
cryptography

Article

New Mathblocks-Based Feistel-Like Ciphers for
Creating Clone-Resistant FPGA Devices

Saleh Mulhem * and Wael Adi

Institute of Computer and Network Engineering, Technical University of Braunschweig,
38106 Braunschweig, Germany; w.adi@tu-bs.de
* Correspondence: s.mulhem@tu-bs.de

Received: 28 October 2019; Accepted: 26 November 2019; Published: 17 December 2019
����������
�������

Abstract: The Secret Unknown Cipher (SUC) concept was introduced a decade ago as a promising
technique for creating pure digital clone-resistant electronic units as alternatives to the traditional
non-consistent Physical Unclonable Functions (PUFs). In this work, a very special unconventional
cipher design is presented. The design uses hard-core FPGA (Field Programmable Gate Arrays)
-Mathblocks available in modern system-on-chip (SoC) FPGAs. Such Mathblocks are often not
completely used in many FPGA applications; therefore, it seems wise to make use of such dead
(unused) modules to fabricate usable physical security functions for free. Standard cipher designs
usually avoid deploying multipliers in the cipher mapping functions due to their high complexity.
The main target of this work is to design large cipher classes (e.g., cipher class size >2600) by
mainly deploying the FPGA specific mathematical cores. The proposed cipher designs are novel
hardware-oriented and new in the public literature, using fully new unusual mapping functions. If a
random unknown selection of one cipher out of 2600 ciphers is self-configured in a device, then a Secret
Unknown Cipher module is created within a device, making it physically hard to clone. We consider
the cipher module for free (for zero cost) if the major elements in the cipher module are making use of
unused reanimated Mathblocks. Such ciphers are usable in many future mass products for protecting
vehicular units against cloning and modeling attacks. The required self-reconfigurable devices for
that concept are not available now; however, they are expected to emerge in the near future.

Keywords: Feistel-like cipher; secret unknown cipher; physical unclonable function; Latin square;
involution; golden S-Boxes; FPGA system-on-chip

1. Introduction

One of the most significant security threats to emerging electronic devices is cloning or theft
of identity. Therefore, the security requirements are steadily growing to face such threats and challenges.
In the last decades, several proposals were introduced for identifying an electronic device by using a
secret stored key in an embedded non-volatile memory (NVM) [1]. Unfortunately, such technology
has been proven inefficient against physical attacks [2]. Alternatively, Physically Unclonable Functions
(PUFs) were proposed to serve as unclonable identities for electronic devices [3,4] as an alternative
to key storage in NVM [4]. The main idea of PUFs is to seek a physical mapping out of the intrinsic
properties or physical structures of a device. However, major results showed that PUF technologies
suffer from lacking consistency over a long period of time due to several factors such as noise, aging,
metastability, sensitivity to temperature, supply voltage variations, and other factors [4]. Moreover, PUF
output response bits suffer from being non-uniformly distributed [4], which leads to offering more
correlations between PUF input/ output pairs or the so-called Challenge–Response Pairs (CPRs),
in other words simplifying the modeling attacks. In this case, a set of CRPs can be given as a training
set to a Machine learning (ML) algorithm, which constructs a predictive model of the PUF. For instance,

Cryptography 2019, 3, 28; doi:10.3390/cryptography3040028 www.mdpi.com/journal/cryptography

http://www.mdpi.com/journal/cryptography
http://www.mdpi.com
https://orcid.org/0000-0001-7380-5270
http://www.mdpi.com/2410-387X/3/4/28?type=check_update&version=1
http://dx.doi.org/10.3390/cryptography3040028
http://www.mdpi.com/journal/cryptography

Cryptography 2019, 3, 28 2 of 27

several predictive models of various PUFs were given with error rates less than 1% for Arbiter PUFs,
4.5 % for Feed Forward Arbiter PUFs, and less than 1% for Ring Oscillator PUFs [5].

The inconsistency behavior of PUF CRPs were counteracted by adding a complex error-correcting
fuzzy extractor [6] using a helper data algorithm (HDA) [7] together with an error correction code
(ECC) [4]. Therefore, most of the proposed PUFs are still very costly to implement.

Furthermore, PUFs can be perceived as a physically unclonable source of randomness. The random
physical factors are initiated during manufacturing. These random and unpredictable factors provide
a PUF structure with a high level of the obscurity, unknowingness, and making the PUF substantially
impossible to clone [8]. Further, PUFs were gradually defined as a physical one-way function
(POWF) [9], then as a controlled physical random function [10], and recently as a physical unknown
function [11].

This paper introduces a new proposal of an unknown cipher/ function serving as a digital PUF.
As the concept of secret unknown ciphers is not well known in the public literature, the paper’s
technical presentation is sequenced and organized as follows:

• The state of the art of currently used unknown functions such as PUFs, PUF-based unknown key
generation, etc. is critically presented showing their vulnerabilities and drawbacks in Section 2.

• The concept of the Secret Unknown Ciphers (SUCs) and their creation process toward building
clone-resistant devices are presented in Section 3.

• The usage of hard-core arithmetic modules in designing the proposed unknown ciphers/functions
are explained in Section 4 based on the existing resources of a modern FPGA technology such as
Microsemi Smart-Fusion®2.

• New cipher classes based on mainly deploying multipliers in the ring of integers as Feistel-like
ciphers classes are presented in Section 5.

• Sample hardware modeling and a complexity evaluation of such cipher classes and their security
analysis are discussed and investigated in Sections 6–8.

New Contributions: This work is a new approach and improvement to follow our recent
publications [12–14] toward developing unknown cipher functions to serve as digital PUFs. This paper
introduces novel Mathblocks-based involutions for a Feistel-like class of new Secret Unknown
Ciphers (SUCs) structures within modern FPGA devices. The new involutions are proved to
exhibit efficient combined confusion and diffusion at the same time. The overall resulting security
quality and implementation efficiency is shown to exceed the conventional cipher structures in
anti-cloning applications.

2. State of the Art on Unclonable Electronic Units

In the following, PUFs and other proposals based on PUFs are summarized as unknown
physical functions. Firstly, intrinsic PUFs [3] as unknown functions are presented. Then, PUF-based
unknown key generation for a block cipher, especially for a pseudo-random function (PRF) [15],
are investigated. Finally, a block cipher deploying PUFs [16] as an unknown function is presented.
The following three technical discussions on PUFs are presented with some details as being closely
related to the objectives of our cipher proposal.

2.1. PUFs as Unkown/Random Functions

This is a case of describing PUFs as unknown functions, where a formalization of a PUF technology
can be presented and described as follows:

Definition 1. Let ΓPUF be a set of certain PUFs, and PUF ∈ ΓPUF. Then, PUF is defined as a mapping
that is easy to compute, hard to invert, unpredictable, and derived from the random behavior of a complex
physical object/device:

PUF : {0, 1}∗ → {0, 1}∗ (1)

Cryptography 2019, 3, 28 3 of 27

where * is a Kleene star and {0, 1}∗ is the set of all possible binary strings with finite lengths. Note that a PUF is
fundamentally considered to be a mapping from {0, 1}∗ to {0, 1}∗ [9]. According to [17], if a PUF can respond
to every challenge from {0, 1}∗ by a response from {0, 1}∗, then a PUF is a one-way function. However, PUFs
practically do not fulfill the requirements of a one-way function [18]. In this case, a PUF is defined as a mapping
from a finite domain to a finite range,

PUF : {0, 1}m → {0, 1}n. (2)

Furthermore, the number of all possible PUFs is theoretically upper bounded by the number of all
possible mappings from {0, 1}m to {0, 1}n,

|ΓPUF| ≤ 2n·2m
. (3)

If |ΓPUF| = 2n·2m
, then PUFs are seen as unknown/random functions [19]. Unfortunately, there is

no guarantee that a physical object/device can produce this huge number of distinct mappings. This can
be deduced through the following approaches. First, it is assumed that a PUF is “an isolated physical
system S which fits into a sphere of radius R [18]”. The maximum entropy HS (information content) of
PUFs is upper bounded in its volume, as follows [20],

HS ≤ α·R2 (4)

where the constant α is related to physical quantities such as the speed of light, etc. [18].
The second approach uses the information capacity concept [19]. In this case, PUF is defined as a

silicon device that implements a deterministic function, where the silicon object consists of N silicon
cells, such as memory bits, flip-flops, etc. In this case, the maximum information capacity/entropy Imax

of such a PUF is given in [19] as,
Imax ≤ N·C bits (5)

where C� 1 is the information capacity of one cell.
According to Equations (4) and (5), it is concluded that the information capacity of PUFs is limited

and upper bounded. Therefore, the cardinality of ΓPUF is upper bounded as,

|ΓPUF| � 2n2m
. (6)

This implies that a PUF from a ΓPUF is not a random function [19].

2.2. PUF-Based Unkown Key Generation for Pseudo-Random Fuctions

This is a case of using an unknown key for a known cipher [15] where a PUF-based key generation
for a standard block cipher can be simply constructed by choosing a conventional cipher and taking
the key source as the PUF output/response K to some known input Z0.

The resulting cipher with the unknown key K behaves precisely as a randomly chosen function
from {0, 1}n to {0, 1}m. Therefore, the resulting cipher’s behavior fulfills the requirements to represent a
PRF. As the cipher is public, the attack complexity is 2m, where m is the size of the unknown key K.

In [21], PUF-based key generation for cryptographic application was practically investigated.
Sadeghi et al. [15] combined key storage and strong PUF to produce an unknown key for a cipher, as
shown in Figure 1. This proposal achieves a high level of security, where the PUF’s response approaches
a PRF behavior, and it becomes hard to be impersonated or to be modeled. Unfortunately, the resulting
cipher structure still requires an additional complex fuzzy extractor and helper data to make the PUF
respond with a consistent output (unknown key K).

Cryptography 2019, 3, 28 4 of 27
Cryptography 2019, 4, x FOR PEER REVIEW 4 of 27

PUF

Unknown Key Generated by a PUF

Block
Cipher Used Ciphertext

• Using PUF as Key Generator for a Cipher.
• The Cipher with its Unknown Key Operates as a Secure Randomizer

“Block-Cipher Based on PUF”

Stored Key Z0
(Known to Somebody) Z0

K
Plaintext
(known)

Unknown Key

Unclonable
Entity

Attack complexity 2m

m bits

Figure 1. Randomizing Physical Unclonable Function (PUF) response by using the PUF as an
unknown key source.

In [21], PUF-based key generation for cryptographic application was practically investigated.
Sadeghi et al. [15] combined key storage and strong PUF to produce an unknown key for a cipher, as
shown in Figure 1. This proposal achieves a high level of security, where the PUF’s response
approaches a PRF behavior, and it becomes hard to be impersonated or to be modeled.
Unfortunately, the resulting cipher structure still requires an additional complex fuzzy extractor and
helper data to make the PUF respond with a consistent output (unknown key K).

2.3. A Block Cipher Deploying PUFs as Unkown Round Functions

In this case, an unknown cipher is created by using PUFs as a part of the cipher mappings. In
[16], a block cipher deploying PUFs was proposed, where a cipher is constructed as three cascaded
Feistel cipher rounds with PUFs as round functions (see Figure 2). The resulting cipher fulfills the
requirements of being a PRF.

Plaintext

L R

Ciphertext

S T

PUF1

PUF2

PUF3

w1

w2

w3

Helper Data

Random Value

ρ

n-bit

n-bit

n-bit

n-bit

Figure 2. A randomized three-round Feistel cipher-based on PUFs [16].

In [19], Wu and O’Neill determined the necessary condition for a block cipher deploying PUFs to
become a PRF. The results showed that such a cipher should have a high level of diffusion and
confusion to become a PRF. In Figure 2, a Feistel cipher based on PUFs represents an efficient

Figure 1. Randomizing Physical Unclonable Function (PUF) response by using the PUF as an unknown
key source.

2.3. A Block Cipher Deploying PUFs as Unkown Round Functions

In this case, an unknown cipher is created by using PUFs as a part of the cipher mappings.
In [16], a block cipher deploying PUFs was proposed, where a cipher is constructed as three cascaded
Feistel cipher rounds with PUFs as round functions (see Figure 2). The resulting cipher fulfills the
requirements of being a PRF.

Cryptography 2019, 4, x FOR PEER REVIEW 4 of 27

PUF

Unknown Key Generated by a PUF

Block
Cipher Used Ciphertext

• Using PUF as Key Generator for a Cipher.
• The Cipher with its Unknown Key Operates as a Secure Randomizer

“Block-Cipher Based on PUF”

Stored Key Z0
(Known to Somebody) Z0

K
Plaintext
(known)

Unknown Key

Unclonable
Entity

Attack complexity 2m

m bits

Figure 1. Randomizing Physical Unclonable Function (PUF) response by using the PUF as an
unknown key source.

In [21], PUF-based key generation for cryptographic application was practically investigated.
Sadeghi et al. [15] combined key storage and strong PUF to produce an unknown key for a cipher, as
shown in Figure 1. This proposal achieves a high level of security, where the PUF’s response
approaches a PRF behavior, and it becomes hard to be impersonated or to be modeled.
Unfortunately, the resulting cipher structure still requires an additional complex fuzzy extractor and
helper data to make the PUF respond with a consistent output (unknown key K).

2.3. A Block Cipher Deploying PUFs as Unkown Round Functions

In this case, an unknown cipher is created by using PUFs as a part of the cipher mappings. In
[16], a block cipher deploying PUFs was proposed, where a cipher is constructed as three cascaded
Feistel cipher rounds with PUFs as round functions (see Figure 2). The resulting cipher fulfills the
requirements of being a PRF.

Plaintext

L R

Ciphertext

S T

PUF1

PUF2

PUF3

w1

w2

w3

Helper Data

Random Value

ρ

n-bit

n-bit

n-bit

n-bit

Figure 2. A randomized three-round Feistel cipher-based on PUFs [16].

In [19], Wu and O’Neill determined the necessary condition for a block cipher deploying PUFs to
become a PRF. The results showed that such a cipher should have a high level of diffusion and
confusion to become a PRF. In Figure 2, a Feistel cipher based on PUFs represents an efficient

Figure 2. A randomized three-round Feistel cipher-based on PUFs [16].

