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Abstract: As RFID technology is being widely used in access control systems to identify and track
both objects and people, relay attacks on RFID systems continue to pose serious threats to security.
To mitigate relay attacks, distance bounding protocols can be used. Until recently, all distance
bounding protocols were based on classical cryptography and communication techniques. In this
paper, we take a closer look at a recently proposed protocol by Jannati and Ardeshir-Larijani
[Quantum Information Processing 2016, 18] to detect relay attacks using qubits. We first observe
that the protocol has a weakness which allows an adversary to mount a successful attack on the
protocol. We then propose a countermeasure to restore security and compare the fixed protocol with
the state of the art.

Keywords: relay attack; distance bounding; RFID systems; quantum communication;
quantum cryptography

1. Introduction

Today wireless embedded systems are ubiquitous in almost all aspects of our daily lives. Their ever
growing use is also making them increasingly complex. For instance, what used to be a reader
or a passive tag in a single closed application, an RFID (radio-frequency identification) has become
a core Internet-of-Things (IoT) technology with multiple uses in identification, alerting, monitoring,
and authentication; no longer a simple reader or tag. As a result, RFID technology is integrated into
wireless systems such as contactless payment systems, access control, e-ID/e-passport, supply chain
management, etc. Although the communication range of the devices used in such systems is limited,
they are vulnerable to relay attacks, as demonstrated in [1]. In a relay attack, an adversary attempts
to fool the legitimate parties by simply relaying the communication between them. Without doubt,
relay attacks pose serious security risks to wireless systems.

As a countermeasure against relay attacks, a distance bounding (DB) protocol is introduced
by Brands and Chaum in [2]. A DB protocol allows to establish an upper-bound on the physical
distance between two communicating parties, commonly called as a verifier and a prover. Since its
introduction by Brands and Chaum, many DB protocols are designed and implemented [3–17]. A DB
protocol typically comprises an initialisation phase and a fast bit-exchange phase. The fact that it is
impossible for adversaries to send bits faster than the legitimate parties, which is the case in RF-based
DB protocols, is used to estimate an upper bound on the physical distance between them. DB protocols
provide an effective countermeasure against relay attacks. However, secure implementation of the
fast-bit exchange phase for distance bounding has been a challenge.

In [18], Jannati and Ardeshir-Larijani propose to use qubits for detecting relay attacks on RFID
systems. In particular, they propose a RAD (relay attack detection) protocol which basically replaces
the fast-bit exchange phase of a DB protocol with a phase in which the prover sends qubits to the
verifier. In this paper, we take a closer look at the RAD protocol and observe its weaknesses. We show
that the RAD protocol does not offer protection against relay attacks, since an adversary equipped
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with quantum memory can easily mount relay attacks. We further discuss possible countermeasures
to mitigate the weaknesses of the RAD protocol.

The rest of the paper is organized as follows. Section 2 provides the necessary background
material facilitating the understanding of the paper. Section 3 presents the RAD protocol by Jannati and
Ardeshir-Larijani, and its vulnerability against relay attacks. In Section 4, we propose a countermeasure,
analyse its security, and compare it with state of the art. After presenting related work in Section 5,
we conclude the paper in Section 6.

2. Background

In this section we present some background material. We begin by recalling the distance bounding
protocol by Hancke and Kuhn [3], since it is most relevant to the RAD protocol. Following [18], we also
call the verifier and the prover, the reader and the tag, respectively, from now on.

2.1. Distance Bounding

In general, a DB protocol consists of an initialisation and a rapid-bit exchange (a.k.a. distance-bounding)
phase. In the initialisation phase, the reader and the tag exchange some public information, namely,
public nonces, that will allow them to compute a common value using a preshared key. In the rapid-bit
exchange phase, the reader sends a sequence of single-bit challenges to which the tag replies with
single-bit responses. The distance of the tag to the reader is calculated by measuring the Round-Trip
Time (RTT) of the challenge-response bits between the reader and the tag. If a DB protocol is derived
from the original Brands-Chaum protocol [2], then a last authentication phase is also needed for checking
whether all protocol steps are followed correctly. But the Hancke-Kuhn protocol [3] that we are going
to look at next comprises only the initialisation and the distance-bounding phases.

