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Abstract: This research focuses on the development of a state observer for performing indirect
measurements of the main variables involved in the soybean oil transesterification reaction with a
guishe biochar-based heterogeneous catalyst; the studied reaction takes place in a batch reactor. The
mathematical model required for the observer design includes the triglycerides’ conversion rate, and
the reaction temperature. Since these variables are represented by nonlinear differential equations,
the model is linearized around an operation point; after that, the pole placement and linear quadratic
regulator (LQR) methods are considered for calculating the observer gain vector L(x). Then, the
estimation of the conversion rate and the reaction temperature provided by the observer are used to
indirectly measure other variables such as esters, alcohol, and byproducts. The observer performance
is evaluated with three error indexes considering initial condition variations up to 30%. With both
methods, a fast convergence (less than 3 h in the worst case) of the observer is remarked.

Keywords: state estimation; heterogeneous catalyst; nonlinear model; batch reactor; soft sensor

1. Introduction

In the biodiesel industry, the monitoring of the transesterification reaction is required
to avoid operation problems, ensure product quality, and detect failures [1]. The reactor
is the central device of the production process; therefore, its supervision and control are
highly recommended [2]. The variation in operating conditions in the reactor (temperature,
reaction time, oil/alcohol molar ratio, and catalyst amount) affects the yield and quality of
the product [3]. All of these parameters should be supervised throughout the reaction time
to ensure that the biodiesel meets international standards.

Analytical procedures have been developed for evaluating biodiesel quality based on
gas chromatography, liquid chromatography, nuclear magnetic resonance, and infrared
spectroscopy [4,5]. These methods require samples to be taken and prepared for offline
analysis, resulting in non-real-time transesterification monitoring. Furthermore, the in-
dustrial implementation of these techniques requires expensive equipment and qualified
personnel to interpret the results, which is not suitable for online monitoring [4]. On
the other hand, specific sensors have been developed to measure the concentration of
biodiesel online. These sensors measure physical properties such as viscosity, refractive
index, density, and speed of sound, which vary significantly for the compounds in the
transesterification reaction mixture. These properties change during the transesterification
reaction depending on the concentration of these species, which allows for monitoring the
reaction [4]. However, as they are specialized sensors, their application is limited due to
their high cost and difficult maintenance. In addition, they can introduce delays in the
control loops [6].

One of the alternatives to carry out supervision in real time and at affordable costs is to
apply state estimation strategies, such as state observers. A state observer is a computational
algorithm derived from a process mathematical model; this algorithm can reconstruct the

Methods Protoc. 2024, 7, 27. https://doi.org/10.3390/mps7020027 https://www.mdpi.com/journal/mps

https://doi.org/10.3390/mps7020027
https://doi.org/10.3390/mps7020027
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mps
https://www.mdpi.com
https://orcid.org/0000-0001-5942-4658
https://doi.org/10.3390/mps7020027
https://www.mdpi.com/journal/mps
https://www.mdpi.com/article/10.3390/mps7020027?type=check_update&version=1


Methods Protoc. 2024, 7, 27 2 of 15

evolution of state variables (whose measurement is technically difficult, expensive, or slow)
from available variables (measured systematically). A general representation of a state
observer is introduced in Figure 1.
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Figure 1. General scheme of state observer.

The goal of the observer is to obtain an accelerated process dynamic, allowing us
to predict (estimate) the behavior of variables; then, a mathematical model is required.
Usually, the models considered are based on the general equation of the transesterification
reaction [7] since it describes the different steps to transform triglycerides in biodiesel
and crude glycerol, regardless of the reaction phase (homogeneous or heterogeneous
transesterification); kinetics, conversion rate, reaction mechanism, and mass and energy
balance are usually included in the models for variables’ estimation [5,8–10]. Once the
models are formulated, it is necessary to adapt their structure according to the state space
theory, since this is the basis for observer development. The main difference between
homogeneous and heterogeneous transesterification is the reaction mechanism. The former
is developed in a liquid phase and the reaction depends on the contact of triglycerides with
the alcohol and the catalyst [11]; the second one takes place on solid/liquid phase and
the reaction depends on the adsorption/desorption of reactants on the catalyst [12]. Thus,
the corresponding models are different from each other due to the representation of said
reaction mechanism.

