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Abstract: SIMON and SPECK families of block ciphers are well-known lightweight ciphers designed
by the NSA. In this note, based on the previous investigations on SIMON, a closed formula for
the squared correlations and differential probabilities of the mapping φ(x) = x � S1(x) on Fn

2 is
given. From the aspects of linear and differential cryptanalysis, this mapping is equivalent to the core
quadratic mapping of SIMON via rearrangement of coordinates and EA -equivalence. Based on the
proposed explicit formula, a full description of DDT and LAT of φ is provided. In the case of SPECK,
as the only nonlinear operation in this family of ciphers is addition mod 2n, after reformulating the
formula for linear and differential probabilities of addition mod 2n, straightforward algorithms for
finding the output masks with maximum squared correlation, given the input masks, as well as the
output differences with maximum differential probability, given the input differences, are presented.
By the aid of the tools given in this paper, the process of the search for linear and differential
characteristics of SIMON and SPECK families of block ciphers could be sped up, and the complexity
of linear and differential attacks against these ciphers could be reduced.

Keywords: SIMON; SPECK; DDT; LAT; pseudo-octal representation; gaps and blocks representation;
modular addition mod 2n

1. Introduction

SIMON and SPECK are two families of block ciphers that were designed by the NSA [1].
These lightweight ciphers have widely attracted the attention of researchers [2–14]. In [2], some linear
characteristics for the SIMON family of block ciphers were presented. The authors of [3] provided
differential attacks of up to slightly more than half of the number of rounds for SIMON and
SPECK families of block ciphers. A technique for the automatic search for differential trails in ARX
ciphers was used to improve the previous attacks on SIMON and SPECK block cipher families
in [4]. In [5], significantly improved differential attacks against all 10 variants of SPECK were
presented. Two variants of the SIMON family of ciphers were investigated in [6], and a 14-round
linear approximation for SIMON-32, as well as a 17-round linear approximation for SIMON-48 were
presented. In [7], using quadratic constraints or constraints from H-representation of a specific convex
hull, a method for constructing a mixed-integer (non)linear programming model for SIMON was
provided. The authors of [8] studied the security of a version of SIMON, using some kind of truncated
differentials, and an attack of up to 26 rounds was presented. In [9], improved linear attacks on
all reduced versions of SIMON were presented with dynamic key guessing. The authors of [10]
showed that overlooking linear hulls, formed by a single round, may lead to the wrong estimations
of linear correlations. In [11], a partial linear mask table was used to speed up the search progress
to attack reduced round SPECK. In [12], firstly, the properties of the linear approximation of the
bitwise AND with dependent input bits were investigated, and then, using MILP, improved linear
characteristics for several versions of SIMON were obtained. The authors of [13], reducing the sufficient
bit conditions corresponding to the differential propagations, and avoiding the guess for some subkey
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bits or equivalent key bits involved in the conditions, extended differential attacks on SIMON by 2–4
more rounds. In [14], an algorithm to find a differential path in ARXstructures was proposed, and
based on this, previous differential attacks on various versions of SPECK were improved. All of the
mentioned papers investigated SIMON and/or SPECK from linear and/or differential aspects and
examined the resistance of these ciphers against linear and differential cryptanalysis.

Some authors have studied the properties of the components of these ciphers from theoretical
aspects [15–24]. In [15,16], linear and differential properties of SIMON-like ciphers were investigated,
from the mathematical viewpoint, and an efficient formula for computing linear and differential
probabilities of SIMON was presented. In [18], after a theoretical examination, the authors studied
how rotational cryptanalysis is affected when constants are injected. In [17], after some mathematical
investigations, the resistance of SIMON-like ciphers against differential cryptanalysis was analyzed,
and upper bounds for the differential probabilities of differential characteristics for some certain
instances were provided. In [19,20], upon some theoretical studies, upper bounds for differential
probabilities and squared correlations for SIMON-like ciphers were provided, and provably optimal
differential trails for various versions of SIMON were presented. In [21–24], linear properties of
addition mod 2n were investigated, from the mathematical viewpoint.