Figure 1 illustrates the Hancke-Kuhn [3] protocol. The reader and the tag have a shared secret key
K. In the initialisation phase the reader and the tag exchange with each other the randomly generated
nonces NT and NR. They then calculate the response registers D||B = PRFK(NR, NT), where PRF
is a pseudorandom function and || stands for concatenation. The rapid-bit exchange phase consists of
many rounds of time-critical single bit challenge-responses. The number of challenge-response rounds
is depends on the targeted security level and is equal to the length of the registers |D| or |B|. In a
challenge-response round i, the reader starts its clock and sends to the tag randomly chosen challenge
bit Ci ∈ {0, 1}, to which the tag responds either with Ri = Di if Ci = 0, or with Ri = Bi otherwise.
The reader stops the clock as soon as it receives the response Ri. Then the reader compares the received
responses with the expected responses. If the responses are correct, it checks whether the round-trip
time ∆ti < τRTT , where τRTT is the maximum round-trip time for a bit to travel between the reader
and the tag. If all checks pass, then the tag is identified as close by and is authenticated. Note that the
protocol can be made to tolerate errors by setting a threshold for the number of correct responses.
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𝑁𝑅
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𝐶'

R)

Choose a random nonce 𝑁*

𝑁+

Choose a random nonce 𝑁+

If 𝐶' = 0, 𝑅' = 𝐷'Pick 𝐶' ← {0,1}

Check if 𝑅'’s are correct
Check if Δ𝑡' < 𝜏*++

𝐷||𝐵 = 𝑃𝑅𝐹>(𝑁*, 𝑁+)Compute:  
𝐷||𝐵 = 𝑃𝑅𝐹>(𝑁*, 𝑁+)Compute:  

If	𝐶' = 1, 𝑅' = 𝐵'

Start Clock

Stop Clock

Figure 1. A distance bounding protocol by Hancke and Kuhn [3].

2.2. Qubits

A qubit is a basic element of quantum information, just as a bit is the basic element of classical
information. A qubit is a vector in a 2-dimensional Hilbert space, a vector space with inner product.
The basis

{|0〉 =
[

1
0

]
, |1〉 =

[
0
1

]
}

for a qubit is called the computational basis, whereas the basis

{|+〉 = (|0〉+ |1〉)/
√

2, |−〉 = (|0〉 − |1〉)/
√

2}

is called the Hadamard basis. In general, we can express a normalised quantum state as a superposition
of |0〉 and |1〉 as

α |0〉+ β |1〉 ,

where α, β ∈ C satisfying |α|2 + |β|2 = 1.
If we measure a qubit in state α |0〉+ β |1〉 in the computational basis, then we obtain |0〉 with

probability |α|2 and |1〉 with probability |β|2. Upon measurement, the state α |0〉+ β |1〉 of the qubit
collapses into |0〉 or |1〉, depending on the measurement outcome.

The four states, |0〉, |1〉, |+〉, and |−〉, satisfy that

|0〉 = (|+〉+ |−〉)/
√

2

and
|1〉 = (|+〉 − |−〉)/

√
2.

If we measure the qubits |0〉 and |1〉 in the computational basis, then the states do not change;
whereas a measurement in the Hadamard basis destroys the state completely. In the latter case,
we obtain either |+〉 or |−〉 with equal probability. Similarly, if we measure the qubits |+〉 and |−〉
in the Hadamard basis, then the states do not change; whereas a measurement in the computational
basis destroys the state, and we obtain either |0〉 or |1〉 with equal probability. This is the basic
principle behind many quantum cryptographic protocols, most notably, the Quantum Key Distribution
(QKD) protocol by Bennet and Brassard [19]. The authors of [18] also use this principle to replace
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the distance-bounding phases of a DB protocol with a qubit transmission phase, as we shall see in the
next section.