In recent years, artificial intelligence techniques (artificial neural networks, machine
learning, and deep learning) are being considered to model the transesterification reac-
tion [13–16]. These techniques try to process information as the human brain does; in this
sense, no mathematical representation of phenomena is required, but rather computational
algorithms. This allows us to model complex processes in a relatively easy way. In the
case of heterogeneous catalysis, artificial intelligence models can be used to study the
reactions [15], to predict behaviors, and to estimate variables [13,16]. The main issue of
artificial intelligence is the need for a large quantity of data, which could be restrictive since
several experiments should be performed which involves costs and time.

Luenberger and Kalman introduced the basic concepts of state observers in the 1960s.
Over time, research into state observer design became popular but challenging due to
the high accuracy, low cost, and performance requirements. Nowadays, most current
observers are modifications and extended versions of the classical Luenberger observer and
the Kalman filter [17,18]. Regarding transesterification for biodiesel production, Table 1
summarizes the research related to the implementation of state observers.
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Table 1. Observers for transesterification for biodiesel production.

Observer Measures Estimated System Ref.

EKF Temperature; pH TG, DG, MG, G, and E Homogeneous
transesterification in CSTR [5]

Fuzzy Temperature FFA, E, and water Homogeneous esterification
in CSTR [19]

Fuzzy Reset Temperature FFA, E, and water Homogeneous esterification
in CSTR [19]

Functional Fuzzy Temperature; pH TG, DG, MG, G, and E Homogeneous
transesterification in CSTR [20]

Discrete Interval Temperature Fatty material; esters Homogeneous
transesterification in batch [9]

EKF Temperature Reaction heat Homogeneous
transesterification [10]

Evolutionary
Algorithm

Temperature;
conversion rate Parameters Batch homogeneous

transesterification [21]

Unknown Input
Multimodel Temperature Fatty material; esters

Homogeneous
transesterification in

semi-batch
[22]

Sliding Mode Temperature Fatty material; esters Homogeneous
transesterification in batch [23]

* Artificial Neural
Network Catalyst concentration Esters yield Heterogeneous

transesterification [15]

** Machine Learning To be studied Thermodynamic and
kinetic data Heterogeneous catalysis [16]

TG: triglycerides, DG: diglycerides, MG: monoglycerides, G: glycerol, E: fatty acid methyl esters, and FFA:
free fatty acids. * Presented as a prediction application. ** Presented as a perspective of machine learning in
heterogeneous catalysis.

The extended Kalman filter is used to obtain fast estimations based on probability
theory; however, its implementation online can cause an excessive computational load
because the method is complex [5,10]. On the other hand, observers based on artificial
intelligence (Fuzzy and Takagi–Sugeno) are suitable for highly nonlinear systems with
incomplete or unknown models. They also allow for formalizing and incorporating the
empirical knowledge of the operators; however, their implementation online can be dif-
ficult and time-consuming, since they must first be adapted to the system [19,20]. An
interval observer was implemented for a lab-scale reactor, achieving an estimation error
of around 5%; this kind of observer provides variable estimations within an interval of
values, assuming that initial conditions and uncertainties are unknown but bounded. The
main issue is that the interval estimation error dynamic is required to be positive, which is
not always accurate [9]. An evolutionary algorithm was used to minimize the estimation
error in an algorithm devoted to estimating uncertain parameters; this algorithm was
integrated into an automatic control strategy [21]. An unknown input observer [22] and a
sliding-mode observer [23] for uncoupled multimodel representations of transesterification
reactors were created; local observers were designed, and interpolation was used to recover
the global dynamics. These kinds of observers allow us to consider uncertainties in the
studied processes, but the design and tuning can become complex.