In this note, based on the previous studies, nonlinear components of SIMON and SPECK families
of ciphers are examined. The method of the research of this paper is somewhat similar to [15–24]: we
study the linear and differential properties of the components of SIMON and SPECK families of block
ciphers, from the mathematical viewpoint.

The only nonlinear component of SIMON family of block ciphers is the quadratic mapping:

f : Fn
2 → Fn

2 ,

f (x) = S1(x)� S8(x)⊕ S2(x),

for n = 16, 24, 32, 48, 64. The mapping f is equivalent to φ below, through a permutation of coordinates
and EA-equivalence:

φ : Fn
2 → Fn

2 ,

φ(x) = x� S1(x).

Based on the previous research on the linear and differential properties of SIMON [15,16,18–20],
a simple explicit formula for differential probabilities and squared correlations of φ is given. Besides,
a full description of DDT and LAT of φ is provided, in this paper.

The only nonlinear operation in the SPECK family of block ciphers is addition mod 2n,
with n = 16, 24, 32, 48, 64. Based on the previous studies on the linear and differential properties
of this operation [21–24], a closed formula for differential probabilities and squared correlations of
modular addition mod 2n, along with straightforward algorithms for finding the output masks with the
maximum squared correlation, given the input masks and the output differences with the maximum
differential probability, given the input differences, are presented.

By the aid of the main contribution of the current paper, i.e., the full description of DDT and LAT
of φ, which in turn leads to the full determination of DDT and LAT of the core quadratic mapping of
SIMON, as well as the straightforward algorithms for finding the optimum output differences, given
the two input differences and the optimum output masks, given the two input masks for the operation
of modular addition mod 2n, the process of finding good linear and differential characteristics for the
lightweight ciphers SIMON and SPECK could be sped up, and the complexity of linear and differential
attacks against these ciphers could be reduced.

Section 2 gives the preliminary notations and definitions. Section 3 is devoted to the examination
of the linear and differential properties of SIMON. Section 4 discusses the linear and differential
properties of SPECK, and Section 5 is the conclusion.
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2. Preliminary Notations and Definitions

In the sequel i, j, m, n, t, r, and s are natural numbers. The n-dimensional space over F2,
the finite field with two elements, is denoted by Fn

2 . Left rotation by t times on x is denoted by St(x).
The operations of AND, OR, and XOR are denoted by �, ∨, and ⊕, respectively. The Hamming weight
of a binary number or vector x is represented by w(x) and the complement of x by x̄. The standard
dot product in Fn

2 is denoted by ·. The all one and the all zero vectors are represented by 1 and
0, respectively.

Let f : Fn
2 → Fn

2 . Define:

D f (a, b) = |{x ∈ Fn
2 : f (x)⊕ f (x⊕ a) = b}|.

The matrix or table [D f (a, b)], a, b ∈ Fn
2 , is called the Difference Distribution Table (DDT) of f .

The normalized DDT of f is defined as:

D f = [D f (a, b)] = [D f (a, b)/2n].

Not that for every a ∈ Fn
2 , we have:

∑
x∈Fn

2

D f (a, x) = 1.

If we have D f (a, x) 6= 0 for some x ∈ Fn
2 , then x is called an admissible output difference for a in

this paper.
The Walsh coefficient of f on a and b is defined as:

W f (a, b) = ∑
x∈Fn

2

(−1)a·x⊕b· f (x).

The matrix or table [W f (a, b)], a, b ∈ Fn
2 , is called the Linear Approximation Table (LAT) of f .

The normalized LAT of f is defined as:

L f = [L f (a, b)] = [W2
f (a, b)/22n].

Not that for every b ∈ Fn
2 , we have:

∑
x∈Fn

2

L f (x, b) = 1.