In [19], Wu and O’Neill determined the necessary condition for a block cipher deploying PUFs to
become a PRF. The results showed that such a cipher should have a high level of diffusion and confusion
to become a PRF. In Figure 2, a Feistel cipher based on PUFs represents an efficient structure as a PRF,
but it still requires additional helper data in addition to the PUFs to produce consistent outputs.

3. The Concept of Secret Unknown Ciphers Modules as PUF Alternatives

The unknown cipher concept is an entirely new security paradigm in the public literature. The
unknown cipher here does not deal with protecting the communications or the links between at least
two parties, as a sender and a receiver, which requires the cipher to be commonly known to both
parties (Kerckhoffs’s principle). In particular, the SUC is fundamentally designed for the identification
process to serve as a clone-resistant identity [22]. We postulate that “unclonability” is only possible

Cryptography 2019, 3, 28 5 of 27

if unknown structures are created. Therefore, a cipher designed to be embedded as a structure that
is unknown to anybody (including its designer) does not violate Kerckhoff’s principle. On the other
hand, SUC should not be confused with “security by obscurity”, where the cipher is designed by a
cryptographer, known to the manufacturer, and then kept secret and obscure.

SUC creation is a very challenging task. Figure 3 illustrates the SUC creation concept in a
non-volatile (NV) FPGA device having internal self-reconfiguration capability. A large class of ciphers
{C1, C2 . . . Cσ} are first created σ→∞ and offered for selection. Then, a single-event process triggers
a true random number generator (TRNG), leading to select randomly an unknown cipher choice Cj
from the infinite number σ of the created distinct ciphers. After this process, all the dashed entities in
Figure 3 are then irreversibly killed and fully removed from the chip.

Cryptography 2019, 4, x FOR PEER REVIEW 5 of 27

structure as a PRF, but it still requires additional helper data in addition to the PUFs to produce
consistent outputs.

3. The Concept of Secret Unknown Ciphers Modules as PUF Alternatives

The unknown cipher concept is an entirely new security paradigm in the public literature. The
unknown cipher here does not deal with protecting the communications or the links between at least
two parties, as a sender and a receiver, which requires the cipher to be commonly known to both
parties (Kerckhoffs’s principle). In particular, the SUC is fundamentally designed for the
identification process to serve as a clone-resistant identity [22]. We postulate that “unclonability” is
only possible if unknown structures are created. Therefore, a cipher designed to be embedded as a
structure that is unknown to anybody (including its designer) does not violate Kerckhoff’s principle.
On the other hand, SUC should not be confused with “security by obscurity”, where the cipher is
designed by a cryptographer, known to the manufacturer, and then kept secret and obscure.

SUC creation is a very challenging task. Figure 3 illustrates the SUC creation concept in a
non-volatile (NV) FPGA device having internal self-reconfiguration capability. A large class of
ciphers {C1, C2 … Cσ} are first created 𝜎 → ∞ and offered for selection. Then, a single-event process
triggers a true random number generator (TRNG), leading to select randomly an unknown cipher
choice Cj from the infinite number σ of the created distinct ciphers. After this process, all the dashed
entities in Figure 3 are then irreversibly killed and fully removed from the chip.

The resulting cipher is a secret yet unknown cipher, and is a non-repeatable selection. It is even
an unknown choice to the cipher designer/creator himself. The “Secret Unknown Cipher” (SUC) is
realizable in an emerging VLSI device that allows self-creation of permanent unknown usable secret
structures as “an electronic mutation”, as indicated in [23]. Note that for the functionality of the
concept, there is no need to publish the SUC creation procedure/program of the cipher class, which
is designated from now on as the “GENIE” as a smart cipher designer. However, for worst-case
security analysis, we assume that the cipher creating “GENIE” is published.

Following other cryptographers who use the term Oracle (inspired by the gods) to describe a
theoretical black box model, the term GENIE is inspired from the oriental folk tales of One Thousand
and One Nights. In the tales, a powerful ghost called GENIE can make all wishes come true; however,
nobody knows how the GENIE can grant all wishes. In the ultimate case, our GENIE is a powerful
cryptographer who can virtually create all possible ciphers of a given size.

TRNG

SoC non-Volatile FPGA

C1 C2 C3 Cj
Cσ-1 C σ… …Large Ciphers Data Base

Cj

Created
Secret Unknown Cipher

SUC

GENIE

σ Ciphers

Plaintext Ciphertext

Figure 3. Key idea for generating a Secret Unknown Cipher (SUC).

3.1. Creation Concept of Unknown Ciphers as Clone-Resistant Entities/Modules

Figure 3. Key idea for generating a Secret Unknown Cipher (SUC).

The resulting cipher is a secret yet unknown cipher, and is a non-repeatable selection. It is even
an unknown choice to the cipher designer/creator himself. The “Secret Unknown Cipher” (SUC) is
realizable in an emerging VLSI device that allows self-creation of permanent unknown usable secret
structures as “an electronic mutation”, as indicated in [23]. Note that for the functionality of the
concept, there is no need to publish the SUC creation procedure/program of the cipher class, which is
designated from now on as the “GENIE” as a smart cipher designer. However, for worst-case security
analysis, we assume that the cipher creating “GENIE” is published.

Following other cryptographers who use the term Oracle (inspired by the gods) to describe a
theoretical black box model, the term GENIE is inspired from the oriental folk tales of One Thousand
and One Nights. In the tales, a powerful ghost called GENIE can make all wishes come true; however,
nobody knows how the GENIE can grant all wishes. In the ultimate case, our GENIE is a powerful
cryptographer who can virtually create all possible ciphers of a given size.

3.1. Creation Concept of Unknown Ciphers as Clone-Resistant Entities/Modules

The proposed SUC is conceptually based on the following principle: “the only secret which can
be kept unrevealed is the one which nobody knows” [13]. From a practical point of view, if the cipher
creator itself cannot predict and foretell exactly the created cipher, then the cipher is considered as not
known when the cipher class size σ→∞ .

Figure 4 illustrates a possible SUC creation that is assumed to be processed in a secure environment.
The process may proceed as follows:

Cryptography 2019, 3, 28 6 of 27

Cryptography 2019, 4, x FOR PEER REVIEW 6 of 27

The proposed SUC is conceptually based on the following principle: “the only secret which can
be kept unrevealed is the one which nobody knows” [13]. From a practical point of view, if the
cipher creator itself cannot predict and foretell exactly the created cipher, then the cipher is
considered as not known when the cipher class size 𝜎 → ∞.

Figure 4 illustrates a possible SUC creation that is assumed to be processed in a secure
environment. The process may proceed as follows:
SUC creation phase:
1. A trusted authority (TA) injects one-time into a system-on-chip (SoC) device the software

package “GENIE” as an SUC creator for a short time (as much time as required to create an unknown
cipher, usually a few milliseconds).

2. Then, the GENIE is internally triggered to generate/select a permanent and unpredictable secure
cipher with the help of an internal, non-repeatable, unpredictable, and unknown bit stream from
the in-chip TRNG.

3. After creating an SUC, the GENIE is completely and irreversibly deleted. What remains is a
non-removable and unchangeable operational cipher (a SUC) that nobody knows.

SUC personalization phase:
1. TA randomly selects a set {𝑥ଵ , … 𝑥்} of cleartext vectors out of the 2n possible combinations,

where n is the size of the SUC input/output space in bits.
2. TA stimulates the SoCA device to encipher the cleartext vectors into the ciphertexts {y1, … yT}

using its SUC within the device.
3. The resulting T-(xi ,yi) pairs are stored as secret pairs in the individual (personal) device records

by the TA. The records have to be kept secret for later use.

GENIE

X

X1 Y1

X2 Y2

Xi Yi

XT YT

Secret X/Y pairs Records

One time Process

Trusted Authority

1

Y

Created Secret
Cipher known

only to the chip

4

Cipher
creation

TRNG
2

Secure Environment

3

𝑿𝟏 , … 𝑿𝑻
𝒀𝟏 , … 𝒀𝑻
5

6

Figure 4. Mutating a Secret Unknown Cipher (SUC) into a system-on-chip (SoC) device.

As the created TRNG bits are fully and exclusively responsibly for creating the SUC, and as
TRNG bits are unpredictable, non-repeatable, and unknown, the resulting created SUC in the SoC
device is also unknown and unpredictable, such that: 𝑆𝑈𝐶௧ = 𝐺𝐸𝑁𝐼𝐸(𝑇𝑅𝑁𝐺௧). (7)

For every t > 0. This implies that 𝑆𝑈𝐶௧: {0,1}௡ × {0,1}௞೟ → {0,1}௡ (8)

where n is the bit size of the SUC input/output space and kt is the bit size of the cipher’s secret key. In
addition, SUC has the property of being able to generate a large number of distinct CRPs as

Figure 4. Mutating a Secret Unknown Cipher (SUC) into a system-on-chip (SoC) device.

SUC creation phase:

1. A trusted authority (TA) injects one-time into a system-on-chip (SoC) device the software package
“GENIE” as an SUC creator for a short time (as much time as required to create an unknown cipher,
usually a few milliseconds).

2. Then, the GENIE is internally triggered to generate/select a permanent and unpredictable secure
cipher with the help of an internal, non-repeatable, unpredictable, and unknown bit stream from
the in-chip TRNG.

3. After creating an SUC, the GENIE is completely and irreversibly deleted. What remains is a
non-removable and unchangeable operational cipher (a SUC) that nobody knows.

SUC personalization phase:

4. TA randomly selects a set {x1, . . . xT} of cleartext vectors out of the 2n possible combinations,
where n is the size of the SUC input/output space in bits.

5. TA stimulates the SoC device to encipher the cleartext vectors into the ciphertexts {y1, . . . yT}
using its SUC within the device.

6. The resulting T-(xi, yi) pairs are stored as secret pairs in the individual (personal) device records
by the TA. The records have to be kept secret for later use.

As the created TRNG bits are fully and exclusively responsibly for creating the SUC, and as TRNG
bits are unpredictable, non-repeatable, and unknown, the resulting created SUC in the SoC device is
also unknown and unpredictable, such that:

SUCt = GENIE(TRNGt). (7)

For every t > 0. This implies that

SUCt : {0, 1}n × {0, 1}kt → {0, 1}n (8)

where n is the bit size of the SUC input/output space and kt is the bit size of the cipher’s secret key.
In addition, SUC has the property of being able to generate a large number of distinct CRPs as
cleartext/ciphertext pairs, which is upper bounded by 2n. This counteracts the lack of CR space in the
case of traditional analog PUFs.

Cryptography 2019, 3, 28 7 of 27

The created cipher SUCt is a result of the TRNGt random sequence that is not known to anybody.
Moreover, it is highly probable that for any two-time points t1 and t2,

TRNGt1 , TRNGt2 → SUCt1 , SUCt2 . (9)

Therefore, each resulting SoC device has its individual SUC with a probability
(
1− 1

σ

)
→ 1 .

How to Use an SUC?

Figure 5 shows a generic two-way identification protocol using such SUCs for authenticating a
personalized SoCA device.

Cryptography 2019, 4, x FOR PEER REVIEW 7 of 27

cleartext/ciphertext pairs, which is upper bounded by 2n. This counteracts the lack of CR space in the
case of traditional analog PUFs.

The created cipher SUCt is a result of the TRNGt random sequence that is not known to
anybody. Moreover, it is highly probable that for any two-time points t1 and t2, 𝑇𝑅𝑁𝐺௧భ ≠ 𝑇𝑅𝑁𝐺௧మ → 𝑆𝑈𝐶௧భ ≠ 𝑆𝑈𝐶௧మ. (9)

Therefore, each resulting SoC device has its individual SUC with a probability ()11 1σ− → .

How to Use an SUC?
Figure 5 shows a generic two-way identification protocol using such SUCs for authenticating a

personalized SoCA device.
An SUC-based identification protocol may proceed as follows:

1. A secret pair (xi ,yi) is randomly chosen from the TA’s secret records of SoCA. Then, the TA
challenges the SoCA device by the cryptogram yi over an insecure channel.

2. The SoCA device responds by sending the decrypted cleartext x’i.
3. If x’i = xi, then the SoCA device is deemed to be authentic, and the pair (xi ,yi) is then marked as a

used pair and never used again avoiding replay attack for highest security.

Trusted Authority

SoCA Device

Secure Environment

(xi, yi)

SoCA record

x1 y1

… …

xi yi

… …

xT yT

x’i

1

2

3

SUCA
-1

yi

Insecure Environment

X i = X’i
? Accept

Notice: !! never use the pair Xi , Yi again !!

yes

Reject

no

One-time
ticket

Figure 5. Two-way identification protocol over an insecure channel.

3.3. Modeling Attacks and Clone-Resistance Measures

Machine learning (ML) can be deployed to create a predictive model of an unknown function,
algorithm, and/or concept by analyzing some training data [24]. Such a learning approach can be
used for cryptanalysis [25], especially for modeling attacks on PUFs [5]. In a special case, if a learner
L can predict the output of a PRF such as f based on past training data such as (x1,f(x1)), …, (xq, f(xq)),
then L can be used to distinguish the output of this PRF f [24], and f is not a secure PRF.

A secure PRF concept postulates that the output of PRF is statistically independent of the
training data and uncorrelated with any learner [24]. Therefore, if a designed SUC is a secure PRF,
then there is no ML algorithm that can build a predictive model for such an SUC. In this case, the
SUC is a modeling-resistant structure.

On the other hand, cloning an entity indicates the ability of reproducing the same entity. The
unclonability of an SUC comes from the fact that nobody knows its structure. The important issue
that the cipher designer faces is how to generate a cipher that the designer himself cannot predict.

The cloning-resistance entropy (HCRE) for an SUC is proportional to the number σ of all possible
choices of a randomly selected SUC, so that HCRE is defined as:

Figure 5. Two-way identification protocol over an insecure channel.

An SUC-based identification protocol may proceed as follows:

1. A secret pair (xi, yi) is randomly chosen from the TA’s secret records of SoCA. Then, the TA
challenges the SoCA device by the cryptogram yi over an insecure channel.

