will complete because there are no timing assumptions; the protocol
will run as long as necessary to append a block. Recently it has been shown that Nakamoto consensus,
operating in a dynamic participant pool maintains safety and liveness in bounded-delay networks [33].
A fully asynchronous network has no known upper bound for message delivery. A limitation of
2PC is that it will stall if a message is delayed for an arbitrarily long amount of time [10]. A partially
synchronous model may employ timeouts, rules, learning algorithms, and predetermined hierarchies
to resolve deadlocks.
Network Accessibility Categories for blockchain network access are public, private or a combination
of the two. In a public network, anyone can join the network and participate, then leave the network
without penalty. Most decentralised blockchains are public and so they need to be secured against
Byzantine behaviour. Private blockchains require nodes to be validated and external participants may
not be able to participate or view activity. Enterprise blockchains are typically private for a range of
reasons, including efficiency and security. A consortium is comprised of a group of parties, such as
financial institutions that share access to a network. The reasons for establishing a consortium vary and
include common goals, sharing of resources, mutual agreement on consensus methods, development
opportunities, and so on. Individual consensus methods, such as PoS, may have instantiations
of different access types—for example PoS may be public as in Decred, or consortium as in EOS.
Any public PoS system can be adapted for private use.
Network Communication Nodes exchange transaction or block data via a range of network
communication methods. A trusted setup requires nodes to validate each other through a
key-exchange procedure or similar. Open p2p networks communicate via a gossip protocol flooding
nearest-neighbours with information until all nodes are in agreement. Network Communication
could be both point-to-point and peer-to-peer—for example, trusted channels can be built on top of a
peer-to-peer network [34].

In a few cases, the characteristics that identify methods in Table 3 are not exclusive but lead to
a range of blockchain implementations. While there may be an argument for additional dimensions
(such as performance, scalability, message complexity, etc.), the contribution is not sufficient to warrant
their inclusion here. Performance criteria apply to specific cases: the Example Blockchains in Table 3, or the
Validation Cases in Table 4; thus they are characteristics not only of the protocol but the implementation.
For example, transactions per second (TPS) is often cited as a performance metric [2,19]; Bitcoin and
Litecoin both use PoW but utilise different hashing algorithms and due to design factors such as
blocktime Bitcoin can handle ≈7 TPS, and Litecoin ≈56 TPS. These variations have not been included
in Table 3 to keep the focus on consensus.
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Table 4. Taxonomy validation results.

Case SR 1 FT 2 BP 3 TF 4 NT 5 NA 6 NC7

Avalanche votes 1 − ε none probabalistic S 9 public p2p
Thunderella cc8, votes 25%–50% election deterministic A 10, S public, private p2p, trusted

LibraBFT votes 3 f + 1 committee deterministic P 11 consortium trusted
Gemini cc 50% random probabalistic S public trusted

1 Scarce Resource, 2 Fault Tolerance, 3 Block Proposal, 4 Transaction Finality, 5 Network Timing,
6 Network Accessibility, 7 Network Communication, 8 Clock-cycles, 9 Synchronous, 10 Asynchronous,
11 Partially synchronous.

5. Taxonomy Evaluation

To evaluate the taxonomy, the dimensions should encapsulate novel methods. Four cases are
considered and applied to the taxonomy: Thunderella, Avalanche, LibraBFT, and Gemini. The cases
are selected because they are sufficiently different from each other that if there emerged issues with
the taxonomy, they would arise during the evaluation. Additionally, none of the cases were used
in the development and refinement of the taxonomy. The evaluation assesses the cases against the
taxonomy to determine whether they are well associated and if there are features in the cases that are
not addressed by the taxonomy. Table 4 provides the results of the evaluation and the findings suggest
that the taxonomy applies to a range blockchain types.

Avalanche [35] uses a probabilistic safety guarantee similar to PoW but without the resource
intensive dependence on PoW. The probability that safety will be upheld is set by a parameter, ε,
and determined by the designer. Avalanche uses an append-only DAG to maintain the public ledger.

Thunderella [36] is a hybrid of classical asynchronous consensus methods with synchronous
blockchain methods. To increase throughput, Thunderella seeks to improve the performance of
PoW chains by using an optimistic path that can tolerate 25% Byzantine nodes in an asynchronous
environment. In the event that this fails, it and can fallback to 50% BFT in a synchronous environment.
A committee is selected for leader election progressing in rounds in a permissioned environment or by
a PoW oracle in a permissionless environment.

LibraBFT [37], otherwise known as the Libra blockchain, applies BFT consensus and is partially
synchronous. Developed to be used on the Facebook platform, Libra is intended to operate as a global
payments system. Ledger state is maintained in a PoS style by trusted validators that can tolerate up
to one-third faulty nodes.

The Gemini dollar [38] is a cryptographic token pegged to the US dollar. Known as a stable-coin,
they can be used in confidence by merchants without the volatility of a cryptocurrency. The Gemini
dollar is an application built on the Ethereum platform and therefore must adhere to the rules of the
Ethereum consensus mechanism.