If we have L f (x, b) 6= 0 for some x ∈ Fn
2 , then x is called an admissible input mask for b, in the

current paper.
Let a = (an−1, . . . , a1, a0) ∈ Fn

2 . Put α = (αn−1, . . . , α1, α0) with αi = (ai, ai−1, ai−2), 0 ≤ i < n: the
indices are calculated mod n. In this paper, this representation is called the pseudo-octal representation
of a. It is obvious that every binary number a has a unique pseudo-octal representation; but a sequence
of octal symbols is not necessarily the pseudo-octal representation of a binary number. If a sequence of
octal symbols is the pseudo-octal representation of a binary number, then it is called admissible in this
paper. For an α to be admissible, the consecutive appearance of octal symbols should be as follows:

{0, 1} → {0, 4}, {2, 3} → {1, 5}, {4, 5} → {2, 6}, {6, 7} → {3, 7}. (1)

For example, 110010 has the pseudo-octal representation 641253. This representation is used in
Section 3.

Another representation for binary numbers that is used in Section 3, is as follows: any binary
number could be represented by consecutive gaps and blocks. A gap is a series of zeroes, and a block
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is a series of ones. Any number, except the all one and all zero vectors, up to a rotation, consists of
some m many gaps and blocks 1bi

0ai , with ai, bi ≥ 1, 1 ≤ i ≤ m. For example, the number 0011010110,
rotated two times to the left, is of the form 120111011203.

3. Linear and Differential Properties of SIMON

Linear and differential properties of the core quadratic mapping of the SIMON family of block
ciphers were studied in [15–20]. The mapping:

φ : Fn
2 → Fn

2 ,

φ(x) = x → x� S1(x),

is equivalent to the core quadratic mapping of SIMON, through a permutation of coordinates and
EA-equivalence [15,16]. In this section, based on the previous examinations, the simple closed formula
for differential probabilities and squared correlations of φ is given. Besides, a full description of DDT
and LAT of φ is provided. Firstly, a theorem from [15,16] is recalled:

Theorem 1. The differential probability of φ on α and β is:

Dφ(α, β) =


21−n α = 1, w(β) = 0 mod 2,

2−s α 6= 1, β� varibits = 0, (β⊕ S1(β))� doublebits = 0,

0 o.w.

where:
s = w(varibits⊕ doublebits),

varibits = S1(α) ∨ α,

doublebits = α� S1(α)� S2(α).

Theorem 2. Let α 6= 0, 1 consist of gaps and blocks of the form 1bi
0ai , 1 ≤ i ≤ m, according to the notations

presented in Section 1. Then, for any admissible output difference x ∈ Fn
2 , we have:

Dφ(α, x) = 2−(w(α)+s),

where s = |{1 ≤ i ≤ m : ai 6= 1}|; i.e., s is the number of gaps of length greater than one.

Proof. Firstly, note that w(α) + s = w(α) + m− t, where:

t = |{1 ≤ i ≤ m : ai = 1}|.

According to Table 1 and (1), the theorem is proven via case-by-case analysis. The blocks of
length one and the blocks of length greater than one should be treated separately. Furthermore,
the gaps before and after this block should be analyzed separately, according to their lengths: again,
the gaps of length one and the gaps of length greater than one should be verified separately. All the
cases could also be examined by programming. For instance, consider the pattern ?101100? with
the pseudo-octal representation ?5364?. Either the pattern is of the form ?0101100? or ?25364? in
pseudo-octal representation, in which the symbols 2, 3, 6, and 4 each add one to the absolute value of
the exponent of differential probability, according to Table 1; or the leftmost block in the pattern is of
length greater than one. For the sake of simplicity, suppose that the pattern is of the form ?01101100?,
which corresponds to ?365364?, where 4, 6, 3, 6, and 3 each have a contribution of one. Therefore,
for the presented pattern, the differential probability equals the weight, plus the number of blocks,
minus the number of gaps of length one.
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In spite of the fact that the core mapping of SIMON does not inherit all the visual properties of
φ, but regarding the equivalence between the core quadratic mapping of SIMON and φ, Theorem 5
in [19] and Lemma 2 in [17] are direct results of Theorem 2.

Before stating the next theorem, some notations are explained. In the following theorems, At

denotes an arbitrary t-bit number, or equivalently, the set off all t-bit numbers, and A1/2
t stands for the

set of t-bit words with a half-rate. For example:

A1A2 = {000, 001, 010, 011, 100, 101, 110, 111},

A1/2
1 A2 = {000, 001, 110, 111}.