2. The SoCA device responds by sending the decrypted cleartext x’i.
3. If x’i = xi, then the SoCA device is deemed to be authentic, and the pair (xi, yi) is then marked as a

used pair and never used again avoiding replay attack for highest security.

3.2. Modeling Attacks and Clone-Resistance Measures

Machine learning (ML) can be deployed to create a predictive model of an unknown function,
algorithm, and/or concept by analyzing some training data [24]. Such a learning approach can be used
for cryptanalysis [25], especially for modeling attacks on PUFs [5]. In a special case, if a learner L can
predict the output of a PRF such as f based on past training data such as (x1,f (x1)), . . . , (xq, f (xq)), then
L can be used to distinguish the output of this PRF f [24], and f is not a secure PRF.

A secure PRF concept postulates that the output of PRF is statistically independent of the training
data and uncorrelated with any learner [24]. Therefore, if a designed SUC is a secure PRF, then there
is no ML algorithm that can build a predictive model for such an SUC. In this case, the SUC is a
modeling-resistant structure.

Cryptography 2019, 3, 28 8 of 27

On the other hand, cloning an entity indicates the ability of reproducing the same entity.
The unclonability of an SUC comes from the fact that nobody knows its structure. The important issue
that the cipher designer faces is how to generate a cipher that the designer himself cannot predict.

The cloning-resistance entropy (HCRE) for an SUC is proportional to the number σ of all possible
choices of a randomly selected SUC, so that HCRE is defined as:

HCRE(SUC) = log2(σ). (10)

If HCRE is a significant cryptographically large value, then the proposed SUC is claimed to be
cloning resistance. The SUC design proposal is targeting HCRE > 500 bits; that is, the cloning complexity
is larger than 2500 cycles and/or memory bits.

In the following sections, a cipher creation strategy deploying modern VLSI devices as non-volatile
FPGAs is presented. The key objective of this work is to use existing FPGA resources in an efficient
way for creating very large classes of cipher structures and particularly by using the existing hard cores
of arithmetic mathematical blocks called (Mathblocks). Such blocks are capable of multiplying and
adding what would be the basic building blocks of the proposed SUC cipher structures to come up
with low-cost realization possibilities by consuming available structures.

4. New SUC Implementation Strategy and Target FPGA Environment

The only non-volatile flash-based FPGA technology with programmable cells is available via
Microsemi Smart-Fusion®2 devices. Some of the main features of the Smart-Fusion®2 FPGAs are
flash-based fabric cells, a microcontroller subsystem based on an ARM Cortex-M3 processor, and
high-speed hard cores of arithmetic Mathblocks called MACCs, including multipliers and adders [26].

The integrated MACCs are optimized to efficiently perform a DOT product mode as a 9 × 9
(8 × 8 unsigned integers) multiplication and a normal mode as an 18 × 18 (17 × 17 unsigned integers)
multiplication, as shown in Figures 6 and 7, respectively.

Cryptography 2019, 4, x FOR PEER REVIEW 8 of 27

𝐻஼ோா(𝑆𝑈𝐶) = logଶ(𝜎). (10)

If HCRE is a significant cryptographically large value, then the proposed SUC is claimed to be
cloning resistance. The SUC design proposal is targeting HCRE >500 bits; that is, the cloning
complexity is larger than 2500 cycles and/or memory bits.

In the following sections, a cipher creation strategy deploying modern VLSI devices as
non-volatile FPGAs is presented. The key objective of this work is to use existing FPGA resources in
an efficient way for creating very large classes of cipher structures and particularly by using the
existing hard cores of arithmetic mathematical blocks called (Mathblocks). Such blocks are capable
of multiplying and adding what would be the basic building blocks of the proposed SUC cipher
structures to come up with low-cost realization possibilities by consuming available structures.

4. New SUC Implementation Strategy and Target FPGA Environment

The only non-volatile flash-based FPGA technology with programmable cells is available via
Microsemi Smart-Fusion®2 devices. Some of the main features of the Smart-Fusion®2 FPGAs are
flash-based fabric cells, a microcontroller subsystem based on an ARM Cortex-M3 processor, and
high-speed hard cores of arithmetic Mathblocks called MACCs, including multipliers and adders
[26].

The integrated MACCs are optimized to efficiently perform a DOT product mode as a 9 x 9 (8 x
8 unsigned integers) multiplication and a normal mode as an 18 x 18 (17 x 17 unsigned integers)
multiplication, as shown in Figure 6 and Figure 7, respectively.

Carry in

SUB
9

36

44

44

44

A[17:9]

9B[8:0]

C[43:0]

D[43:0]

P[43:0]

9B[17:9]

9A[8:0]

Block Diagram of the Math Block in DOT Product Mode

𝑷 𝟒𝟑: 𝟎 = 𝑨 𝟖: 𝟎 × 𝑩 𝟏𝟕: 𝟗 + 𝑨 𝟏𝟕: 𝟗 × 𝑩 𝟖: 𝟎 + 𝑪 𝟒𝟑: 𝟎 + 𝑫 𝟒𝟑: 𝟎 + 𝑪𝒂𝒓𝒓𝒚 𝒊𝒏

Figure 6. A DOT product mode of SmartFusion®2 FPGA using MACCs [26]. MACCs: high-speed
hard cores of arithmetic Mathblocks.

The new proposed implementation strategy is specially characterized for mainly using the
following building blocks:
• The hard-core FPGA multiplier modules as shown in Figure 7 should be deployed as a backbone

of the designed ciphers. The major novelty of the designed ciphers lies in using such hard-core
multipliers (in normal mode) in the involution function, which includes both confusion and
diffusion properties at the same time.

• The 4-bit look-up tables (LUT) cells should be used as small so-called Golden S-Boxes as
lightweight nonlinear mappings having adequate security properties where each Golden S-Box
requires just 4 x 4-input LUTs [26].

Figure 6. A DOT product mode of SmartFusion®2 FPGA using MACCs [26]. MACCs: high-speed
hard cores of arithmetic Mathblocks [26].

Cryptography 2019, 3, 28 9 of 27Cryptography 2019, 4, x FOR PEER REVIEW 9 of 27

Carry in

SUB
18

36

44

44

A[17:0]

18B[17:0]

C[43:0]

D[43:0]

P[43:0]

Functional Block Diagram of the Math Block in Normal Mode

44

𝑷 𝟒𝟑: 𝟎 = 𝑨 𝟏𝟕: 𝟎 × 𝑩 𝟏𝟕: 𝟎 + 𝑪 𝟒𝟑: 𝟎 + 𝑫 𝟒𝟑: 𝟎 + 𝑪𝒂𝒓𝒓𝒚 𝒊𝒏

A B + C

A

B

C

Figure 7. The constellation of multiply and add (AB+C) in Smart-Fusion®2 FPGA using MACC [26].

The reason for this special building blocks selection:
This implementation strategy is fully unusual in standard cipher designs as multipliers result

with very high hardware complexity. However, in such FPGA technology, plenty of such
multipliers may not be used in many applications and are left as dead entities. Deploying
unused/dead modules for creating SUC structures is considered as a value creating a “reanimation
process” of dead entity in this very special case.

The other DOT product mode of Figure 6 is also an objective of the author in ongoing research,
which is outside of the scope of this paper.

Figure 8 illustrates a possible functional layout after generating an SUC in a FPGA that uses
MACCs interacting with some logical components LUTs consumed from the FPGA fabric and a
minor software service program. This combination of MACCs and logic implemented components
results in the desired target SUC of this proposal.

Sample SmartFusion2 SoC FPGA Structure Device

Fu
nc

tio
na

l H
W

-C
or

e
 i

Functional HW-Core 1

Functional HW-Core n

Memory

ARM Core

I/O

Fu
nc

tio
na

l H
W

-C
or

e
 2

MACCs
Clusters

SUC
Hardware
Components

SUC
Software
Component

Free unused
MACC
Mathblocks

Free unused
FPGA Fabric

Free
Program
NV-memory

Figure 8. A sample layout of an SoC unit after SUC creation [13].

Figure 7. The constellation of multiply and add (AB+C) in Smart-Fusion®2 FPGA using MACC [26].

The new proposed implementation strategy is specially characterized for mainly using the
following building blocks:

• The hard-core FPGA multiplier modules as shown in Figure 7 should be deployed as a backbone
of the designed ciphers. The major novelty of the designed ciphers lies in using such hard-core
multipliers (in normal mode) in the involution function, which includes both confusion and
diffusion properties at the same time.

• The 4-bit look-up tables (LUT) cells should be used as small so-called Golden S-Boxes as lightweight
nonlinear mappings having adequate security properties where each Golden S-Box requires just
4 × 4-input LUTs [26].

The reason for this special building blocks selection:
This implementation strategy is fully unusual in standard cipher designs as multipliers result

with very high hardware complexity. However, in such FPGA technology, plenty of such multipliers
may not be used in many applications and are left as dead entities. Deploying unused/dead modules
for creating SUC structures is considered as a value creating a “reanimation process” of dead entity in
this very special case.

The other DOT product mode of Figure 6 is also an objective of the author in ongoing research,
which is outside of the scope of this paper. Figure 8 illustrates a possible functional layout after
generating an SUC in a FPGA that uses MACCs interacting with some logical components LUTs
consumed from the FPGA fabric and a minor software service program. This combination of MACCs
and logic implemented components results in the desired target SUC of this proposal.

The ultimate security level of the SUC in FPGA technology is attained if the cipher locations in
the layout are random and unknown. Note that the random and individual location of each SUC
minimizes the risk of physical attacks considerably. This is even true when the adversary tries to obtain
information by probing points inside the chip [27]. Random unknown allocating of the SUC structures
physically in the FPGA layout is the subject of ongoing research and is outside the scope of this work.

Cryptography 2019, 3, 28 10 of 27

Cryptography 2019, 4, x FOR PEER REVIEW 9 of 27

Carry in

SUB
18

36

44

44

A[17:0]

18B[17:0]

C[43:0]

D[43:0]

P[43:0]

Functional Block Diagram of the Math Block in Normal Mode

44

𝑷 𝟒𝟑: 𝟎 = 𝑨 𝟏𝟕: 𝟎 × 𝑩 𝟏𝟕: 𝟎 + 𝑪 𝟒𝟑: 𝟎 + 𝑫 𝟒𝟑: 𝟎 + 𝑪𝒂𝒓𝒓𝒚 𝒊𝒏

A B + C

A

B

C

Figure 7. The constellation of multiply and add (AB+C) in Smart-Fusion®2 FPGA using MACC [26].

The reason for this special building blocks selection:
This implementation strategy is fully unusual in standard cipher designs as multipliers result

with very high hardware complexity. However, in such FPGA technology, plenty of such
multipliers may not be used in many applications and are left as dead entities. Deploying
unused/dead modules for creating SUC structures is considered as a value creating a “reanimation
process” of dead entity in this very special case.

The other DOT product mode of Figure 6 is also an objective of the author in ongoing research,
which is outside of the scope of this paper.

Figure 8 illustrates a possible functional layout after generating an SUC in a FPGA that uses
MACCs interacting with some logical components LUTs consumed from the FPGA fabric and a
minor software service program. This combination of MACCs and logic implemented components
results in the desired target SUC of this proposal.

Sample SmartFusion2 SoC FPGA Structure Device

Fu
nc

tio
na

l H
W

-C
or

e
 i

Functional HW-Core 1

Functional HW-Core n

Memory

ARM Core

I/O

Fu
nc

tio
na

l H
W

-C
or

e
 2

MACCs
Clusters

SUC
Hardware
Components

SUC
Software
Component

Free unused
MACC
Mathblocks

Free unused
FPGA Fabric

Free
Program
NV-memory

Figure 8. A sample layout of an SoC unit after SUC creation [13].
Figure 8. A sample layout of an SoC unit after SUC creation [13].

5. A New Feistel-Like Cipher Class

A new design strategy for a Luby–Rackoff cipher is presented below by replacing the XOR operation
with a new powerful self-inverse mapping (Latin Square). The proposed mappings design is based on
deploying the MACCs in the ring of integers modulo 2n in the SmartFusion®2 FPGA technology.

Several block ciphers were classified as a Feistel cipher [28] such as the data encryption standard
(DES) [29], Camellia [30], LBlock [31], etc. In [32], Biham and Shamir replaced some of the XOR
operations in DES by the addition of mod 2n. The resulting cipher becomes more resistant against
differential cryptanalysis. A new construction of the Luby–Rackoff cipher as ψ(h, f , f , h) was
presented in [33], where f is a PRF, and h is a universal hash function. The resulting cipher structure
ψ(h, f , f , h) uses addition mod 2n instead of XOR operation. This work is inspired by the following
fact from [34]: “let X = 2n–1, Y = 1 be the integer representation of a two n-bit block. In this case,
the X+Y mod 2n is equal to zero, where all bits in X are changed in the cryptogram, whereas X⊕Y is
equal to n− 1 ones and a zero in the last significant bit, which means, only the last significant bit is
changed [34]”. These results show that the same level of security between an XOR-based Luby–Rackoff

cipher and the addition of a mod 2n -based Luby–Rackoff [34] is attainable.
The first step toward replacing the XOR operation of DES by another operation was taken in [35].

The proposed cipher is constructed based on * operation, which is defined as a Latin square. Following
this work, a new design for a Luby–Rackoff cipher is proposed by replacing the * (non-involutive)
operation with a new MACC-based self-inverse (involutive) mapping. The resulting new cipher class
is usable for self-created SUCs.

5.1. New Latin Square as Involution Mapping for SUC

In 2003, Klimov and Shamir [36] introduced a new class of low-complexity functions which are
invertible and exhibit special properties. Such functions were called Triangular-Functions (T-function).
A T-function is defined as follows:

Definition 2. A function f(x) is called a T-function if the n-bit output of the function holds that the i-th bit of its
output depends only on the first, the second, . . . , and the i-th bit of its inputs.

Eight basic possible constructing operations of T-functions were introduced in [36] as:

• Negation (-a) mod 2n, Addition (a+b) mod 2n, Subtraction (a-b) mod 2n, and Multiplication (a.b)
mod 2n.