It is important to remark that the state observers have been used only in homoge-
neous reactions. No reports directly concerned with observers for heterogeneous trans-
esterification have been found; only some works regarding the prediction of variables in
heterogeneous reactions have been developed. For example, the prediction of the reaction
yields was studied using an artificial neural network [15], and the use of machine learning
techniques to predict the kinetic and thermodynamic behavior, as well as other aspects, of
the heterogeneous reaction has been proposed [16]. Homogeneous transesterification is
the most used reaction for biodiesel production at the industrial level [24–26]. However,
operational and economic issues are induced since both the catalyst and the product are in
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the liquid phase. In homogeneous catalysis, the separation of the catalyst from the biodiesel
represents additional costs and produces wastewater, which requires special treatment
before disposal [26,27]. An alternative is the use of heterogeneous catalysts, which are in a
solid state. Heterogeneous catalysts offer a series of advantages over homogeneous ones,
such as being noncorrosive and safer to handle, and they do not wear out the reactors
during processing. Furthermore, it is easy to separate them from the process by decanting
or filtering and they can be reused; there is evidence that these catalysts can be reused in
up to five cycles while maintaining their catalytic activity. Finally, heterogeneous catalysts
can be made from low-value materials or from industrial waste, which positions them as
sustainable materials [27–30]. However, the main disadvantage of heterogeneous transes-
terification is the decrease in the production rate, which is associated with mass transfer
resistances, as the reaction takes place in a triphasic system (liquid–liquid–solid) [26,31]. To
tackle these drawbacks, severe reaction conditions are usually applied [28]. In this sense,
several studies have been performed to improve heterogeneous transesterification, but few
works regarding state estimation have been reported. Therefore, the application of state
observers to heterogeneous reactions represents an opportune area.

In this work, a state observer based on the Luenberger algorithm is developed for
a heterogeneous transesterification reaction to estimate the dynamics of triglycerides,
methanol, biodiesel, and glycerol concentration. Temperature measures are used as a key
variable to perform the estimation. A mathematical model including mass and energy
balance was previously obtained [32] and is used here to implement the observer. Two
methods for the design of the observer are evaluated: pole placement and linear quadratic
regulator (LQR). The observer is evaluated through numeric simulations, considering
different operating conditions.

2. Materials and Methods

As said before, a state space representation of the transesterification reaction is required
to formulate the estimation strategy. The state of a dynamic system is the smallest set of
variables that allows us to determine the behavior of the system. The general representation
in the state space of a nonlinear process is expressed by Equations (1) and (2):

.
x = f (x, u) (1)

y = h(x) (2)

where f and h are smooth functions, x is the vector containing the state variables, u is the
input vector, and y is the output vector. From this representation, the structure of a state
observer is as follows:

.
x̂ = f (x̂, u) + L(x̂)e = f (x̂, u) + L(x̂)(y − ŷ) (3)

ŷ = h(x̂) (4)

where the circumflex accent denotes an estimated variable, and L is a vector called observer
gain. Therefore, the observer design implies the selection of a gain L, which ensures a
minimal estimation error. This error is defined as the difference between the real state and
the estimated one, ideally e = x − x̂ = 0.

A schematic representation of the state observer proposed for the heterogenous trans-
esterification reaction is presented in Figure 2. Reaction inputs (applied temperature)
and outputs (reaction temperature) are represented by u and y, respectively; X (reaction
rate and temperature), A, and B represent state variables, the state matrix, and the input
vector, respectively, according to the state space representation. Finally, L is a vector that
determines the dynamics of the observer.
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2.1. Mathematical Model

The mathematical model required for the state observer was obtained from exper-
imental data reported in a previous work [32], and each term is listed in Table 2. This
model is based on the mass and energy balance of the transesterification reaction in a batch
reactor [33,34]:

dr
dt

= −
(

1
C0TG

)
·


k1·
(

C3
M − k2·C3

E ·CG
CTG

)
(

1 + k3·CE· 3
√

CG
CTG

+ k4·CG

)3

 (5)

dT
dt

=
−∆HR

θTGCpTG + θMCpM+θECpE + θGCpG

dr
dt

+
UA(TA − T)

N0TG

(
θTGCpTG + θMCpM+θECpE + θGCpG

) (6)

Table 2. Model parameters.