6. Discussion

This taxonomy applies to researchers and analysts investigating the current state in blockchain
consensus to classify various types and variations. Researchers may be looking to identify areas for
future development or optimisation while analysts could be looking for a starting point in adopting a
consensus method to use or to base a blockchain design on. While this classification system is derived
from existing sources and represents a current review of types, it may also be subject to change and
update as new methods or approaches emerge.

Three categories are identified in Table 3: (1) blockchains based on traditional consensus and
dependent on replica voting; (2) the need to demonstrate that some resource has been consumed,
exploited, or set aside; (3) dependency on tokenised representation. What is apparent is that all the
methods have valid uses but there is no ideal method. Furthermore, to accommodate more users and
activity, much research is focussed on the use of distributed systems as a framework or means for
scaling protocols.
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PBFT, BFT SMaRt, and FBA are grouped together and have well known blockchains. Depending
on client need, Hyperledger incorporates a number of consensus algorithms. R3 Corda can use
BFT SMaRt, which is an optimised BFT algorithm that can achieve a high throughput [39] while
Hyperledger Sawtooth has a PBFT implementation. FBA has a federation of permissioned validators
whereby each validator determines its own set of nodes to trust for consensus. The pool of validators
in Ripple is called a unique node list and in Stellar a quorum slice.

Paxos, 2PC, and Raft are categorised together and are not well represented in this space due
to the algorithms being crash-fault (not Byzantine) tolerant, and requiring a network with known
participants. Of note, 2PC splits communication into a prepare phase and a commit phase. In the
prepare phase nodes are made aware of the state update and the central coordinator tallies the votes.
The commit phase involves another round trip whereby each node updates their ledger. Paxos itself
has no known blockchain implementations and is included in the taxonomy as a reference point. Raft
is found in Quorum by JPMorgan and is an exception.

PoCapacity schemes that monopolise disk storage are interesting because of their resource
efficiency versus PoW and their application to distributed storage. An alternative seen in
proof-of-retrievability requires that a participant verify they have stored a portion of a file for later use.
This example could be applied to a large public dataset where storage provides a distributed archive,
such as Permacoin. Alternatively, proof of space as proposed for Spacemint seeks to apply disk space
in a mining-like capacity where the user dedicates a portion of disk space to a large file and can verify
that they have done the computational work to pebble a DAG from the file [40]. Lastly, Filecoin uses a
time dimension in their proof of spacetime consensus method by taking into account an amortisation
period. The prover must show a recursive proof of retrievability to show they have maintained the
storage for a period of time [41].

The use of biometrics in providing evidence of a scarce resource holds promise because individual
people are unique and that combined with time implies that a transaction cannot be replicated or
accelerated by computing advances. However, time is difficult to verify computationally due to
advances in hardware and parallel processing. PoET uses special enclaves in a chip architecture
called trusted execution environments such as Intel’s Software Guard eXtension and ARM’s TrustZone.
Hyperledger Sawtooth has a PoET implementation. Network accessibility in Table 3 is listed as public,
but a node is required to have the specific hardware module to participate. A PoW blockchain can act
as a proxy for proof of ”time” as it is a linked list in the manner of secure time stamping although a
good PoET implementation can be more energy efficient.

7. Conclusions

The paper presents a taxonomy in which blockchains are categorised by consensus family across
seven dimensions: scarce resource, fault tolerance, block proposal mechanism, transaction finality,
network timing assumptions, network accessibility, and network communication. Much of the
literature reviewed did not meet the conditions for quality for inclusion or it had been influenced
by corporate marketing. The taxonomy provides a robust contribution to the field that includes
69 blockchains that are presented in peer reviewed literature. While the taxonomy offers a high level
explanatory view, it is concise because it is limited to seven dimensions and concentrates on the
meta-characteristic of maintaining the state of a distributed ledger. Lastly, to accommodate future
algorithms, the taxonomy is extensible and to demonstrate this, as well as to evaluate the taxonomy on
cases that were not involved in its development, four case studies are applied.

Limitations that are present in the taxonomy are that it is a snapshot of the present state of
consensus and while blockchain research is expanding, blockchain variants are proposed faster than
they appear in academic sources. Examples of blockchain implementations are given for reference;
however, this is not a complete listing nor does the taxonomy classify blockchains.

Opportunities for development and research present themselves as further in-depth analyses.
For example, a large number of blockchains use some form of proofing method to attempt to publicly



Cryptography 2020, 4, 32 13 of 15

verify that a scarce resource is secured but others utilise BFT methods from distributed computing.
At this point, there is no clear future direction where consensus will be focussed. In the meantime,
other methods such as DAG with a gossip protocol or asynchronous BFT have yet to be tested at scale.

Additionally, biometrics and time exploit opportunities sociotechnical systems and offer
interesting areas for future development. For example, social status or reputation provide a strong
incentive to maintain integrity in a network by providing increased social scores for good behaviours
and attempts to subvert are be negatively reinforced by punishing a social score that took time to
accrue.
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