Cryptography 2019, 3, 28 11 of 27

• The Boolean functions; Complement a, OR (a∨ b), AND (a∧ b), and XOR (a⊕ b).

where a and b are two n-bit words.
In [36], Klimov generalized Rivest’s construction of permutation polynomials (PPs) [37] resulting

with invertible mappings with T-functions properties as follows:

Theorem 1 [36]. Let P(x) = a0
±

⊕
a1x
±

⊕
· · ·
±

⊕
adxd be a generalized polynomial with integral coefficients.

Then, P(x) defines a permutation polynomial modulo 2n: n > 2, if and only if a1 is odd, (a2 + a4 + · · ·) is even,
and (a3 + a5 + · · ·) is even.

Let Π2 denote the set of all polynomials P : Z2n ×Z2n → Z2n of two variables of degree 1 in
the form:

P(L, R) = a.L
±

⊕
b.R (11)

where a, b, c ∈ Z2n . In this case, any polynomial P from Π2 is defined as a mapping having two inputs
such as (L, R) and one output P(L, R) in Z2n .

Definition 3 (Latin Square) [37]. The polynomial P(L,R) defined in Equation (11) over the ring Z2n is a Latin
square if both functions P(L, C) and P(C, R) are permutations over Z2n , for any C ∈ Z2n .

The following theorem determines the main requirements on P(L, R) = aL + bR to become a
Latin square over Z2n .

Theorem 2. Let n > 1 and P(L, R) = a.L
±

⊕
b.R be a polynomial in two variables (L,R) over Z2n . Then, P is a

Latin square, if a and b are odd numbers.

Proof. According to Theorem 1, P(L, C) = aL
±

⊕
bC and P(C, R) = aC

±

⊕
bR are permutations over

Z2n if a and b are odd numbers. This implies that P(L, R) = aL
±

⊕
bR is a Latin square based on

Definition 3. �

Definition 4. The polynomial P(L, R) on the ring Z2n is a self-inverse mapping with respect to L if:

P(P(L, R), R) mod 2n = L (12)

holds true for every L and R.

The following theorem determines the main requirements on a Latin square P(L, R) = aL
±

⊕
bR

to reach such self-inverse mapping in two variables (L, R) with respect to L over Z2n .

Theorem 3. Let n > 1 and P(L, R) = aL
±

⊕
bR be a Latin square with a, b odd coefficients over Z2n . P is a

self-inverse mapping with respect to L if a = 1 · · · 1︸︷︷︸
n

= 2n
− 1.

Cryptography 2019, 3, 28 12 of 27

Proof. First, if a = 1 · · · 1︸︷︷︸
n

= 2n
− 1, then a2 = 1 over Z2n . In the following, it is proven that

(L, R) = aL + bR is a self-inverse Latin square with respect to L. The other cases of “⊕” and “–“ can be
proven similarly.

Let,
P(P(L, R), R) = a.(a.L + b.R) + b.R.

And,
P(P(L, R), R) = a2L + b(a + 1)R.

Now,
P(P(L, R), R) = a2L + b(2n

− 1 + 1)R.

Yielding,
P(P(L, R), R) = a2L + 2nbR.

Applying mod 2n results with P(P(L, R), R) mod 2n = L �

Let Πi denote special classes of self-inverse mappings with respect to L from Π2; for i = 1, 2, 3,
as follows:

Π1 : P(L, R) = aL + bR, Π2 : P(L, R) = aL− bR, and Π3 : P(L, R) = aL⊕ bR. (13)

Lemma 4. Let n > 1 and P(L, R) = aL
±

⊕
bR be a Latin square with a, b odd coefficients over Z2n . P is a

self-inverse mapping with respect to R if b = 1 · · · 1︸︷︷︸
n

.

The resulting classes of self-inverse Latin squares (SILS) Πi : P(L, R) defined and so-called πi

mappings are shown in Figure 9, where πi(L) =
(
aL
±

⊕
bR

)
mod 2n; i = 1, 2, 3. In the following, the

number of all the distinct self-inverse polynomials with respect to L is determined:

Cryptography 2019, 4, x FOR PEER REVIEW 12 of 27

Lemma 4. Let 𝑛 > 1 and 𝑃(𝐿, 𝑅) = 𝑎𝐿±⨁𝑏𝑅 be a Latin square with 𝑎, 𝑏 odd coefficients over ℤଶ೙. 𝑃 is a

self-inverse mapping with respect to R if 𝑏 = 1 ⋯ 1ᇣᇤᇥ௡ .

π1-Involution

b

bR+

L

a
aL

(aL+ bR) mod 2n

R

π2-Involution

b

bR-

L

a
aL

(aL- bR) mod 2n

R

π3-Involution

b

bR

L

a
aL

(aL⊕ bR) mod 2n

R

Figure 9. The new πi mappings used as involutions.

The resulting classes of self-inverse Latin squares (SILS) Π௜: 𝑃(𝐿, 𝑅) defined and so-called 𝜋௜
mappings are shown in Figure 9, where 𝜋௜(𝐿) = ቀ𝑎𝐿 ±⊕𝑏𝑅ቁ 𝑚𝑜𝑑 2௡; 𝑖 = 1,2,3. In the following, the

number of all the distinct self-inverse polynomials with respect to L is determined:

Corollary 5. For 𝑛 > 3, the cardinality of the class of all possible 𝜁 over ℤଶ೙ is |Π௜ | = 2௡ିଵ; for 𝑖 =1,2,3.

Proof. From Theorem 4, the following is true: 𝑎 = 1 ⋯ 1ᇣᇤᇥ௡ . That implies |𝑎| = 1 and b is odd, so |𝑏| = 2௡ିଵ.

Therefore, |Π௜ | = |𝑎|. |𝑏| = 1.2௡ିଵ = 2௡ିଵ. □

It can also simply proven that the 𝜋௜ mappings are involutions for any R, as shown in Figure
10. Throughout the following sections, the focus lies on the class of mapping 𝜋ଵ(𝐿) = 𝑎𝐿 + 𝑏𝑅. The
other cases of “⨁” and “–“ can be similarly investigated.

Figure 9. The new πi mappings used as involutions.

Cryptography 2019, 3, 28 13 of 27

Corollary 5. For n > 3, the cardinality of the class of all possible ζ over Z2n is |Πi| = 2n−1; for i = 1, 2, 3.

Proof. From Theorem 3, the following is true:
a = 1 · · · 1︸︷︷︸

n

. That implies |a| = 1 and b is odd, so |b| = 2n−1.

Therefore, |Πi| = |a|.|b| = 1.2n−1 = 2n−1. �

It can also simply proven that the πi mappings are involutions for any R, as shown in Figure 10.
Throughout the following sections, the focus lies on the class of mapping π1(L) = aL + bR. The other
cases of “⊕” and “–“ can be similarly investigated.

Cryptography 2019, 4, x FOR PEER REVIEW 12 of 26

Figure 9. The new πi mappings used as involutions.

The resulting classes of self-inverse Latin squares (SILS) Π௜: 𝑃(𝐿, 𝑅) defined and so-called 𝜋௜
mappings are shown in Figure 9, where 𝜋௜(𝐿) = ቀ𝑎𝐿 ±⊕𝑏𝑅ቁ 𝑚𝑜𝑑 2௡; 𝑖 = 1,2,3. In the following, the

number of all the distinct self-inverse polynomials with respect to L is determined:

Corollary 5. For 𝑛 > 3, the cardinality of the class of all possible 𝜁 over ℤଶ೙ is |Π௜ | = 2௡ିଵ; for 𝑖 =1,2,3.

Proof. From Theorem 3, the following is true: 𝑎 = 1 ⋯ 1ᇣᇤᇥ௡ . That implies |𝑎| = 1 and b is odd, so |𝑏| = 2௡ିଵ.

Therefore, |Π௜ | = |𝑎|. |𝑏| = 1.2௡ିଵ = 2௡ିଵ. □

It can also simply proven that the 𝜋௜ mappings are involutions for any R, as shown in Figure
10. Throughout the following sections, the focus lies on the class of mapping 𝜋ଵ(𝐿) = 𝑎𝐿 + 𝑏𝑅. The
other cases of "⨁" and “–“ can be similarly investigated.

L

aL bR+

n
nR

L

n
nR

π1-Involution

b

bR+

L

a

aL

(aL+ bR) mod 2n

R

π1

π1

aL bR+

Figure 10. Proof that π1 is an involution [13].

π1-Involution

b

bR+

L

a
aL

(aL+ bR) mod 2n

R

π2-Involution

b

bR-

L

a
aL

(aL- bR) mod 2n

R

π3-Involution

b

bR

L

a
aL

(aL⊕ bR) mod 2n

R

Figure 10. Proof that π1 is an involution [13].

In a further round construction, when replacing the XOR operation in a Luby–Rackoff cipher with
P(L, R) = aL + bR results in a new mapping defined as follows:

ζ (f)(L, R) = (aL + bi f (R), R), for i = 1, · · · , 2n−1. (14)

It can be simply proven that ζ (f)(L, R) is also an involution for any (L, R). Figure 11 shows the
core mapping ζ of the new proposed Feistel-like cipher. The statistical properties of the multiplication
and addition ensure that all the input bits will be affected (diffusion). Moreover, this construction is
low-cost, since the SmartFusion®2 FPGA contains specific MACCs that are often readily available as
unused components.

Figure 12 illustrates a proposed Feistel-like extended cipher round structure η. The round’s input
data is 2n-bits, which splits into two branches of n-bits (L: left and R: right). Then, ζ-involution is
applied on both branches (L, R), where the inner function f is applied only on R.

Then, the round structure includes two mappings, namely: ζ involution followed by a swap
involution mapping. The t-rounds of the proposed ciphers are using the same two involutions in each
round with different b parameters, which can be seen as round keys.

Note that the total number σ of all possible constructible ciphers as an SUC class as Feistel-like
ciphers η having t rounds depends generally on the total number µ of all possible inner functions f,
where µ = 2n2n

.
σ = max

µ
{(2n−1)

t
µ} = (2n−1)

t
2n2n

= 2t(n−1)+n2n
(15)

The main advantage of the described “involutive” cipher structure is that the same function can be
used for both encryption and decryption operations, differing only in using the keys in a reverse order.

Cryptography 2019, 3, 28 14 of 27

Cryptography 2019, 4, x FOR PEER REVIEW 13 of 26

In a further round construction, when replacing the XOR operation in a Luby–Rackoff cipher
with 𝑃(𝐿, 𝑅) = 𝑎𝐿 + 𝑏𝑅 results in a new mapping defined as follows: 𝜁 (𝑓)(𝐿, 𝑅) = (𝑎𝐿 + 𝑏௜ 𝑓 (𝑅), 𝑅), for 𝑖 = 1, ⋯ , 2௡ିଵ. (14)

It can be simply proven that 𝜁 (𝑓)(𝐿, 𝑅) is also an involution for any (L, R). Figure 11 shows the
core mapping 𝜁 of the new proposed Feistel-like cipher. The statistical properties of the
multiplication and addition ensure that all the input bits will be affected (diffusion). Moreover, this
construction is low-cost, since the SmartFusion®2 FPGA contains specific MACCs that are often
readily available as unused components.

L

(, ())P L f R

n

n

L R

ζ-Involution
(holds for any f)f

R
n

n

n f

n

(, ())P L f R

πi

πi

Figure 11. The new ζ involution for a cipher round structure. Adapted from [13].

Figure 12 illustrates a proposed Feistel-like extended cipher round structure η. The round’s input
data is 2n-bits, which splits into two branches of n-bits (L: left and R: right). Then, 𝜁 -involution is
applied on both branches (𝐿, 𝑅), where the inner function 𝑓 is applied only on R.

ζ-Involution
(holds for any f)

n

n f

R
n

L

aL+b1f(R)

Swap-involution

n

n f
n

t-R
ou

nd
s

aL+bt f(R)

η Round
function

𝜋ଵଵ

Round Keys

𝜋ଵ௧
𝜋ଵ௧ 𝐿, 𝑅 = 𝑎𝐿 + 𝑏௧𝑓 𝑅

Figure 12. The proposed Feistel-like cipher and its round structure η.

Figure 11. The new ζ involution for a cipher round structure. Adapted from [13].

Cryptography 2019, 4, x FOR PEER REVIEW 13 of 26

In a further round construction, when replacing the XOR operation in a Luby–Rackoff cipher
with 𝑃(𝐿, 𝑅) = 𝑎𝐿 + 𝑏𝑅 results in a new mapping defined as follows: 𝜁 (𝑓)(𝐿, 𝑅) = (𝑎𝐿 + 𝑏௜ 𝑓 (𝑅), 𝑅), for 𝑖 = 1, ⋯ , 2௡ିଵ. (14)

It can be simply proven that 𝜁 (𝑓)(𝐿, 𝑅) is also an involution for any (L, R). Figure 11 shows the
core mapping 𝜁 of the new proposed Feistel-like cipher. The statistical properties of the
multiplication and addition ensure that all the input bits will be affected (diffusion). Moreover, this
construction is low-cost, since the SmartFusion®2 FPGA contains specific MACCs that are often
readily available as unused components.

L

(, ())P L f R

n

n

L R

ζ-Involution
(holds for any f)f

R
n

n

n f

n

(, ())P L f R

πi

πi

Figure 11. The new ζ involution for a cipher round structure. Adapted from [13].

Figure 12 illustrates a proposed Feistel-like extended cipher round structure η. The round’s input
data is 2n-bits, which splits into two branches of n-bits (L: left and R: right). Then, 𝜁 -involution is
applied on both branches (𝐿, 𝑅), where the inner function 𝑓 is applied only on R.

ζ-Involution
(holds for any f)

n

n f

R
n

L

aL+b1f(R)

Swap-involution

n

n f
n

t-R
ou

nd
s

aL+bt f(R)

η Round
function

𝜋ଵଵ

Round Keys

𝜋ଵ௧
𝜋ଵ௧ 𝐿, 𝑅 = 𝑎𝐿 + 𝑏௧𝑓 𝑅

Figure 12. The proposed Feistel-like cipher and its round structure η.
Figure 12. The proposed Feistel-like cipher and its round structure η.