Name Symbol Value Unit

Conversion rate r 0 a mol·L−1·h−1

Triglyceride concentration CTG 0.75 a mol·L−1

Ester concentration CE 0 a mol·L−1

Methanol concentration CM 6.8 a mL·L−1

Glycerol concentration CG 0 a mL·L−1

Forward reaction constant k1 1.72 × 105 L2·mol2·h−1

Backward reaction constant k2 2.34 × 10−41 -
Forward reaction constant k3 2.46 × 10−32 L·mol−1

Backward reaction constant k4 8.71 × 10−19 L·mol−1

Reaction temperature T 333 a K
Reaction enthalpy ∆HR −260,718 J·mol−1

TG molar relationship θTG 0.0012 -
Methanol molar relationship θM 0.6061 -

Ester molar relationship θE 0.2945 -
Glycerol molar relationship θG 0.0982 -

TG specific heat CpTG 3032 J·mol−1·K−1

Methanol specific heat CpM 2785 J·mol−1·K−1

Ester specific heat CpE 2234 J·mol−1·K−1

Glycerol specific heat CpG 2556 J·mol−1·K−1

Heat transfer coefficient U 511,200 J·h−1·m−2·K
Reactor area A 0.0316 m2

Room temperature TA 333 K
Limiting reactive initial mol N0TG 0.285 mol

a Corresponds to the initial condition.
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In this model, the conversion rate (r) and the reaction temperature (T) are the state
variables; the reaction temperature is taken as the output. To ease the handling of the
model, it is rewritten as expressed by the following equations:

.
x1 =

dr
dt

= − x1

C0TG

(7)

.
x2 =

dT
dt

= J
dr
dt

+ Q = −J
x1

C0TG

+ Q (8)

y = T (9)

The state equations are linearized to obtain a linear state space representation and
to ease the implementation of the state observer. The Jacobian method is used to this
end. Therefore, an equilibrium point is required: {x∗, u∗} : f (x∗, u∗) = 0; the symbol *
represents the value at the equilibrium. This equilibrium point implies that there is no
variation in the state variables; it is obtained by setting Equations (7) and (8) as equal to
zero and solving the resulting equation system. Once the equilibrium point is obtained,
the matrices A and C for the state space representation are obtained as follows, with f
representing Equations (7) and (8), and h being Equation (9):

A =
∂ f (x, u)

∂x
|x*,u* (10)

C =
∂h(x, u)

∂x
|x*,u* (11)

2.2. Observer Formulation

The state observer structure is based on Equation (3), which is rewritten considering
the notation for mass and energy balance of the heterogeneous transesterification reaction:

.
x̂1 = − x̂1

C0TG

+ L1(x2 − x̂2) (12)

.
x̂2 = −J

x̂1

C0TG
+ Q̂ + L2(x2 − x̂2) (13)

ŷ = x̂2 = T̂ (14)

where L = [L1 L2] is the observer gain. Considering the linearized model, the error e = y− ŷ,
and ŷ = Cx̂, the state observer is also represented by Equation (15):

.
x̂ = Ax̂ + Le = Ax̂ + L(y − Cx̂) = (A − LC)x̂ + Ly (15)

Since the reactor temperature is considered the output, the objective of the observer
is to reach the condition e = x2 − x̂2 = 0 in finite time; then, the vector L is required to be
selected to provide the observer dynamic to achieve a such condition.

2.3. Computing of Vector L

The vector L was calculated using two methods: pole assignment and linear quadratic
regulator (LQR). Both methods were applied using the software MatlabTM, R2020a.

The poles correspond to the eigenvalues of the state matrix of a system (matrix A).
In practice, these values determine the dynamics of the process under study. Thus, the
assignment of the poles of the observer (eigenvalues of [A−LC]) must be conducted to
make it faster than the system. For this reason, it is recommended to make the poles of the
observer 3 to 5 times larger (in absolute value) than the poles of the system to be observed.
The choice of the desired poles determines the characteristics of the response obtained.
In this sense, there can be an infinite set of vectors, but only a limited number of them
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meet the needs required for the system. It is advisable to test the response of the system to
different values of poles chosen by the simulation. The command place() in Matlab was
used for this goal.