We can associate these four states with different polarisations of photons: The states |0〉 and |1〉
with horizontally → and vertically ↑ polarised photons, respectively, and the states |+〉 and |−〉
with↗ (45◦) and↖ (-45◦) polarised photons, respectively. We can encode classical information into
these four state. For example, we can encode the classical bit value 0 as a qubit in state |0〉 or |+〉,
and the value 1 as a qubit in state |1〉 or |−〉. We measure the qubits either in the computational or
the Hadamard basis to extract the encoded information. Let us denote by 0 the computational (+)
basis and by 1 the Hadamard (×) basis. Then a classical to quantum encoding rule may look like as in
Table 1. If we encode 0 as→ polarized photon, then we can decode it correctly as 0 only in the + basis,
whereas if we encode 0 as↗ polarized photon, then we can decode correctly as 0 only in the × basis.
This also applies to the case when we encode 1 in the + basis and the × basis, respectively. In any of
these cases, if we decode a polarized photon using a wrong basis, then we obtain a completely random
bit. Therefore, by using this encoding rule we can send information encoded as polarized photons so
that no one can copy or read the information without knowing the bases we use for encoding.

Table 1. A classical to quantum encoding rule.

Data Comp. (or + ) Basis Hadamard (or × ) Basis

0 |0〉 (i.e.,→) |+〉 (i.e.,↗)

1 |1〉 (i.e., ↑) |−〉 (i.e.,↖)

3. Rad Protocol and Its Weaknesses

In this section we first take a closer look at the protocol for relay attack detection, namely, the RAD
protocol, using qubits proposed in [18]. We then observe its weaknesses and show that it is still
vulnerable to relay attacks.

3.1. The Protocol

In a DB protocol, the distance-bounding phase is the time critical and the most difficult phase to
implement in practice. The authors of [18] mention the challenges in accurate RTT measurement as one
of the main motivating reasons for the RAD protocol, since it does not require any RTT measurements
in the qubit transmission phase.

Figure 2 presents the RAD protocol from [18]. As shown in the figure, the protocol comprises two
phases: an initialisation phase and a qubit transmission phase. The initialisation phase is the same as
in the Hancke-Kuhn DB protocol presented in Figure 1. The qubit transmission phase replaces the
distance-bounding phase of a DB protocol. In this phase, upon receiving a request from the reader,
the tag prepares quantum states |D〉 according to bases determined by B, and sends |D〉 to the reader.
The reader then measures the received photons in his copy of B, and checks whether the measurement
results, say, D′, equal D. If D = D′, then the tag is accepted as valid; otherwise, it is regarded as relay
attack detection.

As an application of the RAD protocol, the authors of [18] applied it to improve an
ultra-lightweight RFID authentication protocol by Gao et al. [20].
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Reader 𝑹 Tag 𝑻

Initialisation Phase

Qubit Transmission Phase

𝑁𝑅

Shared secret 𝐾Share secret 𝐾
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⎹ 𝐷⟩

Choose a random nonce 𝑁/

𝑁0

Choose a random nonce 𝑁0

Prepare⎹ 𝐷⟩ according to B
Obtain 𝐷′ by measuring⎹ 𝐷⟩ in B
If 𝐷: ≠ 𝐷, detect relay attack
If 𝐷: = 𝐷, accept 𝑇 as valid

𝐷||𝐵 = 𝑃𝑅𝐹H(𝑁/, 𝑁0)Compute:  
𝐷||𝐵 = 𝑃𝑅𝐹H(𝑁/, 𝑁0)Compute:  

Figure 2. RAD protocol using qubits for relay attack detection [18].

3.2. Weaknesses

In [18], the authors analysed the security of the RAD protocol against an intercept-resend type of
relay attack. In particular, a relay attack adversary first intercepts the photons from the tag, measures
them in random bases since it does not know the right bases, and then sends the measured results
encoded as qubits to the reader. Figure 3 illustrates the attack considered by the authors of [18].
Indeed, in this attack, the adversary can successfully relay a qubit with probability 3/4, since the
adversary has to guess the measurement basis at random and use that basis to encode the measured
result into new qubit. Note that in relay attacks on DB protocols, including the RAD protocol,
the adversary simply relays everything in the initialisation phase. Hence, the initialisation phase in the
attack figures is exactly the same as in the original protocol without any attack.