5.2. Distinguishing Attack on the Proposed Feistel-Like Cipher

Let B2n (F2n) denote a set of all possible permutations (functions) from {0, 1}2n to {0, 1}2n, where

the cardinality of B2n (F2n) is |B2n| = 22n! (|F2n| = 2n2n
), respectively. Furthermore, let f U

← F randomly
choose the function f from F according to a probability uniform distribution U over F where F is the
set of all possible functions from {0, 1}n to {0, 1}n.

The proposed Feistel-like cipher η is defined as a permutation of B2n on a pair (Li, Ri) from
{0, 1}n × {0, 1}n where i = 1, 2, . . . q. The evaluation of the distinguishing attack on the proposed
Feistel-like cipher is carried out by deploying the core mapping ζ as a mapping in different
ciphering configurations. These structures can be developed based on distinguishing attack scenarios.
The generic attacks [38] on one, two, and three identical rounds of the proposed Feistel-like cipher η is
explained in “Appendix A”. The results show that none of the η(f), η(f , f), and η(f , f , f) are PRPs
(Pseudorandom Permutations).

Cryptography 2019, 3, 28 15 of 27

To design a PRP cascade from a single PRF, it is required to have at least three different rounds

of η using a single PRF f U
← F with different parameters in the π mapping to attain a structure that

is indistinguishable from a truly random permutation. The new structure of a Feistel-like cipher
η(f , f , f) should consequently include at least three subsequent different π mappings as follows:

Xi = aLi + b j f (Ri)

Si = aRi + bk f (Xi)

Ti = aXi + bl f (Si)

, (16)

where f U
← F , and b j , bk , bl, which are acting as different round keys.

Now, let ηt(f) denote η(f , · · · , f︸ ︷︷ ︸
t

) with t different odd values of bi; i = 1, · · · , 2n−1. In this case, to

prove that η3(f) is a PRP, a distinguishing experiment should be applied on η3(f). To attain that goal
the following two Lemmas need to be valid for η3(f):

Lemma 6. For every function G :
(
{0, 1}2n

)q
→ {0, 1} and for any q pairs (Li, Ri) ∈ {0, 1}n × {0, 1}n, where

i = 1, · · · , q. ∣∣∣∣∣Pr
[
G
(
η3(f)(L1, R1), · · · , η3(f)

(
Lq, Rq

))
= 1 : f U

← F

]
− PG

∣∣∣∣∣ ≤ q2

2n (17)

where f U
← F and PG defined as:

PG =
#{(x1, · · · , xq) ∈ ({0, 1}2n)

q
: G(x1, · · · , xq) = 1}

22nq . (18)

Proof. (See “Appendix B”). �

Lemma 7. (PRF Switching Lemma [39]): For a distinguishing experiment, let E be a block cipher defined
over (K, X), where, |X| = 22n. Consider an adversary (distinguisher) Ψ that makes at most q queries to
its challenger. Then, ∣∣∣AdvE

PRP(Ψ) −AdvE
PRF(Ψ)

∣∣∣ ≤ q2

2n+1
. (19)

Distinguishing Experiment η3(f):
Step 1: For the proposed Feistel-like cipher η3(f) defined over (K, X), where |X| = 22n. Consider

an adversary (distinguisher) Ψ that interacts with a challenger acting as follows:

• The challenger randomly chooses one bit b U
← {0, 1}.

• The challenger returns P U
← B2n, if b = 1 to Ψ; otherwise, it returns P← η3(f) , where f U

← F

within time t.

Step 2: The adversary Ψ submits to a challenger a polynomial number of queries (q) such as
(Li, Ri), where i = 1, · · · , q.

Step 3: The adversary terminates the experiment by returning b′.
According to Lemma 6, the advantage of Ψ to distinguish between η3(f) and a random function is:

Advη3(f)
PRF (Ψ) ≤

q2

2n . (20)

Cryptography 2019, 3, 28 16 of 27

Now, the PRF Switching Lemma [39] (Lemma 7) stated that,

Advη3(f)
PRP (Ψ) ≤ Advη3(f)

PRF (Ψ) +
q2

2n . (21)

So that,

Advη3(f)
PRP (Ψ) ≤

3q2

2n+1
. (22)

The last result in Equation (22) concerning the proposed Feistel-Like ciphers shows that it attains
the same security bound as that of the Luby–Rackoff cipher.

6. New πi-Mappings Hardware Structure and Its Complexity

In this section, the πi mappings are modeled and implemented in Microsemi Smart-Fusion®2
FPGA technology.

The hardware complexity of each implemented πi mapping was evaluated based on the number
of consumed MACCs, LUTs (Look Up Tables), and DFFs (Delay Flip Flop), where the hardware
realization of these mappings is fundamentally implemented based on using a wide multiplier of size
larger than 18 × 18. Here, a wide multiplier is efficiently implemented by using a cascade of many
MACCs [26]. The chosen FPGA from the Microsemi FPGAs family is a Smart-Fusion®2 M2S025, which
contains 27,696 LUTs, 27,696 DFFs, and 34 MACCs. Figure 13 illustrates the resource utilization for π1

mapping with an input size of n = 17 and 18 bits. The consumed resources of π1 mapping with n = 17
bits are two MACCs and 17 LUTs.

Cryptography 2019, 4, x FOR PEER REVIEW 16 of 27

Here, a wide multiplier is efficiently implemented by using a cascade of many MAACs [26]. The
chosen FPGA from the Microsemi FPGAs family is a Smart-Fusion®2 M2S025, which contains 27,696
LUTs, 27,696 DFFs, and 34 MAACs. Figure 13 illustrates the resource utilization for π1 mapping with
an input size of n = 17 and 18 bits. The consumed resources of π1 mapping with n = 17 bits are two
MAACs and 17 LUTs.

For n = 32 and 34 bits as input size, two wide multipliers were deployed. In this case, each wide
multiplier is realized as a cascade of four MAACs. Figure 14 shows the required number of MAACs
to build two wide multipliers consuming 32 LUTs for n = 32, and 34 LUTs for n = 34.

π1-Involution

b

bR

+

L

a

aL

(aL+ bR) mod 217

R
n LUTs MAACs

17 17 2
18 18 2

Hardware Complexity

17

17

17

Figure 13. FPGA implementation of π1 mapping for 17- and 18-bits as input size.

π1-InvolutionL

(aL+ bR) mod 2n

R
n LUTs MAACs

32 32 8
34 34 8

Hardware Complexity

WideMult is a cascade of MACCs

Figure 14. FPGA implementation π1 mapping using two wide multipliers with input sizes of 32 bits
and 34 bits.

Figure 15 shows the required number of MAACs to implement π2 and π3 mappings with the
input sizes of n = 17, 18, 32, and 34. Note that two MAACs are required when n = 17 or 18, and two
wide multipliers are implemented as a cascade of MAACs for n = 32 or 34.

Figure 13. FPGA implementation of π1 mapping for 17- and 18-bits as input size.

For n = 32 and 34 bits as input size, two wide multipliers were deployed. In this case, each wide
multiplier is realized as a cascade of four MACCs. Figure 14 shows the required number of MACCs to
build two wide multipliers consuming 32 LUTs for n = 32, and 34 LUTs for n = 34.

Figure 15 shows the required number of MACCs to implement π2 and π3 mappings with the
input sizes of n = 17, 18, 32, and 34.

Note that two MACCs are required when n = 17 or 18, and two wide multipliers are implemented
as a cascade of MACCs for n = 32 or 34.

Cryptography 2019, 3, 28 17 of 27

Cryptography 2019, 4, x FOR PEER REVIEW 16 of 27

Here, a wide multiplier is efficiently implemented by using a cascade of many MAACs [26]. The
chosen FPGA from the Microsemi FPGAs family is a Smart-Fusion®2 M2S025, which contains 27,696
LUTs, 27,696 DFFs, and 34 MAACs. Figure 13 illustrates the resource utilization for π1 mapping with
an input size of n = 17 and 18 bits. The consumed resources of π1 mapping with n = 17 bits are two
MAACs and 17 LUTs.

For n = 32 and 34 bits as input size, two wide multipliers were deployed. In this case, each wide
multiplier is realized as a cascade of four MAACs. Figure 14 shows the required number of MAACs
to build two wide multipliers consuming 32 LUTs for n = 32, and 34 LUTs for n = 34.

π1-Involution

b

bR

+

L

a

aL

(aL+ bR) mod 217

R
n LUTs MAACs

17 17 2
18 18 2

Hardware Complexity

17

17

17

Figure 13. FPGA implementation of π1 mapping for 17- and 18-bits as input size.

π1-InvolutionL

(aL+ bR) mod 2n

R
n LUTs MAACs

32 32 8
34 34 8

Hardware Complexity

WideMult is a cascade of MACCs

Figure 14. FPGA implementation π1 mapping using two wide multipliers with input sizes of 32 bits
and 34 bits.

Figure 15 shows the required number of MAACs to implement π2 and π3 mappings with the
input sizes of n = 17, 18, 32, and 34. Note that two MAACs are required when n = 17 or 18, and two
wide multipliers are implemented as a cascade of MAACs for n = 32 or 34.

Figure 14. FPGA implementation π1 mapping using two wide multipliers with input sizes of 32 bits
and 34 bits.Cryptography 2019, 4, x FOR PEER REVIEW 17 of 27

n LUTs MAACs
17 18 2
18 19 2
32 33 8
34 35 8

π2-Involution

b

bR
-

a

aL

(aL- bR) mod 2n

R

L
n

n

π3-Involution

b

bR

L

a

aL

(aL+ bR) mod 2n

R
n LUTs MAACs

17 17 2
18 18 2
32 33 8
34 34 8

π2- Mapping Hardware Complexity

n

n

π3- Mapping Hardware Complexity

Figure 15. FPGA implementation of π2 and π3 mappings for input sizes where n = 17, 18, 32, and 34
bits.

7. Possible Feistel-Like Inner Function Design

The need for a simple low-cost implementation of the inner functions 𝑓 of the proposed cipher 𝜂୲(𝑓) led to deploy a huge class of cryptographically significant 𝑓 mappings. In this section, the
necessary design strategy for the inner function 𝑓 with good cryptographic properties is presented.

7.1. Golden 4-Bit S-Boxes as Basic Building Elements for the Mapping of f

In [40], Saarinen showed that only four classes of S-Boxes (4-bit to 4-bit mapping) can affinely
transform the resistance properties against linear cryptanalysis (LC) and differential cryptanalysis
(DC) to all S-Box classes. These optimal 4-bit S-Boxes are called golden S-Boxes (GS). Moreover, a
new equivalence relation is defined based on two bit permutation matrices 𝑃௜, 𝑃௝, two values 𝑎, 𝑏 ∈𝔽ଶସ, and two XOR operations as follows, [𝑆(𝑥)]ଵ×ସ = 𝐺𝑆௞൫([(𝑥)]ଵ×ସ ⊕ [𝑎]ଵ×ସ) ∙ [𝑃௜]ସ×ସ൯ ∙ ൣ𝑃௝൧ସ×ସ ⊕ [𝑏]ଵ×ସ (23)

where 𝐺𝑆௝ is a GS for 𝑘 = 0,1,2,3 (see Table 1) and 𝑥 ∈ 𝔽ଶସ. The cardinality of the class of all possible
such GSs is then, 4. (2ସ)ଶ. (4!)ଶ = 2ଵଽ.ଵ Different GSs (24)

where 4 is the number of GS seeds, GSj, (24)2 is the number of all possible a, b parameter choices 𝑎, 𝑏 ∈ 𝔽ଶସ, and (4!)2 is the number of all possible bit permutation matrices 𝑃௜, 𝑃௝.
Table 1 shows the four GS seeds that satisfy the ideal properties for all class members [40].

Table 1. Four golden S-Boxes (GS) seeds for S-Box generators [40]. DC: differential cryptanalysis, LC:
linear cryptanalysis.

GS Seed-Classes 4-Bit Input Combinations
0123456789ABCDEF

DC
p

LC

ε
GS0: 4-bit outputs 035869C7DAE41FB2 ¼ ¼
GS1: 4-bit outputs 03586CB79EADF214 ¼ ¼
GS2: 4-bit outputs 03586AF4ED9217CB ¼ ¼
GS3: 4-bit outputs 03586CB7A49EF12D ¼ ¼

ɛ: linear probability bias, p: differential characteristics probability.

Figure 15. FPGA implementation of π2 and π3 mappings for input sizes n = 17, 18, 32, and 34 bits.

7. Possible Feistel-Like Inner Function Design

The need for a simple low-cost implementation of the inner functions f of the proposed cipher
ηt(f) led to deploy a huge class of cryptographically significant f mappings. In this section, the
necessary design strategy for the inner function f with good cryptographic properties is presented.

7.1. Golden 4-Bit S-Boxes as Basic Building Elements for the Mapping of f

In [40], Saarinen showed that only four classes of S-Boxes (4-bit to 4-bit mapping) can affinely
transform the resistance properties against linear cryptanalysis (LC) and differential cryptanalysis
(DC) to all S-Box classes. These optimal 4-bit S-Boxes are called golden S-Boxes (GS). Moreover, a new
equivalence relation is defined based on two bit permutation matrices Pi, P j, two values a, b ∈ F4

2, and
two XOR operations as follows,

[S(x)]1×4 = GSk(([(x)]1×4 ⊕ [a]1×4)·[Pi]4×4)·
[
P j

]
4×4
⊕ [b]1×4 (23)

Cryptography 2019, 3, 28 18 of 27

where GS j is a GS for k = 0, 1, 2, 3 (see Table 1) and x ∈ F4
2. Table 1 shows the four GS seeds that satisfy

the ideal properties for all class members [40].

Table 1. Four golden S-Boxes (GS) seeds for S-Box generators [40]. DC: differential cryptanalysis, LC:
linear cryptanalysis.