The LQR method was also considered since it provides an optimal L vector. It is
possible to calculate the optimal gain vector K, which allows the feedback u = −Kx to
minimize the performance criterion J(u) =

∫ ∞
0 x′Qx + u′Ru. Taking advantage of the

duality property of the controllability–observability pair, it is possible to obtain the optimal
vector L for the observer. The Matlab lqr() command was used, considering diagonal
matrices Q and R with different weights.

2.4. Observer Performance Assessment

The performance of the observer was evaluated through numerical simulations based
on experimental data; the main criterion was the convergence of the estimated states toward
the states calculated by the model. The initial conditions were varied between 5, 10, 20, and
30%. In each case, the observer performance was evaluated by the error indicators: IAE
(integral of the absolute value of the error), IAET (integral of the absolute value of the error
weighted with time), and ISE (integral of the square of the error), as defined in [35].

IAE =
∫ ∞

0
|e(t)|dt (16)

IAET =
∫ ∞

0
t|e(t)|dt (17)

ISE =
∫ ∞

0
e(t)2dt (18)

where e(t) is the error defined as the difference between the estimated state and the real one.

2.5. Indirect Measures

Once the reaction rate and temperature were estimated by the observer, the concentra-
tion of products was indirectly measured (estimated) by the following algebraic equations,
which are obtained from the global reaction of transesterification [33]:

ĈTG = C0TG ·(1 − r̂) (19)

ĈM = C0TG ·
(

ĈM

ĈTG
− 3r̂

)
(20)

ĈE = 3·r̂·C0TG (21)

ĈG = r̂·C0TG (22)

where ĈTG, ĈM, ĈE, and ĈG are the estimated concentration in time (mol L−1) of triglycerides,
methanol, esters, and glycerol, respectively; also, the subscript 0 stands for the respective
value at the equilibrium point. In addition, r̂ is the conversion rate (mol L−1 h−1) estimated
by the observer.

3. Results
3.1. Observer Gain Calculation

By setting Equations (5) and (6) as equal to zero, the state x = [r, T] = [0.98 333] is
obtained, and it is taken as the equilibrium point. Then, the linear state space representation
of the transesterification model is described by Equations (23) and (24), where A and C are
obtained by solving Equations (10) and (11).

.
X = AX =

[
−1.286 0.0084

−128.6693 −20.9484

][
X1
X2

]
(23)
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Y = CX =
[
0 1

][X1
X2

]
= X2 (24)

where X represents the linearized states, X =
[
X1 X2

]
=
[
rlinear Tlinear

]
, and Y stands

for the linearized output: Y = Tlinear.
To know the poles (λ) of the linear system, the eigenvalues of the state matrix are

computed. For this case, the corresponding poles are as follows:

λ =
[
λ1 λ2

]
=
[
−1.3410 −20.8934

]
(25)

From these values, the vector L is calculated. As said before, the observer poles must
be faster than the system poles to guarantee the reconstruction of the state variables. Since
the poles are faster, they are more negative; in this work, “slow poles” are considered those
that are very close to the poles of the system (λslow

∼= λsystem) and “fast poles” those that
have a much lower value than the poles of the system (λ f ast ≪ λsystem). Different pole
assignments are considered to evaluate the behavior of the observer. First, the general
recommendation (GR) is considered: the observer poles are three times faster than the
system poles. Subsequently, a set of very slow poles [−1.5 −21] and one of very fast
poles [−10.5 −147], as well as sets of combinations of them, are evaluated. The observer
performance for each set of poles is evaluated by comparing the value of the IAET index
(Table 3). It is observed that when using the set of poles λ1 = fast and λ2 = GR, the estimation
error of both variables (conversion and temperature) is minimized. However, if the TG
conversion is of greater interest, using the fast pole set is recommended.

Table 3. Observer performance considering the pole assignment method.