However, there is a better attack that the adversary can employ without being detected, as shown
in Figure 4. In this attack, the adversary is equipped with a quantum memory capable of storing
qubits. As said before, the adversary relays everything in the initialisation phase between the reader
and the tag. In the qubit transmission phase, the adversary first pre-asks (i.e., before the reader sends
its request) the tag to send its qubits and stores the qubits sent by the tag in the quantum memory.
When the reader sends its request, the adversary replies with the qubits stored in the quantum memory.
Since qubits stored in the quantum memory are the ones sent by the tag, the reader obtains the expected
results upon measuring the qubits. Therefore, the attack goes unnoticed.
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𝐷||𝐵 = 𝑃𝑅𝐹C(𝑁0, 𝑁1)Compute:  
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encode

Guess bases

Figure 3. An intercept-resend relay attack on the RAD protocol.
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𝑁𝑅

Shared secret 𝐾Share secret 𝐾

⎹ 𝐷⟩

Choose a random nonce 𝑁)

𝑁*

Choose a random nonce 𝑁*

Prepare⎹ 𝐷⟩ according to B
Obtain 𝐷′ by measuring⎹ 𝐷⟩ in	B
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not measure⎹ 𝐷⟩

𝐷||𝐵 = 𝑃𝑅𝐹>(𝑁), 𝑁*)Compute:  
𝐷||𝐵 = 𝑃𝑅𝐹>(𝑁), 𝑁*)Compute:  

⎹ 𝐷⟩

Quantum memory

request

request

Figure 4. A relay attack on the RAD protocol by an adversary with quantum memory.

4. Countermeasure

The reason why the RAD protocol cannot effectively detect relay attacks, specially the one
described in Figure 4, is because the protocol replaces the key component of a DB protocol that
effectively mitigates relay attacks. Namely, the time-critical distance-bounding phase of a DB protocol
is replaced with a qubit transmission phase that is not time-critical. DB protocols use round-trip time
(RTT) of single bit challenge-responses in the time-critical phase between the prover and the verifier
to calculate an upper bound on the distance between them. In the RAD protocol, however, there is
no timing in the qubit transmission phase, which unfortunately makes the protocol vulnerable to
relay attacks.
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Yet another reason is that there is no dependence between the reader’s “request” and the tag’s
response, as opposed to DB protocols. It is important to note, however, that a dependence of the tag’s
response on the reader’s request, as in DB protocols, alone does not offer protection against relay
attacks without any timing information.

Therefore, a fix to the RAD protocol to make it effective in relay attack detection is to introduce
timing in the qubit transmission phase and a logical dependence of the tag’s response on the reader’s
request. Figure 5 presents a modified RAD protocol. In this modified version of the RAD protocol,
the qubit transmission phase is similar to the DB protocol presented in Figure 1. But now, the reader’s
challenge Ci, say, in round i of the qubit transmission phase, is encoded as |Ci〉 either using Di as basis
if Ci = 0, or using Bi as basis if Ci = 1. The reader measures the received qubit using Di as basis if it
sent 0 as challenge, otherwise it measures the qubit using Bi as basis. So the reader expects to obtain
the same challenge bit when measuring the received qubits. In addition, each challenge-response
round is timed, so the reader also checks whether the RTT is less than the RTT threshold.

This seemingly simple yet effective countermeasure turns the original RAD protocol into a DB
protocol. This new protocol, which we call improved RAD protocol from now on, uses classical bits for
challenges and qubits for responses. Below, we (a) analyse the security of the improved RAD protocol
against common attacks on DB protocols, (b) compare it with the state of the art, and (c) provide
a feasibility analysis.

Reader 𝑹 Tag 𝑻

Initialisation Phase

Qubit Transmission Phase

𝑁𝑅

Shared secret 𝐾Share secret 𝐾

Choose a random nonce 𝑁!

𝑁"

Choose a random nonce 𝑁"

𝐷||𝐵 = 𝑃𝑅𝐹#(𝑁! , 𝑁")Compute:  
𝐷||𝐵 = 𝑃𝑅𝐹#(𝑁! , 𝑁")Compute:  

𝐶$
If C% = 0, prepare⎹ 𝐶$⟩ according to 𝐷$

Pick 𝐶$ ← {0,1}

If C% = 0, measure⎹ 𝐶$⟩ in 𝐷$
If C% = 1, measure⎹ 𝐶$⟩ in 𝐵$
Check if measured result
is the same as 𝐶$
Check if Δ𝑡$ < 𝜏!""

Start Clock

Stop Clock If C% = 1, prepare⎹ 𝐶$⟩ according to 𝐵$
⎹ 𝐶$⟩

Figure 5. Improved RAD protocol.