GS Seed-Classes 4-Bit Input Combinations
0123456789ABCDEF DC p LC ε

GS0: 4-bit outputs 035869C7DAE41FB2 1
4

1
4

GS1: 4-bit outputs 03586CB79EADF214 1
4

1
4

GS2: 4-bit outputs 03586AF4ED9217CB 1
4

1
4

GS3: 4-bit outputs 03586CB7A49EF12D 1
4

1
4

ε: linear probability bias, p: differential characteristics probability.

The cardinality of the class of all possible such GSs is then,

4.
(
24

)2
. (4!)2 = 219.1 Different GSs (24)

where 4 is the number of GS seeds, GSj, (24)2 is the number of all possible a, b parameter choices
a, b ∈ F4

2, and (4!)2 is the number of all possible bit permutation matrices Pi, P j.
Figure 16 shows possible hardware mapping blocks for the GS generator according to Equation (23).

The resulting generated S-Boxes exhibit equivalent cryptographic security performance.

Cryptography 2019, 4, x FOR PEER REVIEW 18 of 27

Figure 16 shows possible hardware mapping blocks for the GS generator according to Equation
(23). The resulting generated S-Boxes exhibit equivalent cryptographic security performance.

x GSk

y

[Pi]4x4

[a]4x1

[Pj]4x4

[b]4x1

Implementation according to (23)

4-bit Input

4-bit Output

Figure 16. Hardware structure for the golden S-Box generator.

7.2. Bricklayer Function as a Possible Inner Function f

One of the simplest architectures of the inner function of the proposed Feistel-like cipher can be
considered as a bricklayer function [41]. Here, the proposed bricklayer function can be seen as a
Boolean function that is composed of parallel components or GSs of smaller inputs [41]. As the
currently known GSs have an input/output size of 4 x 4 bits, only 32 bits are used for the inner
function, since the maximum size of 34 is not divisible by 4. To make use of the full 34 bits, a further
design adaptation is required. This is the objective of future research. In this case, the proposed
bricklayer function is simply constructed as shown in Figure 17 and mathematically defined as: 𝑓(𝑥) = (𝐺𝑆ଵ(𝑥ଵ), ⋯ , 𝐺𝑆଼(𝑥଼)) (25)

where 𝑥 = (𝑥ଵ, ⋯ , 𝑥଼) and 𝑥௜ ∈ {0,1}ସ: for every 𝑖 > 0.

7.3. How Can the SUC-Creating GENIE Work?

The SUC creation process is performed by a GENIE program that will run in an enrollment
process for each device. Assume that the GENIE would realize a Feistel-like cipher with a bricklayer
function as an inner function delineated in Figure 17, where the input data size is 2n = 64. The GENIE
may randomly create the proposed cipher as follows:
• The GS generator according to Equation (23) requires 128 storage bits for each GS seed and 16

storage bits for each possible bit permutation matrix. Therefore, the GS generator requires a total
of 4 x 128 + 24 x 16 = 896 storage bits for the four GS seeds and 24 possible bit permutation
matrices.

• The GENIE generates randomly eight GSs for f by randomly selecting all the parameters of
Equation (23) through the TRNG output bit stream. Note that according to Equation (23), the
GENIE consumes 20 × 8 GSs = 160 TRNG bits to create all eight GSs where each generated GS
requires 20 bits, namely: 2 bits for selecting one GS seed out of four GS seeds, 2 x 4 = 8 bits for
selecting the parameters 𝑎, 𝑏 ∈ 𝔽ଶସ, and 2 x 5 = 10 bits for selecting the two permutation matrices 𝑃௜, 𝑃௝ out of all 24 permutation matrices.

• The GENIE consumes additionally 31 × 16 rounds = 496 TRNG bits for all 16 round keys to be
stored in 31 LUTs. A round key is the 31-bits bi parameter in the mapping aL + biR; in each round
i for i = 1…,16.

Figure 16. Hardware structure for the golden S-Box generator.

7.2. Bricklayer Function as a Possible Inner Function f

One of the simplest architectures of the inner function of the proposed Feistel-like cipher can
be considered as a bricklayer function [41]. Here, the proposed bricklayer function can be seen as
a Boolean function that is composed of parallel components or GSs of smaller inputs [41]. As the
currently known GSs have an input/output size of 4 × 4 bits, only 32 bits are used for the inner function,
since the maximum size of 34 is not divisible by 4. To make use of the full 34 bits, a further design
adaptation is required. This is the objective of future research. In this case, the proposed bricklayer
function is simply constructed as shown in Figure 17 and mathematically defined as:

f (x) = (GS1(x1), · · · , GS8(x8)) (25)

where x = (x1, · · · , x8) and xi ∈ {0, 1}4: for every i > 0.

Cryptography 2019, 3, 28 19 of 27

Cryptography 2019, 4, x FOR PEER REVIEW 19 of 27

• When the GENIE completes the cipher creation, the GENIE deletes itself fully and irreversibly.
GENIE complexity: A total of 496 + 160 = 656 TRNG bits and 896 memory storage bits in addition to
about 18 instruction cycles are needed to create a single cipher choice.

Notice that the total number σ of all possible SUCs of the proposed Feistel-like ciphers η with
16-rounds is 𝜎 = 2ଷଵ×ଵ଺ × 2଼×ଵଽ.ଵ ≈ 2଺ସଽ. (26)

K1

K16

32 bit

L R

32 bit

S T

f

f

31 bit

16
 R

ou
nd

s

…

P1

P16

…

…
…

LU
T 1

LU
T 3

1

Round Counter

LUTs-Key Storage
R

32 bit32 bit

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

Bricklayer Function

Figure 17. Possible design of the proposed cipher based on the Bricklayer function using GSs.

7.4. A Possible Prototype Hardware Implementation

To implement one of the possible compact versions of the proposed cipher with an input size of
2n = 64 bits, the architecture of Figure 18 is proposed as a recursive round-based implementation
[42].

LU
T 1

LU
T 3

1

Counter

…

10

Plaintext

32

f

Ciphertext

Key

64

Clk

REG

32

31 bit

64

…

64
16 -keys Storage

Each key having 32-bits

η

32

R
32 bit32 bit

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

Bricklayer Function

Figure 18. Proposed hardware architecture of the proposed SUC.

Figure 17. Possible design of the proposed cipher based on the Bricklayer function using GSs.

7.3. How Can the SUC-Creating GENIE Work?

The SUC creation process is performed by a GENIE program that will run in an enrollment process
for each device. Assume that the GENIE would realize a Feistel-like cipher with a bricklayer function
as an inner function delineated in Figure 17, where the input data size is 2n = 64.

The GENIE may randomly create the proposed cipher as follows:

• The GS generator according to Equation (23) requires 128 storage bits for each GS seed and 16
storage bits for each possible bit permutation matrix. Therefore, the GS generator requires a total of
4 × 128 + 24 × 16 = 896 storage bits for the four GS seeds and 24 possible bit permutation matrices.

• The GENIE generates randomly eight GSs for f by randomly selecting all the parameters of
Equation (23) through the TRNG output bit stream. Note that according to Equation (23), the
GENIE consumes 20 × 8 GSs = 160 TRNG bits to create all eight GSs where each generated GS
requires 20 bits, namely: 2 bits for selecting one GS seed out of four GS seeds, 2 × 4 = 8 bits for
selecting the parameters a, b ∈ F4

2, and 2 × 5 = 10 bits for selecting the two permutation matrices
Pi, P j out of all 24 permutation matrices.

• The GENIE consumes additionally 31 × 16 rounds = 496 TRNG bits for all 16 round keys to be
stored in 31 LUTs. A round key is the 31-bits bi parameter in the mapping aL + biR; in each round
i for i = 1 . . . ,16.

• When the GENIE completes the cipher creation, the GENIE deletes itself fully and irreversibly.

Overall GENIE complexity: A total of 496 + 160 = 656 TRNG bits and 896 memory storage bits in
addition to about 18 instruction cycles are needed to create a single cipher choice.

Notice that the total number σ of all possible SUCs of the proposed Feistel-like ciphers η with
16-rounds is

σ = 231×16
× 28×19.1

≈ 2649. (26)

7.4. A Possible Prototype Hardware Implementation

To implement one of the possible compact versions of the proposed cipher with an input size of
2n = 64 bits, the architecture of Figure 18 is proposed as a recursive round-based implementation [42].

Cryptography 2019, 3, 28 20 of 27

Cryptography 2019, 4, x FOR PEER REVIEW 19 of 27

• When the GENIE completes the cipher creation, the GENIE deletes itself fully and irreversibly.
GENIE complexity: A total of 496 + 160 = 656 TRNG bits and 896 memory storage bits in addition to
about 18 instruction cycles are needed to create a single cipher choice.

Notice that the total number σ of all possible SUCs of the proposed Feistel-like ciphers η with
16-rounds is 𝜎 = 2ଷଵ×ଵ଺ × 2଼×ଵଽ.ଵ ≈ 2଺ସଽ. (26)

K1

K16

32 bit

L R

32 bit

S T

f

f

31 bit

16
 R

ou
nd

s

…

P1

P16

…

…
…

LU
T 1

LU
T 3

1

Round Counter

LUTs-Key Storage
R

32 bit32 bit

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

Bricklayer Function

Figure 17. Possible design of the proposed cipher based on the Bricklayer function using GSs.

7.4. A Possible Prototype Hardware Implementation

To implement one of the possible compact versions of the proposed cipher with an input size of
2n = 64 bits, the architecture of Figure 18 is proposed as a recursive round-based implementation
[42].

LU
T 1

LU
T 3

1

Counter

…

10

Plaintext

32

f

Ciphertext

Key

64

Clk

REG

32

31 bit

64

…

64
16 -keys Storage

Each key having 32-bits

η

32

R
32 bit32 bit

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

Bricklayer Function

Figure 18. Proposed hardware architecture of the proposed SUC.
Figure 18. Proposed hardware architecture of the proposed SUC.

The aim of the designed structure is to iterate one cipher round η(f), where a state machine is
deployed to run the 16 cipher rounds using a state register of 64 bits and a 64-bit multiplexer, in which
each cipher round is executed in one clock cycle.

Furthermore, a new technique of key scheduling was presented in [13] storing the 16 round keys
in 31 LUTs, as shown in Figure 18. The keys are arbitrarily and randomly chosen by the GENIE.

Table 2 shows the resulting hardware complexity of the sample proposed SUC implementation in
a SmartFusion®2 SoC FPGA. Further, more optimized implementations are under investigation.

Table 2. Hardware complexity using SmartFusion®2 M2S025T FPGA.

Hardware Resources
LUTs DFFs MACCs

#LUTs % #DFFs % #MACCs #All available MACCs

SUC using π1 174 0.62 70 0.25 8 34
SUC using π2 175 0.63 70 0.25 8 34
SUC using π3 175 0.63 70 0.25 8 34

The implementation is aiming to evaluate the hardware complexity. A real implementation procedure
is currently not possible, as Microsemi does not allow self-reconfiguration in its current devices. This is
expected in future device generations.

8. Security Analysis and Evaluation

In this section, modeling attacks on the proposed SUC are discussed and the security level
of the proposed SUC is evaluated by using the cryptanalysis of a cipher with secret components.
Then, a quantum exhaustive search for SUC-Model is presented.

8.1. Modeling Attacks on SUC

In modeling attacks, the adversary tries to construct an ML algorithm that behaves
indistinguishably from the original function (such as PUF) on almost all CRPs [5].
According to Section 5.2, the proposed SUC is a secure PRF. This implies that the output of the
SUC is statistically independent of (x1, SUC(x1)), . . . , (xq, SUC(xq)) and uncorrelated with any learner.
Therefore, there is no ML algorithm that can build a predictive model for such SUCs.

Cryptography 2019, 3, 28 21 of 27

8.2. Cryptanalysis of a Cipher with Secret Components

For more practical analysis, we identify an SUC from σ = 2649 different SUCs in Equation (26),
where the cipher input size is 2n = 64 bits. Thus, the successful prediction of the adversary is possible
with a probability,

1

(219.1)8(231)16
≈

1
2649

. (27)

In [43], an attack on a block cipher with secret components analyzes only the known
plaintext–ciphertext pairs attack to recover the secret cipher components one by one. According to this
attack scenario and assuming that the adversary tries to attack one SUC as a Feistel-like cipher, the
worst-case scenario is when only GSs are unknown components ignoring the round keys, as they may
be reachable. It is also assumed that the adversary knows the parameters of the SUC without being
able to access the round’s inputs and outputs.

The adversary starts by gathering selected T pairs of plaintexts of the form [43],

PL,r =
{
(Li, x

∣∣∣∣∣∣r j
)
; x ∈ F4

2

}
(28)

where Li ∈ F32
2 , and r j ∈ F28

2 ; for 0≤ i, j ≤ T. After that, the adversary finds all pairs {x,y} from PL,r

such that:
(Li, x

∣∣∣∣∣∣r j
)
⊕(Li, y

∣∣∣∣∣∣ri) = (032, x⊕ y
∣∣∣∣∣∣028

)
for 0 ≤ j ≤ T (29)

where 0k denotes the bit block of k zeros. Then, the adversary determines the counter set C({x,y}) based
on the corresponding ciphertext differences of all Li, r j as follows,

C(
{
x, y

}
) =

{
Li, r j

∣∣∣∣∃k; η16(f)(Li, x||ri) ⊕ η16(f)(Li, y
∣∣∣∣∣∣ri) =

(
04k
||e||060−4k

)}
(30)

where e ∈ F4
2. In order to recover only one GS, the adversary uses C({x,y}) to count how often only one

active GS is involved in the ciphertext difference, if the following is met,

e = GS(x) ⊕GS(y). (31)

Let De be the set of all {x,y} pairs that hold Equation (31). According to [43], if the hamming
weight hw(e) = 1, then finding four sets of form De is enough to determine uniquely the targeted GS.
Finding three sets of form De determines eight possible S-Boxes as candidates, etc.

To evaluate this attack, the minimum number of active GSs in any differential trials through all
16 rounds is required to be found, where a differential trail is a sequence of the input and output
differences in each round. This leads to following definition:

Definition 5. In DC, an S-box is active in a differential trail if and only if its input difference is non-zero [44].