Observer Poles
[λ1 λ2]

Observer Performance a

TG Conversion Temperature

[GR GR] 0.4251 0.8688
[slow slow] 1.4900 9.5167

[fast fast] 0.1034 0.2739
[slow GR] 1.4853 9.4845
[fast GR] 0.1138 0.2434

[GR slow] 0.4594 0.9528
[GR fast] 0.3809 1.3111

[fast slow] 0.1662 0.5908
[slow fast] 1.4688 7.761

a According to the IAET index, and considering observer initial conditions as [X1 X2]0 = [0.1 339].

Figure 3 shows the result of the simulations when using different sets of poles. The estima-
tion of the conversion rate provided by the observer is compared with the measurement (noted
as measured) performed during the experiments. In addition, the estimation of temperature
provided by the observer is compared with the one obtained by Equation 6 (noted as the model);
since the mathematical model has been validated from experimental data [32], the calculated
temperature represents that measured in the reactor. The selection of the observer poles induces
differences in the estimation. Initial conditions of the observer different from those of the system
have also been considered to evaluate the convergence of the estimation. It is observed that the
set of poles [fast fast] and [fast RG] promotes rapid convergence of the state estimation (~3 h).
In addition, the set of poles [RG RG] provides a good estimation of temperature, but not for the
conversion; convergence is achieved after 7 h. Meanwhile, the response of the set of slow poles
is the least favorable, both in the case of conversion and of the temperature of the reactor.
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Figure 3. Observer performance considering different sets of poles (pole assignment method).
(a) Triglycerides’ conversion estimation. (b) Reaction temperature. GR: poles with general recom-
mendation, Fast: fast poles, Slow: slow poles, and Fast, GR: fast pole and general recommendation pole.

On the other hand, for the LQR method, it is not necessary to know the poles of the
system; this advantage allows us to save a step in the observer design. As for the previous
case, an iterative process is implemented. The weights of the matrices Q and R are taken as
the starting point, where w1 = w2 = 1, respectively. Then, the weighting of Q is kept constant
(w1 = 1), and the values of w2 are varied, and vice versa. Subsequently, the observer gain
vector L(x̂) is calculated, and multiple tests are implemented to determine the performance
of the observer. The results of these simulations are shown in Table 4 and Figure 4. It is
remarked that as the weighting of Q increases, the error between the calculated states and
the estimated states decreases.

Table 4. Observer performance considering the LQR method.

Q and R Weight
[w1 w 2]

Observer Performance a

TG Conversion Temperature

[1 1000] 1.5861 12.3256

[1 100] 1.5193 9.5437

[1 10] 1.0216 2.2526

[1 1] 0.2755 0.8675

[1 0.1] 0.0697 0.2759

[0.1 1] 1.0216 2.2526

[10 1] 0.0638 0.1958
a According to the IAET index.

Figure 4 shows the result of the simulations using different weights of the Q and
R matrices. As in the case of pole assignment, the results provided by the observer are
compared with the data from the experiments. The estimated rate conversion is compared
with the measured one, and the estimated temperature is compared with that calculated
by the model (Equation (6)). It is observed that when the weights w1 = 10 and w2 = 1 are
used, the observer quickly converges both in the conversion (2 h) and in the temperature
(1 h). Meanwhile, the weights w1 = w2 = 1 and w1 = 1 and w2 = 10 provide an acceptable
response for the temperature estimation.
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3.2. Observer Performance Assessment

Observer performance is evaluated through simulations considering different initial
conditions for both variables and by using the pole assignment and LQR methods. Since
the conversion rate cannot be negative and its equilibrium value is zero, the variations in
the initial condition for this variable are all positive; in addition, variations in the initial
condition of temperature are both positive and negative in reference to the equilibrium
value, which is 333 ◦F. The comparison between both methods is made based on the values
of IAE, IAET, and ISE. The results of the simulations are presented in Table 5.

Table 5. Observer performance considering different initial conditions and selected vector gain.