Table 1. The pseudo-octal representation of the input (output) difference.

x Varibits Doublebits Varibits ⊕ Doublebits Adjacent Parity : x ⊕ S1(x)

0 0 0 0 0
1 0 0 0 0
2 1 0 1 1
3 1 0 1 1
4 1 0 1 1
5 1 1 0 1
6 1 0 1 0
7 1 0 1 0

Theorem 3. Let α 6= 0, 1 consist of gaps and blocks of the form 1bi
0ai , 1 ≤ i ≤ m. Then, all the admissible

output differences for α could be represented by gaps and blocks of the following forms. Note that, rotating α by a
suitable number, we could start from the first block:0ai+1−1Abi+1 ai+1 6= 1,

0ai+2−1A1/2
bi+1+1Abi+1 ai+1 = 1,

Proof. Regarding Table 1, for x to be admissible, αi → xi (in which the symbols are in pseudo-octal
representation) should follow the next patterns:

{0, 1} → {0, 1, 2, 3},

{5} → {0, 1, 6, 7},

{2, 3, 4, 6, 7} → {0, 1, 2, 3, 4, 5, 6, 7}.

For example, for the symbol 5, only for 0, 1, 6, and 7, both:

β� varibits, (β⊕ S1(β))� doublebits,

are 0. Since

∑
x∈Fn

2

Dφ(α, x) = 1,

and for any admissible x ∈ Fn
2 , we have Dφ(α, x) = 2−(w(α)+s), so there are exactly 2w(α)+s admissible

output differences. Thus, it only suffices to show that all the presented output differences are admissible.
Again, according to Table 1, it is straightforward to prove that every presented output difference
is admissible: the case-by-case analysis or programming could be applied to prove the theorem.
For instance, consider the input pattern ?001100? with pseudo-octal representation ?1364?. The output
admissible patterns could be of the following forms:

?00124?, ?01240?, ?01364?, ?12400?, ?12524?, ?13640?, ?13764?,
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considering Table 1. Note that the number of these patterns is 8 = 22+1. Therefore, the theorem is
proven in this case.

As an example, let n = 8 and α = 00101100. Since w(α) = 3 and α has one gap of length greater
than one, so for any admissible x ∈ F8

2, we have:

Dφ(α, x) = 2−4,

by Theorem 2. Rotating α two times to the right gives 00001011. Now, by Theorem 3, the admissible
output differences are of the form 03A1/2

2 A3; i.e.,

00000000, 00000001, 00000010, 00000011, 00001100, 00001101, 00001110, 00001111,

00010000, 00010001, 00010010, 00010011, 00011100, 00011101, 00011110, 00011111.

The actual differences are the above numbers, rotated two times to the left.

Theorem 4. Let β 6= 0, 1 consist of gaps and blocks of the form 1bi
0ai , 1 ≤ i ≤ m. Then, for any admissible

input mask x ∈ Fn
2 , we have:

Lφ(x, β) = 2−(w(β)+t),

where t = |{1 ≤ i ≤ m : bi mod 2 = 1|; i.e., t is the number of blocks of odd length. Furthermore, all the
admissible input masks consist of gaps and blocks of the form:{

Abi+10ai−1 bi mod 2 = 1,

Ebi+10ai−1 bi mod 2 = 0,

where E2t+1 denotes all the (2t + 1)-bit patterns (a2t, . . . , a1, a0) with:

t⊕
i=0

a2i = 0.

Proof. The theorem could be proven either directly, using Theorem 5 in [15,16], or considering the
comments in Appendix A (A.2) in [15]. In fact, Lφ(x, β) is equal to:

2−∑m
i=1 2dbi/2e.

Now, if bi is even, the contribution of this block in the absolute value of the exponent is only its
length, and if bi is odd, the contribution is equal to its length, plus one. Therefore, the presented formula
is correct. For the admissible input masks, note that similar to the case of differential probability, since
we have Lφ(x, β) = 2−(w(α)+t), for any admissible x ∈ Fn

2 , and ∑x∈Fn
2
Lφ(x, β) = 1, so there are exactly

2w(β)+t admissible input masks. Again, either by Theorem 5 in [15,16] or considering the comments of
Appendix A (A.2) in [15], the admissibility of the presented input masks is proven.