An exhaustive search was performed for a sample of 20,000 different ciphers using the
following properties:

• The right left subblock is R = 0 and the left subblock is L = (L1, L2, L3, L4, L5, L6, L7, L8), where
L, R ∈ Z232 and L j ∈ Z24 for j = 1, . . . ,8.

• Let ∆L1 = ∆x denote all possible differences, for all x ∈ Z24 . Then, the input difference of a
generated f is ∆L = (∆x

∣∣∣∣∣∣028) .
• If the input difference of a GSi is non-zero, then the output difference will be non-zero.
• Applying ζ mapping on any zero-differential values will produce a zero-differential value.
• Applying ζ-mapping on any non-zero-differential values will produce either a non-zero-differential

value or a zero-differential value if it is a multiple of 24.

Cryptography 2019, 3, 28 22 of 27

Figure 19 illustrates an experimental security analysis on 20,000 randomly selected different
ciphers from the proposed class to figure out the minimum number of differentially active GSs. It was
found that after four rounds and for all 20,000 ciphers, at least 12 to 18 GSs (out of 32) were differentially
active (shown as colored circles). After increasing the number of rounds, the active GSs increased
proportionally. The ciphers having only 12 active GSs after four rounds mostly stayed in the bottom
in their number of active boxes (marked as bold blue circles) but never diverted far away from the
remaining sample ciphers. After 10 rounds, at least 48 GSs (out of 80) were active. The security analysis
in made based on the worst case active GSs.

Cryptography 2019, 4, x FOR PEER REVIEW 21 of 27

𝐶({𝑥, 𝑦}) = ൛𝐿௜, 𝑟௝|∃𝑘; 𝜂ଵ଺(𝑓)(𝐿௜, 𝑥||𝑟௜) ⨁𝜂ଵ଺(𝑓)(𝐿௜, 𝑦||𝑟௜) = ൫0ସ௞ห|𝑒|ห0଺଴ିସ௞൯ൟ (30)

where 𝑒 ∈ 𝔽ଶସ. In order to recover only one GS, the adversary uses C({x,y}) to count how often only
one active GS is involved in the ciphertext difference, if the following is met, 𝑒 = 𝐺𝑆(𝑥)⨁𝐺𝑆(𝑦). (31)

Let De be the set of all {x,y} pairs that hold Equation (31). According to [43], if the hamming
weight hw(e) = 1, then finding four sets of form De is enough to determine uniquely the targeted GS.
Finding three sets of form De determines eight possible S-Boxes as candidates, etc.

To evaluate this attack, the minimum number of active GSs in any differential trials through all
16 rounds is required to be found, where a differential trail is a sequence of the input and output
differences in each round. This leads to following definition:

Definition 7. In DC, an S-box is active in a differential trail if and only if its input difference is non-zero [44].

An exhaustive search was performed for a sample of 20,000 different ciphers using the
following properties:
• The right left subblock is 𝑅 = 0 and the left subblock is 𝐿 = (𝐿ଵ, 𝐿ଶ, 𝐿ଷ, 𝐿ସ, 𝐿ହ, 𝐿଺, 𝐿଻, 𝐿଼), where 𝐿, 𝑅 ∈ ℤଶయమ and 𝐿௝ ∈ ℤଶర for j=1,…,8.
• Let 𝛥𝐿ଵ = 𝛥𝑥 denote all possible differences, for all 𝑥 ∈ ℤଶర. Then, the input difference of a

generated f is 𝛥𝐿 = (𝛥𝑥||0ଶ଼).
• If the input difference of a GSi is non-zero, then the output difference will be non-zero.
• Applying ζ mapping on any zero-differential values will produce a zero-differential value.
• Applying ζ-mapping on any non-zero-differential values will produce either a

non-zero-differential value or a zero-differential value if it is a multiple of 24.
Figure 19 illustrates an experimental security analysis on 20,000 randomly selected different

ciphers from the proposed class to figure out the minimum number of differentially active GSs. It
was found that after four rounds and for all 20,000 ciphers, at least 12 to 18 GSs (out of 32) were
differentially active (shown as colored circles). After increasing the number of rounds, the active GSs
increased proportionally. The ciphers having only 12 active GSs after four rounds mostly stayed in
the bottom in their number of active boxes (marked as bold blue circles) but never diverted far away
from the remaining sample ciphers. After 10 rounds, at least 48 GSs (out of 80) were active. The
security analysis in made based on the worst case active GSs.

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10 11

M
in

im
um

 N
um

be
r o

f A
ct

iv
e

GS
s

Number of Rounds

Figure 19. Minimum number of active GSs in a differential trial for 10 rounds of the ciphers sample.
Figure 19. Minimum number of active GSs in a differential trial for 10 rounds of the ciphers sample.

Therefore, the probability Pri[{x, y}] that the ciphertext difference has i-th active GSs on the
plaintext from PL,r in the worst case is,

Pr
1
[
{
x, y

}
] ≤ Pr

12
[
{
x, y

}
] <

((1
4

)12)4

=
1

296 . (32)

Therefore, it can be concluded that the proposed SUC is sufficiently secure against any adversary
who just analyzes the plaintext–ciphertext pairs.

8.3. Post-Quantum Exhaustive Search for SUC Model

In cryptography, Grover’s algorithm is considered to be a special case of a more general search
algorithm for quantum exhaustive searches [39]. For instance, Grover’s algorithm finds k0 from K in
√
|K| steps by querying a given function φ : K→ {0, 1} defined as:

φ(k) =
{

1; k = k0

0; k , k0
. (33)

To identify an SUC from all generated Feistel-like ciphers by using Grover’s algorithm,
√
σ steps

are required, which results practically with,

√
σ ≈ 2

649
2 ≈ 2325 steps. (34)

As a consequence, the proposed Feistel-like ciphers are even secure for post-quantum attacks.

Cryptography 2019, 3, 28 23 of 27

9. Discussion and Conclusions

Designing a Secret Unknown Cipher Generator together with large adequate cipher classes is a
very challenge task. The resulting SUC hardware complexity should be as low as possible to allow
flexible and fast production. On the other hand, very large cipher classes are required with acceptable
security quality, which may increase the complexity of the created cipher structure and its creating
GENIE. The paper proposes a trade-off in an FPGA environment by “reanimating” certain unused
arithmetic units to come up with acceptable practical hardware complexity. The new designed cipher
class is restricted in its building block resources as it is using only certain hard-core arithmetic units.

The resulting complexities of the proposed designs are quite promising, consuming less than 1%
of the device resources in one of the smallest SoC FPGAs. The proposed created SUCs are supposed
to serve as a digital PUF alternative to the analog traditional PUFs. Our proposal exhibits attractive
properties and is efficiently usable in emerging future IoT applications.

Furthermore, the security levels of the resulting SUC class are scalable. The proposed SUC as a
Feistel-like cipher has a high level of security proportional to the hardware complexity. Moreover, the
cipher design is a modified version of a well-investigated Luby–Rackoff cipher structures, which have
been exposed to intensive review in the public literature. We expect to attain the same security bounds
of the Luby–Rackoff cipher classes. As the cipher design is equivalent to a PRF in its design, there is
no ML algorithm that can attack such SUCs as in the traditional PUFs. Finally, the resulting SUC’s
security level can cope easily with post-quantum security requirements as well by minor scaling on
their complexity.

In summary, a new hardware-oriented cipher design for SUCs optimized for practical real-world
environment is introduced.

Most FPGA applications do not consume all of the FPGA resources in particular powerful and
complex multiplier cores. The ultimate goal of the SUC design is to embed the SUC in the FPGA
without cutting resources from the functional FPGA duties. The reason is that embedding SUCs
and personalization is processed at the very late stage by the end manufacturer before releasing
the products to the market. This allows the end manufacturer to attain the highest security, as all
the subcontractors would have no influence on the security management. In other words, the end
manufacturer can easily produce his different components outside his factory without having any
fear that the subcontractor would be able to clone his products, as subcontractors are fully out of the
security process. Any produced component cannot be used without the SUC approval of the end
manufacturer. Then, cloning by pirate companies or subcontractors is prohibited and the original
product’s royalties are fully protected.

Zero-Cost Aspects: The cipher design is deploying mainly hard-core (complex) multipliers as major
building blocks, which may be available unused in modern system-on-chip (SoC) FPGA devices.
The ultimate target of the cipher design is to allow “reanimating” spare unused multiplier cores to
convert devices into clone-resistant units at possibly zero cost. Zero cost is assumed to be attained
when embedding such an SUC module in a device does not consume any area cut from the usual
application resources.

An ongoing research to devise many other new alternative implementations in future
reconfigurable VLSI devices is in progress.

Author Contributions: Conceptualization, S.M. and W.A.; Methodology, S.M.; Software, S.M.; Supervision,
W.A.; Validation, S.M.; Formal analysis, S.M.; Visualization, W.A.; Writing—original draft preparation, S.M.;
Writing—review and editing, S.M. and W.A.; Project administration, W.A.

Funding: This work was supported by the DAAD Research Grants-Doctoral Programmes in Germany Nr.
(57214224) and the German Federal Foreign Office scholarship funding (STIBET) program as well as Microsemi,
a Microchip Company, San Jose, CA, USA and Volkswagen AG-Germany.

Conflicts of Interest: The authors declare no conflict of interest.

Cryptography 2019, 3, 28 24 of 27

Appendix A

The generic attacks on one, two, and three rounds of the proposed Feistel-like cipher follows the
work of Patarin [38].

The one round Feistel-like cipher is described as:

(Si, Ti) = η1 (f) (Li, Ri) = (P(Li, f (Ri)), Ri) = (aLi + b f (Ri), Ri). (A1)

For one round:
Si = Ri

Ti = aLi + b f (Ri)

}
. (A2)

The adversary can just test if Si = Ri for every i. This will happen with 100% probability after
one query. Therefore, one round of the proposed Feistel-like cipher is not a PRP.

For two rounds:
The proposed Feistel-like cipher η2(f)(Li, Ri) can be described as:

Si = aLi + b1 f (Ri)

Ti = aRi + b2 f (Si)

}
. (A3)

If b1 = b2, the adversary chooses two pairs (L1, R1) and (L2, R2), where R1 = R2 and L1 , L2.
Then, the adversary can just test if S1 − S2 = a(L1 − L2). This will happen with 100% probability after
four queries. Therefore, the proposed Feistel-like cipher with two rounds is not a PRP.

For three rounds:
The proposed Feistel-like cipher η3(f) (Li, Ri) can be described as:

Xi = aLi + b f (Ri)

Si = aRi + b f (Si)

Ti = aXi + b f (Si)

. (A4)

If b1 = b2 = b3, the adversary will perform the following steps:

• Choose (L1, R1) = (0, 0) as a query for η3(f) resulting with (S1, T1).
• Choose (L2, R2) = (0, S1) as a query for η3(f) resulting with (S2, T2).
• Choose (L3, R3) = (T1 − aT2, S2) as a query for η3(f) resulting with (S3, T3).

Then, the adversary can just test if S3 = aS2 + S1 for a = 1 · · · 1︸︷︷︸
n

. This will happen with 100%

probability after at most O
(
2n+1

)
= O

(
2n+1 + 2n

)
queries. Therefore, the proposed Feistel-like cipher

with three identical rounds is not a PRP.

Appendix B

The proof of Theorem 6 follows the framework of Maurer [45].

Proof of Theoem 6. Assume without loss of generality that the q pairs (Li, Ri) are distinct. According
to Equation (18), the outputs of the first, second, and third round are (Ri, Xi), (Xi, Si), and (Si, Ti),
respectively. Let AX be the event where {Xi}

q
i=1 is distinct, and let AS be the event where {Si}

q
i=1 is

distinct. Then, AX ∩AS is the event where {Xi}
q
i=1 and {Si}

q
i=1 are distinct.

Now, if the event AX occurs, then the values Si = aRi + bk f (Xi) are random for i = 1, . . . q, where

bk f (Xi) is a multiplication of two random values. On the other hand, f U
← F and bl

U
← {0, 1}n−1; therefore,

if the event AS occurs, then the values Ti = aXi + bl f (Si) are random for i = 1, . . . q. In this case, η3(f)
behaves precisely similar to a randomly chosen function from F2n, and the probability of distinguishing
between η3(f) and a random function from F2n is:

Cryptography 2019, 3, 28 25 of 27

∣∣∣∣∣Pr
[
G
(
η3(f)(L1, R1), · · · , η3(f)

(
Lq, Rq

))
= 1 : f U

← F

]
− PG

∣∣∣∣∣ ≤ 1− Pr[AX ∩AS] (A5)

and
1− Pr[AX ∩AS] = Pr[AX ∩AS] = Pr

[
AX ∪AS

]
≤ Pr

[
AX

]
+ Pr

[
AS

]
(A6)

where AX (AS) in the complementary event of AX (AS) occurring when {Xi}
q
i=1 ({Si}

q
i=1) are

not distinct, respectively.
For i , j, and according to the main assumption that the q pairs (Li, Ri) are distinct,

Pr
[
AX

]
=

(
q
2

) ∑
1≤i< jq

Pr
[
Xi = X j

]
, and Pr

[
AS

]
=

(
q
2

) ∑
1≤i< jq

Pr
[
Si = S j

]
(A7)

where
(

q
2

)
is the number of choosing two equal values

[
Xi = X j

] ([
Si = S j

])
out of q from AX (AS),

respectively. On the other hand, the q pairs (Li, Ri) are distinct by the assumption, and Pr
[
Xi = X j

]
and Pr

[
Si = S j

]
are computed as,

Pr
[
Xi = X j

]
=

{
2−n; Ri , R j
0; Ri = R j

, and Pr
[
Si = S j

]
=

{
2−n; Xi , X j
0; Xi = X j

. (A8)

From Equations (A7) and (A8),

Pr
[
AX

]
≤

(
q
2

)
2−n, and Pr

[
AS

]
≤

(
q
2

)
2−n. (A9)

Substituting Equation (A9) by Equation (A6),

1− Pr[AX ∩AS] ≤ 2
(

q
2

)
2−n =

q(q− 1)
2n <

q2

2n . (A10)

Call Equation (A5)∣∣∣∣∣Pr
[
G
(
η3(f)(L1, R1), · · · , η3(f)

(
Lq, Rq

))
= 1 : f U

← F

]
− PG

∣∣∣∣∣ ≤ q2

2n .