4.1. Security of the Countermeasure

Here we analyse the security of the improved RAD protocol against distance fraud, mafia fraud
(or relay attack), terrorist fraud, and distance hijacking. We assume that the bit length of D and B are n,
respectively, and that qubit transmission phases comprises n rounds of challenge-response.

Distance fraud (DF). In this attack, a dishonest prover (or tag) attempts to shorten the distance
to the verifier (or reader) by sending the responses before receiving the challenges by guessing them.
Since the verifier chooses its challenges at random, the dishonest prover can only predict the challenge
correctly with probability 1/2 in each round. So, after n rounds of qubit transmission phase, the success
probability will be (1/2)n. The dishonest prover can also send a qubit encoding a random bit using
either one of the two register values (Bi or Di) as encoding basis as response. But the verifier will obtain
the expected result with probability 1/2. Therefore, distance fraud on the improved RAD protocol has
a success probability of (1/2)n.
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Mafia fraud (MF) (or relay attack). This is a man-in-the-middle attack, whereby an adversary
uses a proxy-prover close to the verifier and a proxy-verifier close to the honest prover to relay the
messages exchanged between the prover and verifier over possibly a long distance [21]. In this
attack, first the adversary simply relays the initialisation phase between the verifier and the prover,
then executes qubit transmission phase with the prover, before the verifier starts it. Afterwards,
it performs the qubit transmission phase with the verifier. In particular, the adversary asks the prover
for responses for randomly chosen challenges in advance, then uses these responses to answer the
verifier’s actual challenges. So, there are two cases to consider in this attack:

• Case 1: the adversary’s challenges match the verifier’s challenges. In this case, the attacker can
simply use the prover’s responses, so the adversary succeeds with certainty.

• Case 2: the adversary’s challenges do not match the verifier’s challenges. In this case, the adversary
knows which value to encode as a qubit to respond to the verifier, but there are two possible states
to choose, since it does not know the register values which determine the basis, and in the state.
So in this case the attacker succeeds with probability 1/2.

Since Case 1 and Case 2 occur with equal probability 1/2, attacker’s total success probability is
3/4 in one round of qubit transmission phase, or (3/4)n in n rounds.

Terrorist fraud. In this attack, a dishonest prover helps an adversary to prove to the verifier
that it is in close proximity of the verifier, without leaking any information about its secret key.
Terrorist-fraud resistant protocols are designed in such a way that revealing the values of B and D
would reveal secret key K. Therefore, our improved RAD protocol is not terrorist fraud resistant
in the current form. However, the scheme can be made resistant to terrorist frauds by letting
D = PRFK(NR, NT), B = EncD(K), so that knowledge of D and B reveals K.

Distance hijacking. In this attack, a dishonest far away prover exploits honest provers that are
located close to the verifier by hijacking their normal DB protocol execution [22]. Protocols that are
derived from the original Brands and Chaum protocol [2] are vulnerable to distance hijacking, as they
allow the attacker to highjack the messages sent from the prover to the verifier in the last phase of
the protocol. Hancke and Kuhn protocol and others that are derived from it are resistant against
distance hijacking, specially in single-protocol environments [22], since these protocols use the shared
key between the prover and the verifier. Our improved RAD protocol also protects against distance
hijacking, since it uses the shared secret.

4.2. Comparison with the State of the Art

The improved RAD protocol is a hybrid DB protocol, in the sense that the challenge-response
phase comprises both classical bits (for challenges) and qubits (for responses). In Table 2, we compare
our protocol with two recently proposed quantum DB protocols (cf. Section 5) and two classical DB
protocols from which all other DB protocols are derived. We refer to [23], and the references therein,
for a recent survey on DB protocols. As we can see from the table, our protocol compares favourably
with the state of the art.

Table 2. Comparison of the improved RAD protocol with classical and quantum DB protocols.

Distance Fraud Mafia Fraud

Brands-Chaum [2]
(

1
2

)n (
1
2

)n

Hanke-Kuhn [3]
(

3
4

)n (
3
4

)n

Quantum DB [16]
(

3
4

)n (
3
4

)n

Quantum DB [17]
(

1
2

)HD(B,D)
max

( (
1
2

)HD(B,D)
,
(

5
8

)n )
Improved RAD

(
1
2

)n (
3
4

)n
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4.3. Feasibility

In addition to classical hardware components needed for implementation of DB protocols,
our protocol further requires quantum components for qubit preparation (on the prover side)
and measurement (on the verifier side). Since these quantum components are part of currently
available Quantum Key Distribution (QKD) technology, our protocol is readily feasible. In particular,
the same experimental setup for the quantum transmission and measurement phase in QKD can
be applied to implement our protocol. QKD has not only been experimentally tested [24], but also
commercially available.