Observer Initial
Conditions [x1 x2]0

Performance
Index

TG Conversion Temperature

Poles LQR Poles LQR

[0.05 330]
IAE 0.0416 0.0485 1.5939 1.5809

IAET 0.0440 0.05 0.7626 0.4934
ISE 0.0013 0.0015 4.5011 4.5012

[0.05 336]
IAE 0.1141 0.0957 1.6597 1.6304

IAET 0.2064 0.1328 1.1047 0.587
ISE 0.00370 0.0033 4.5029 4.5035

[0.1 327]
IAE 0.0822 0.0946 3.1523 3.0991

IAET 0.0881 0.0855 1.4727 0.4556
ISE 0.0053 0.0058 18.0033 18.0017

[0.1 339]
IAE 0.2388 0.2029 3.1625 3.2331

IAET 0.4251 0.2755 0.8688 0.8675
ISE 0.0161 0.0147 18.0036 18.0137

[0.2 321]
IAE 0.1603 0.1812 6.1404 6.1589

IAET 0.1388 0.1455 0.8482 0.6968
ISE 0.0211 0.0229 72.0024 72.0054

[0.2 345]
IAE 0.5278 0.4635 6.3347 6.3696

IAET 0.9814 0.6649 2.175 0.8015
ISE 0.07530 0.0729 72.0131 72.0547

[0.3 315]
IAE 0.2388 0.2651 9.17 9.17

IAET 0.2165 0.2071 1.34 0.51
ISE 0.0474 0.0507 162 162

[0.3 351]
IAE 0.8732 0.7935 9.31 9.55

IAET 1.6542 1.2307 1.36 1.14
ISE 0.1983 0.2014 162 162
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Regarding the conversion rate, even if the variations in T0 affect the magnitude of the
indexes, it is possible to identify a direct relationship between the variation in the initial
condition of the conversion rate and the value of each index: the larger the variation, the
higher the index value. A similar effect can be observed on the estimation of temperature,
as small variations (positive or negative) in T0 lead to small values of indexes, and large
absolute variations produce large values of indexes. This implies that the observer achieves
better estimations when the initial conditions are close to the operating point. However, for
large variations in the initial conditions, the observer can perform the variable estimations
with minimal errors, which is desirable. According to these values, both methods allow
the observer to give good results when the initial conditions vary from 5 to 30%. However,
since the computation of the observer gain with LQR is easier, it can be selected as the
method for the observer design.

3.3. Estimation of Transesterification Variables

Considering the above, the behavior of the observer using LQR is presented in Figure 5.
Values 10% higher than the real conditions of the process are taken as the initial conditions of
the observer. The evolution of each of the components of the reaction mixture is presented.
The observer rapidly converges, and it is possible to have estimates of each component after
2 h. On the other hand, the estimates of E and TG, which are typically the most important
variables in the transesterification process, converge after 2 h and 1.5 h, respectively. In this
way, it is possible to know its evolution in real time without the need for offline analysis.
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4. Discussion

State observers have already been used as a strategy to estimate variables [5,9,19–22],
parameters [21], and even the reaction heat [10] in the homogeneous transesterification of
oils for biodiesel production. The estimated variables are used as soft sensors in supervision
systems or as elements in control strategies [21]; the final objective is to enhance the
performance of reactors for biodiesel production. All of the reported observers consider
the measure of temperature. Temperature directly affects the phenomena involved in
the reaction; therefore, in the mathematical models of transesterification, temperature
appears as a key element related to the transformation of triglycerides in biodiesel. The
temperature variation directly affects the conversion of triglycerides, which is greater
when the reactor temperature is increased since a higher temperature causes a better
interaction between triglycerides and methanol, promoting the reaction [36,37]. However,
in this study, the temperature of the reactor remained constant (temperature increase was
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not applied), and a convergence between the observer and the model was expected to
be achieved in less than two hours. Another measure reported for observers’ design is
pH; the pH variations are directly related to the methyl esters concentration, which can
indicate the reaction evolution. In a basic catalyzed reaction, the OH ions are available in
the reaction mixture at the beginning because of their insolubility in oil. As the reaction
elapses, the formation of FAME and glycerol produces a decrease in OH concentration in
the reaction since OH ions are more soluble in the products. In a heterogeneous catalyzed
reaction, the variation in pH obeys the acid nature of the triglycerides and biodiesel. The
pH in biodiesel of high quality should be neutral, so it is possible to deduce biodiesel
production from pH measures [20,37]. Finally, since the target products depend on the
conversion rate, this measure is used to determine the relationships between products and
parameters; for this reason, conversion rate has been used as a measure for a parameters
observer [21]. It is worth mentioning that few results of the observation of heterogeneous
reactions have been reported. From a mathematical viewpoint, modeling heterogeneous
transesterification could be complex since the reaction is performed in a liquid–liquid–solid
system; this induces challenges regarding the representation of phenomena taking place
in the reactors [26,32–34]. Therefore, the results reported in this paper can guide future
research on this topic.