�

References

1. Mittal, S.; Vetter, J.S. A Survey of Software Techniques for Using Non-Volatile Memories for Storage and
Main Memory Systems. IEEE Trans. Parallel Distrib. Syst. 2016, 27, 1537–1550. [CrossRef]

2. Skorobogatov, S. Semi-Invasive Attacks: A New Approach to Hardware Security Analysis; University of Cambridge:
Cambridge, UK, 2005.

3. Maes, R.; Verbauwhede, I. Physically Unclonable Functions: A Study on the State of the Art and Future
Research Directions. In Towards Hardware-Intrinsic Security; Springer: Berlin/Heidelberg, Germany, 2010;
pp. 3–37.

4. Delvaux, J.; Peeters, R.; Gu, D.; Verbauwhede, I. A Survey on Lightweight Entity Authentication with
Strong PUFs. ACM Comput. Surv. 2015, 48, 1–42. [CrossRef]

5. Rührmair, U.; Sehnke, F.; Sölter, J.; Dror, G.; Devadas, S.; Schmidhuber, J. Modeling attacks on physical
unclonable functions. In Proceedings of the 17th ACM conference on Computer and communications
security-CCS’10, Chicago, IL, USA, 4–8 October 2010; ACM Press: New York, NY, USA, 2010; p. 237.

http://dx.doi.org/10.1109/TPDS.2015.2442980
http://dx.doi.org/10.1145/2818186

Cryptography 2019, 3, 28 26 of 27

6. Dodis, Y.; Ostrovsky, R.; Reyzin, L.; Smith, A. Fuzzy Extractors: How to Generate Strong Keys from Biometrics
and Other Noisy Data. SIAM J. Comput. 2008, 38, 97–139. [CrossRef]

7. Delvaux, J.; Gu, D.; Schellekens, D.; Verbauwhede, I. Helper Data Algorithms for PUF-Based Key Generation:
Overview and Analysis. IEEE Trans. Comput. Des. Integr. Circuits Syst. 2015, 34, 889–902. [CrossRef]

8. Guajardo, J.; Kumar, S.S.; Schrijen, G.-J.; Tuyls, P. FPGA Intrinsic PUFs and Their Use for IP Protection.
In Cryptographic Hardware and Embedded Systems-CHES 2007; Springer: Berlin/Heidelberg, Germany, 2007;
pp. 63–80.

9. Pappu, R.; Recht, B.; Taylor, J.; Gershenfeld, N. Physical One-Way Functions. Science 2002, 297, 2026–2030.
[CrossRef] [PubMed]

10. Gassend, B.; Clarke, D.; van Dijk, M.; Devadas, S. Controlled physical random functions. In Proceedings of
the 18th Annual Computer Security Applications Conference, Las Vegas, NV, USA, 9–13 December 2002;
IEEE: Piscataway, NJ, USA, 2002; pp. 149–160.

11. Adi, W. Autonomous Physical Secret Functions and Clone-Resistant Identification. In Proceedings of
the 2009 Symposium on Bio-inspired Learning and Intelligent Systems for Security, Edingburgh, UK,
20–21 August 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 83–88.

12. Mulhem, S.; Mars, A.; Adi, W. A Cipher Class Based on Golden S-Boxes for Creating Clone-Resistant Identities.
In International Workshop on Information and Operational Technology Security Systems; Springer: Cham, Switzerland,
2019; pp. 3–14.

13. Mulhem, S.; Mohammad, M.; Adi, W. A New Low-Complexity Cipher Class for Clone-Resistant Identities.
In Proceedings of the 2019 42nd International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), Opatija, Croatia, 20–24 May 2019; IEEE: Piscataway, NJ, USA,
2019; pp. 971–976.

14. Mulhem, S.; Ayache, M.; Adi, W. Mini-Block-Based Cipher Class for Physical Clone-Resistant Devices.
In Proceedings of the EST-Eighth IEEE International Conference on Emerging Security Technologies,
Colchester, UK, 22–24 July 2019.

15. Sadeghi, A.; Visconti, I.; Wachsmann, C. PUF-enhanced RFID security and privacy. In Proceedings of the 2nd
Workshop on Secure Component and System Identification (SECSI 2010), Cologne, Germany, 22–23 June 2010.

16. Armknecht, F.; Maes, R.; Sadeghi, A.-R.; Sunar, B.; Tuyls, P. Memory Leakage-Resilient Encryption Based
on Physically Unclonable Functions. In Proceedings of the Advances in Cryptology–ASIACRYPT 2009,
Tokyo, Japan, 6–10 December 2009; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg,
Germany, 2009; Volume 5912, pp. 685–702.

17. Goldreich, O. Foundations of Cryptography; Cambridge University Press: Cambridge, UK, 2003; ISBN 0521791723.
18. Rührmair, U.; Sölter, J.; Sehnke, F. On the Foundations of Physical Unclonable Functions. IACR Cryptol.

ePrint Arch. 2009, 2009, 277.
19. Wu, J.; O’Neill, M. On Foundation and Construction of Physical Unclonable Functions. IACR Cryptol. ePrint Arch.

2010, 2010, 171.
20. Bekenstein, J.D. How does the Entropy/Information Bound Work? Found. Phys. 2005, 35, 1805–1823. [CrossRef]
21. Maes, R.; Van Herrewege, A.; Verbauwhede, I. PUFKY: A Fully Functional PUF-Based Cryptographic

Key Generator. In International Workshop on Cryptographic Hardware and Embedded Systems; Prouff, E.,
Schaumont, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 302–319.

22. Adi, W.; Ouertani, N.; Hanoun, A.; Soudan, B. Deploying FPGA self-configurable cell structure for micro
crypto-functions. In Proceedings of the 2009 IEEE Symposium on Computers and Communications,
Sousse, Tunisia, 5–8 July 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 348–354.

23. Adi, W.; Soudan, B. Bio-Inspired Electronic-Mutation with genetic properties for Secured Identification.
In Proceedings of the 2007 ECSIS Symposium on Bio-inspired, Learning, and Intelligent Systems for Security
(BLISS 2007), Edinburgh, UK, 9–10 August 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 133–136.

24. Bogdanov, A.; Rosen, A. Pseudorandom Functions: Three Decades Later. In Tutorials on the Foundations of
Cryptography. Information Security and Cryptography; Lindell, Y., Ed.; Springer: Cham, Switzerland, 2017;
pp. 79–158. ISBN 978-3-319-57048-8.

25. Rivest, R.L. Cryptography and machine learning. In International Conference on the Theory and Application
of Cryptology; Springer: Berlin/Heidelberg, Germany, 1993; pp. 427–439.

26. SmartFusion2 SoC FPGAs|Microsemi. Available online: https://www.microsemi.com/product-directory/soc-
fpgas/1692-smartfusion2 (accessed on 8 September 2019).

http://dx.doi.org/10.1137/060651380
http://dx.doi.org/10.1109/TCAD.2014.2370531
http://dx.doi.org/10.1126/science.1074376
http://www.ncbi.nlm.nih.gov/pubmed/12242435
http://dx.doi.org/10.1007/s10701-005-7350-7
https://www.microsemi.com/product-directory/soc-fpgas/1692-smartfusion2
https://www.microsemi.com/product-directory/soc-fpgas/1692-smartfusion2

Cryptography 2019, 3, 28 27 of 27

27. Wollinger, T.; Guajardo, J.; Paar, C. Security on FPGAs. ACM Trans. Embed. Comput. Syst. 2004, 3, 534–574.
[CrossRef]

28. Hatzivasilis, G.; Fysarakis, K.; Papaefstathiou, I.; Manifavas, C. A review of lightweight block ciphers.
J. Cryptogr. Eng. 2018, 8, 141–184. [CrossRef]

29. National Bureau of Standards. FIPS Publication 46: Data Encryption Standard (DES); National Bureau of
Standards: Gaithersburg, MD, USA, 1977.

30. Aoki, K.; Ichikawa, T.; Kanda, M.; Matsui, M.; Moriai, S.; Nakajima, J.; Tokita, T. Camellia: A 128-Bit
Block Cipher Suitable for Multiple Platforms—Design andAnalysis. In Proceedings of the SAC 2000,
Como, Italy, 19–21 March 2000; Lecture Notes in Computer Science. Stinson, D.R., Tavares, S., Eds.; Springer:
Berlin/Heidelberg, Germany, 2001; Volume 2012, pp. 39–56.

31. Wu, W.; Zhang, L. LBlock: A Lightweight Block Cipher. In Proceedings of the Applied Cryptography
and Network Security. ACNS 2011, Nerja, Spain, 7–10 June 2011; Lecture Notes in Computer Science.
Tsudik, G., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6715, pp. 327–344.

32. Biham, E.; Shamir, A. Differential Cryptanalysis of the Data Encryption Standard; Springer: New York, NY, USA,
1993; ISBN 978-1-4613-9316-0.

33. Patel, S.; Ramzan, Z.; Sundaram, G.S. Luby-Rackoff Ciphers over Finite Algebraic Structures or Why XOR is
not so Exclusive. In Proceedings of the Selected Areas in Cryptography-SAC 2002, St. John’s, NL, Canada,
15–16 August 2002; LNCS 2595. Springer: Berlin/Heidelberg, Germany, 2002; pp. 271–290.

34. Patel, S.; Ramzan, Z.; Sundaram, G.S. Luby-Racko. Ciphers: Why XOR Is Not So Exclusive. In Proceedings
of the Selected Areas in Cryptography. SAC 2002, St. John’s, NL, Canada, 15–16 August 2002; Lecture Notes
in Computer Science. Nyberg, K., Heys, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2595,
pp. 271–290.

35. Carter, G.; Dawson, E.; Nielsen, L. DESV: A Latin Square variation of DES. In Proceedings of the Workshop
on Selected Areas of Cryptography, Carleton University, Ottawa, ON, Canada, 18–19 May 1995; pp. 158–172.

36. Klimov, A.; Shamir, A. A New Class of Invertible Mappings. In International Workshop on Cryptographic
Hardware and Embedded Systems; Springer: Berlin/Heidelberg, Germany, 2003; pp. 470–483.

37. Rivest, R.L. Permutation Polynomials Modulo 2w. Finite Fields Their Appl. 2001, 7, 287–292. [CrossRef]
38. Patarin, J. Generic Attacks on Feistel Schemes. In Proceedings of the Advances in Cryptology—ASIACRYPT

2001, Gold Coast, Australia, 9–13 December 2001; Lecture Notes in Computer Science. Boyd, C., Ed.; Springer:
Berlin/Heidelberg, Germany, 2001; Volume 2248, pp. 222–238.

39. Boneh, D.; Shoup, V. A Graduate Course in Applied Cryptography; Version 0.4.; Stanford University:
Stanford, CA, USA, 2017.

40. Saarinen, M.-J.O. Cryptographic Analysis of All 4 × 4-Bit S-Boxes. In Proceedings of the Selected Areas in
Cryptography (SAC 2011), Toronto, ON, Canada, 11–12 August 2011; Lecture Notes in Computer Science.
Springer: Berlin/Heidelberg, Germany, 2012; Volume 7118, pp. 118–133.

41. Daemen, J.; Rijmen, V. The Design of Rijndael: AES-The Advanced Encryption Standard; Springer:
Berlin/Heidelberg, Germany, 2002; ISBN 9783662047224.

42. Rolfes, C.; Poschmann, A.; Leander, G.; Paar, C. Ultra-Lightweight Implementations for Smart
Devices–Security for 1000 Gate Equivalents. In Proceedings of the mart Card Research and Advanced
Applications (CARDIS 2008), London, UK, 8–11 September 2008; Lecture Notes in Computer Science.
Grimaud, G., Standaert, F.X., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5189, pp. 89–103.

43. Borghoff, J. Cryptanalysis of Lightweight Ciphers; Technical University of Denmark (DTU): Lyngby, Denmark, 2011.
44. Sajadieh, M.; Mirzaei, A.; Mala, H.; Rijmen, V. A new counting method to bound the number of active

S-boxes in Rijndael and 3D. Des. Codes Cryptogr. 2017, 83, 327–343. [CrossRef]
45. Maurer, U.M. A Simplified and Generalized Treatment of Luby-Rackoff Pseudorandom Permutation

Generators. In Proceedings of the Advances in Cryptology—EUROCRYPT’ 1992, Balatonfüred, Hungary,
24–28 May 1992; Springer: Berlin/Heidelberg, Germany, 1992; pp. 239–255.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/1015047.1015052
http://dx.doi.org/10.1007/s13389-017-0160-y
http://dx.doi.org/10.1006/ffta.2000.0282
http://dx.doi.org/10.1007/s10623-016-0217-4
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	State of the Art on Unclonable Electronic Units
	PUFs as Unkown/Random Functions
	PUF-Based Unkown Key Generation for Pseudo-Random Fuctions
	A Block Cipher Deploying PUFs as Unkown Round Functions

	The Concept of Secret Unknown Ciphers Modules as PUF Alternatives
	Creation Concept of Unknown Ciphers as Clone-Resistant Entities/Modules
	Modeling Attacks and Clone-Resistance Measures

	New SUC Implementation Strategy and Target FPGA Environment
	A New Feistel-Like Cipher Class
	New Latin Square as Involution Mapping for SUC
	Distinguishing Attack on the Proposed Feistel-Like Cipher

	New i-Mappings Hardware Structure and Its Complexity
	Possible Feistel-Like Inner Function Design
	Golden 4-Bit S-Boxes as Basic Building Elements for the Mapping of f
	Bricklayer Function as a Possible Inner Function f
	How Can the SUC-Creating GENIE Work?
	A Possible Prototype Hardware Implementation

	Security Analysis and Evaluation
	Modeling Attacks on SUC
	Cryptanalysis of a Cipher with Secret Components
	Post-Quantum Exhaustive Search for SUC Model

	Discussion and Conclusions
	
	
	References