5. Related Work

Since this work is on relay attack detection using qubits, we only present DB protocols that use
qubits. To the best of the author’s knowledge, there are two recently proposed DB protocols [16,17]
that employ qubits instead of classical bits for the challenge-response.

Figures 6 and 7 illustrates the protocols in [16,17], respectively. As can be seen from the figures,
the protocol in [16] comprises also of a third phase in which the tag sends a Message Authentication
Code (MAC) tag of a message composed of the measured challenges, nonces exchanged in the
initialisation phase, and both the reader and the tag’s IDs. The protocol in [17] improves upon the
protocol in [16] to eliminate the need for the last authentication phase. Both of these protocols appear
similar to the improved RAD protocol.

Reader 𝑹 Tag 𝑻

Initialisation Phase

Qubit Transmission Phase

𝑁𝑅

Shared secret 𝐾Share secret 𝐾

Choose a random nonce 𝑁&

𝑁'

Choose a random nonce 𝑁'

𝐷 = 𝑃𝑅𝐹,(𝑁&, 𝑁')Compute:  
𝐷 = 𝑃𝑅𝐹,(𝑁&, 𝑁')Compute:  

Measure⎹ 𝐶2⟩ in 𝐷2 &
store	the	result	in	𝐶2

Pick 𝐶2 ← {0,1}

Measure⎹ 𝐶2⟩ in 𝐷2
Check if measured result
is the same as 𝐶2
Check if Δ𝑡2 < 𝜏&''

Start Clock

Stop Clock
⎹ 𝐶2⟩

Prepare⎹ 𝐶2⟩ according to 𝐷2

Prepare⎹ 𝐶2⟩ according to 𝐷2

⎹ 𝐶2⟩

Authentication Phase

MAC,(ID', ID&, 𝑁', 𝑁&, 𝐶)Verify the MAC 𝐶 = 𝐶U| 𝐶W |⋯ ||𝐶Y

Figure 6. A quantum DB protocol proposed in [16].
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Reader 𝑹 Tag 𝑻
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𝑁𝑅
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Choose a random nonce 𝑁&

𝑁'
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𝐷||𝐵 = 𝑃𝑅𝐹.(𝑁&, 𝑁')Compute:  
𝐷||𝐵 = 𝑃𝑅𝐹.(𝑁&, 𝑁')Compute:  

Measure⎹ 𝐶4⟩ in 𝐷4 &	get	𝐶4
Pick 𝐶4 ← {0,1}

Measure⎹ 𝐶4⟩ in 𝐵4
Check if measured result
is the same as 𝐶4
Check if Δ𝑡4 < 𝜏&''

Start Clock

Stop Clock
⎹ 𝐶4⟩

Prepare⎹ 𝐶4⟩ according to 𝐷4

Prepare⎹ 𝐶4⟩ according to 𝐵4

⎹ 𝐶4⟩

Figure 7. A quantum DB protocol proposed in [17].

6. Conclusions

Relay attacks pose serious security risks to RFID systems. Relay attacks can be mitigated by
using distance bounding (DB) protocols, which involves accurate round-trip time (RTT) measurement.
Since accurate RTT measurement introduces challenges in the implementation of DB protocols, a new
RFID protocol, known as RAD protocol, for detecting relay attacks using qubits was proposed by
Jannati and Ardeshir-Larijani [18]. In this paper we first showed that the RAD protocol is still
vulnerable to relay attacks. We then improved upon the RAD protocol by basically turning the protocol
into a DB protocol, and analysed its security. Finally, we compared our protocol with the state of the
art, and briefly discussed its feasibility.
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Abbreviations

The following abbreviations are used in this manuscript:

DB Distance bounding
RFID Radio-Frequency Identification
IoT Internet of Things
RAD Relay attack detection
QKD Quantum key distribution
PRF Pseudo-random function
RTT Round-trip time
MAC Message Authentication Code
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