Regarding the equivalence between the core quadratic mapping of SIMON and φ, Theorem 5
in [20] is a direct result of Theorem 4.

Let n = 8 and β = 00101100. Since w(β) = 3 and β has one block of odd length, so for any
admissible x ∈ F8

2, we have:
Lφ(x, β) = 2−4,
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by Theorem 4. Rotating β, two times to the left, gives 10110000. Now, by Theorem 4, the admissible
output masks are of the form A2E303; i.e.,

00000000, 00101000, 00010000, 00111000, 01000000, 01101000, 01010000, 01111000,

10000000, 10101000, 10010000, 10111000, 11000000, 11101000, 11010000, 11111000.

The actual masks are the above numbers, rotated two times to the right.

Remark 1. It is worth noting that, Theorems 3 and 4 characterize the set of all admissible input masks (output
differences) for a given output mask (input difference) for the mapping φ; this in turn culminates in complete
determination of the corresponding input masks (output differences) for the core quadratic mapping of SIMON.
Note that, using the previous methods and without the proposed characterization, given any input difference or
output mask, we should search for desired admissible output differences or input masks and then verify whether
they are admissible or not; but, with the aid of the provided characterization, we simply search within the set of
all admissible masks or differences. Further, we could even save a table for the sparse masks or differences (the
ones with a low Hamming weight) to speed the search process. This way, the complexity of finding optimal linear
and differential characteristics could be reduced, significantly.

Defining Nd(s) as the number of α ∈ Fn
2 such that Dφ(α, x) = 2−s for any admissible x ∈ Fn

2 and
Nl(t) as the number of β ∈ Fn

2 such that Lφ(x, β) = 22−2t for any admissible x ∈ Fn
2 , we have the

following propositions.

Proposition 1. Let n > 4. We have:

Nd(1) = 0, Nd(2) = n, Nd(3) = 2n, Nd(n− 1) = 2n.

Proof. The least absolute value for the exponent is two, which corresponds to n numbers of Hamming
weight one. There are n numbers with only one block of length two, whose absolute value for the
exponent equals three, and n numbers with only one pattern of 101, whose absolute value for the
exponent is also equal to three. The n numbers with weight n− 2 have the absolute value for the
exponent equal to n, as well as the n numbers with weight n− 1.

The proof of the next preposition is straightforward.

Proposition 2. Let n > 4. We have
Nl(1) = 0, Nl(2) = 2n.

Nl(r) = 0, r >
n + 2

2
.

Table 2 presents Nl and Nd for n = 16.

Remark 2. On the one hand, the discussions of this section, combined with other techniques and using suitable
data structures, could improve linear and differential attacks on the SIMON family of block ciphers, as stated in
Remark 1. On the other hand, these studies show why this family of ciphers is resistant to (classical?) linear
and differential cryptanalysis: in fact, regarding Table 2, we see that the number of input differences and output
masks with large differential probability or large squared correlation is small, compared to 2n.
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Table 2. Values of Nl and Nd for n = 16.

r 1 2 3 4 5 6 7 8

Nd(r) 0 16 32 152 432 1216 2960 6318
Nl(r) 0 32 416 2816 10,560 21,504 21,504 8192

r 9 10 11 12 13 14 15

Nd(r) 411,472 16,320 15,344 8344 2496 400 32
Nl(r) 510 0 0 0 0 0 0

4. Linear and Differential Properties of SPECK

In this section, based on the previous studies on linear and differential properties of the operation
of addition mod 2n, the explicit formula for differential probabilities and linear biases of modular
addition mod 2n, along with straightforward algorithms for finding the output masks with maximum
squared correlation, given the input masks and the output differences with the maximum differential
probability, given the input differences, are presented.

Let a = (an−1, . . . , a1, a0), b = (bn−1, . . . , b1, b0), and c = (cn−1, . . . , c1, c0) be the two input
masks and the output mask for the operation of addition mod 2n, respectively. We wish to find
|P(a · x⊕ b · y = c · z)− 1

2 |, where z = x + y mod 2n. Put:

γi = 4cn−i−1 + 2bn−i−1 + an−i−1, 0 ≤ i < n.