The methodology of implementing an extended Luenberger observer to estimate the
concentration of TG, M, E, and G throughout the transesterification reaction may be the
easiest one and offers a balance between precision and complexity. In comparison with other
methods such as the EKF [5,10,38], fuzzy methods [19,20], and multimodel methods [22,23],
the computational load of Luenberger observers is lower since no recurrent calculations are
required. The reported observers consider six [5,10,20] or four [19,21] differential equations;
multiobservers consider two equations or set of models with two equations [9,22], but
these are reduced models, and only two variables are estimated. The Luenberger observer
presented in this paper considers only two differential equations instead of six or four as
usual; the estimation of the concentrations of products is performed by algebraic equations.
Thus, less computational load is required for the computation of the observer gain and for
the variables’ estimation.

Regarding performance, the Luenberger observer achieves the estimation in around 1 h
for the best case; the other cases allow for a convergence in less than 3 h. This behavior is similar
to that obtained in other works [5,19,20] where the same variables are estimated. In addition,
no undesirable oscillations are observed with this observer, as found in another report [19]. In
addition, the performance index is comparable with that obtained for multiobservers [9,22,23].
It is important to remember that heterogeneous transesterification is considered in this work
instead of the homogeneous one considered in the other reported works.

In the studied transesterification reaction, rate conversion is the most restrictive vari-
able since it requires offline analysis by chromatography. The reaction medium is sampled,
the sample is prepared to be injected into a liquid chromatograph, and the result is analyzed
to determine the conversion of triglycerides; this procedure takes around 30 min, and it
must be performed each hour. The proposed observer allows us to know the conversion
immediately once the temperature is known.

However, one of the main disadvantages of the Luenberger observer is that it requires
in-depth knowledge of the characteristics of the process and the materials used. Likewise,
Jacobians of the specific model describing the process are used to determine the gains of the
Luenberger observer; this dependence could cause some divergence if there are changes in
the model parameters.

Finally, from these results, it is suggested that the soybean oil transesterification pro-
cess using a heterogeneous catalyst can be monitored by an extended Luenberger observer.
TG measurements at different temperatures are sufficient to know the dynamics of hetero-
geneous transesterification and to estimate the concentration of triglycerides, methanol,
biodiesel, and glycerol. However, it is necessary to complement the investigation with the
validation of the behavior of the reactor temperature by means of real measurements. In
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this context, the results presented here are the basis for more complex supervision and
control strategies. Future research could also integrate other variables, such as pH, that can
be easily measured at a low cost and with robust sensors. It is feasible to consider other op-
erating conditions (triglycerides’ source, catalyst, temperature, etc.) to expand the coverage
of the observer. Also, it is possible to use this observer for fault detection procedures: if the
observer produces anormal estimation of the variables, it can be associated with a failure
in the reaction process. Finally, estimated variables could be used for automatic control
schemes where all of the state variables are required online.

5. Conclusions

The extended Luenberger observer is adequate to estimate the evolution of the con-
version of TG to biodiesel (E) and the temperature of the reactor, even when varying the
initial conditions up to 30%. This offers an alternative to offline analyses such as gas
chromatography analysis.

Temperature measurements can determine the dynamics of the heterogeneous trans-
esterification process; however, in-depth knowledge of the characteristics of the process
and the materials used is required, which can be considered a limitation or disadvantage of
applying a state estimation strategy such as the extended Luenberger observer.

This study contributes to establishing a robust methodology for designing a state observer
for people who do not have deep knowledge of mathematics or automatic control engineering.
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