The sequence γi could be represented as a series of blocks Bi, 1 ≤ i ≤ m, for some m, where each
Bi is an e-block (a block of symbols 3, 5, and 6), an o-block (a block of symbols 1, 2, and 4), a 0-block,
or a 7-block. The number of symbols in a block B is denoted by |B|, in the current paper. The following
theorem, whose proof is illustrated in Figure 1, is proven in [24]. Start from the START state and
traverse the diagram in Figure 1. If we are in State 0 and we see a symbol in {1, 2, 3, 4, 5, 6}, then
the correlation is zero. Otherwise, the absolute exponent for the bias is the number of times we see
w = w + 1. Note that if this bias equals 2−t, then the squared correlation is equal to 22−2t.

Figure 1. Linear biases of modular addition mod 2n.

Theorem 5. With the notations as above, we have:

|P(a · x⊕ b · y = c · z)− 1
2
| =


2s ρ = 1,

0 ρ = 0,

where:

s = ∑
Bi∈E∪O

|Bi|+ ∑
Bi∈1
b |Bi|

2
c+ ∑

Bi∈0
ρi|Bi|,
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and ρ1 = 0, and for 1 < i ≤ m,

ρi = |{j : 0 ≤ j < i,Bj ∈ O}|+ |{j : 0 ≤ j < i,Bj ∈ 1, |Bj| = 1 mod 2}| mod 2.

Here, E stands for the set of all e-blocks, O stands for the set of all o-blocks, 1 denotes the set of all 7-blocks,
and 0 represents the set of all 0-blocks.

We have ρ = 0 if and only if there exists 1 ≤ i ≤ m such that ρi = 0 and Bi ∈ E ∪O, and ρ = 1,
otherwise. Note that, in any case, the absolute value for the exponent of any nonzero linear bias is
greater than or equal to ∑Bi∈E∪O |Bi|+ ∑Bi∈1 b

|Bi |
2 c.

Suppose that a = (an−1, . . . , a1, a0), and b = (bn−1, . . . , b1, b0), are the two input masks. Put:

γi = 2bn−i−1 + an−i−1, 0 ≤ i < n.

Clearly, γi consists of 0-blocks, 3-blocks, and {1, 2}-blocks, i.e., blocks of Symbols 1 and 2. Now,
regarding the diagram in Figure 1, we have the following straightforward algorithm for finding output
masks with maximum correlation:

“Firstly, put ci = 0 for every symbol in every 0-block, and ci = 1, otherwise. Therefore, we have
0-blocks, 7-blocks, and e-blocks. Now, starting from the first block, for each series of consecutive
0-blocks and 7-blocks, put ci = 0 for the last symbol in each 7-block of odd length, to make it of even
length. For the last 7-block in this series of blocks, if it is of even length, make it of odd length by
setting ci = 0, for the last symbol in this 7-block. For each e-block, make the last symbol an o-block of
length one by setting ci = 0 for its corresponding symbol. Note that, if the first block which is always a
7-block is of length one, it could not be rendered an even block; so, if there is a series of 0-blocks and
7-blocks after this 7-block, then the first appearing 7-block should be made of odd length.”

As an example, Let n = 16,

a = (1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1),

b = (0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1).

Then, an optimum output mask is c = (1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1).
Let a = (an−1, . . . , a1, a0), b = (bn−1, . . . , b1, b0), and c = (cn−1, . . . , c1, c0) be the two input

differences and the output difference, respectively. We want to find:

P((x + y)⊕ ((x⊕ a) + (y⊕ b)) = c).

Here, + stands for addition mod 2n. Put:

γi = 4cn−1−i + 2bn−i−1 + an−i−1, 0 ≤ i < n.

The sequence γi could be represented as a series of blocks Bi, 1 ≤ i ≤ m, for some m, where each
Bi is an e-block, an o-block, a 0-block, or a 7-block. The next theorem is proven considering Figure 2.
This picture is due to [18].
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Figure 2. Differential probabilities of modular addition mod 2n.

Theorem 6. With the notations as before, we have:

P((x + y)⊕ ((x⊕ a) + (y⊕ b)) = c) =


2t α = 1,

0 α = 0,

where:
t = ∑

Bi∈E∪O
|Bi|,

and α = 0 if and only if there exists an 0 ≤ i < m, such that Bi ∈ 1 ∪O and Bi+1 ∈ 1, or Bi ∈ 1 ∪ E and
Bi+1 ∈ 0, or when Bm ∈ O∪ 1; and α = 1, otherwise.

The correctness of the following algorithm is justified considering Figure 2: note that
the differential probability is zero if we end at states (1,0) or (0,0). The absolute value for the exponent
is equal to the number of times we see w = w + 1.

Suppose that a = (an−1, . . . , a1, a0) and b = (bn−1, . . . , b1, b0) are the two input differences. Put:

γi = 2bn−i−1 + an−i−1, 0 ≤ i < n.

Obviously, γi consists of 0-blocks, 3-blocks, and {1, 2}-blocks. Now, regarding the diagram
in Figure 2, we have the following straightforward algorithm for finding output differences with
maximum differential probability:

“If Bt is a 0-block and Bt+1 is a {1, 2}-block, for some t, then make this {1, 2}-block an e-block, by
setting ci = 1 for all the symbols in this block. If Bt is a 0-block and Bt+1 is a 3-block, then make an
o-block of length one, by setting ci = 0 for the last symbol in this 0-block. If Bt is a 3-block and Bt+1 is
a {1, 2}-block, then make this {1, 2}-block an o-block by setting ci = 0 for all the symbols in this block.
If Bt is a 3-block and Bt+1 is a 0-block, then make an e-block of length one, by setting ci = 1 for the last
symbol in this 3-block. If Bt is an o-block and Bt+1 is a 0-block, then make an e-block of length one by
setting ci = 1 for the last symbol in this o-block. If Bt is an e-block and Bt+1 is a 3-block, then make an
o-block of length one by setting ci = 0 for the last symbol in this 0-block. Finally, if the last block is an
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o-block or a 3-block, make an e-block of length one by setting ci = 1 for the last symbol in the o-block
or setting ci = 0 for the last symbol in the 3-block.”

As an example, Let n = 16,

a = (1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0),

b = (0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0).

Then, an optimum output difference is c = (1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0).

Remark 3. Similar to the case of SIMON, the presented algorithms characterize optimum output masks (output
differences) for given input masks (input differences) for the operation of addition mod 2n. Without the proposed
algorithms, given any input differences or masks, we should search for desired admissible output differences
or masks; but, with the aid of the proposed algorithms, we simply search within the set of optimum masks or
differences. In the case of sparse masks or differences (the ones with a low Hamming weight), even a table could
be saved to speed the search process. This way, the complexity of finding linear and differential characteristics
could be reduced, significantly.

Remark 4. On the one hand, the studies of this section, combined with other methods and using suitable data
structures, could reduce the complexity of linear and differential attacks on the SPECK family of block ciphers
and speed up the search for finding the optimal differences or masks. On the other hand, they somehow show
why this family of ciphers is resistant to (classic?) linear and differential cryptanalysis: Theorems 5 and 6 show
that, whatever the two input masks and differences are, the absolute value in the exponent of nonzero differential
probabilities and squared correlations could not be smaller than some lower bounds.

5. Conclusions

SIMON and SPECK families of block ciphers are well-known lightweight ciphers, which have
widely attracted the attention of researchers. In this note, based on the previous studies on SIMON,
an explicit formula for the linear and differential probabilities of this family of ciphers is proposed.
In the case of SPECK, as the only nonlinear operation in this family of ciphers is addition mod 2n, after
reformulating the formula for squared correlations and differential probabilities of addition mod 2n,
straightforward algorithms for finding the output masks with maximum squared correlation, given
the input masks, as well as the output differences with the maximum differential probability, given the
input differences, are presented.

The studies of the current paper, combined with other methods and using suitable data structures,
could improve linear and differential cryptanalysis on the SIMON and SPECK families of block ciphers,
as stated in Remarks 1 and 3. Besides, the investigations of this paper somehow show why these
families of ciphers are resistant to classic linear and differential cryptanalysis.
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