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Abstract: Predictive models were developed using two-dimensional quantitative structure activity
relationship (QSAR) methods coupled with B3LYP/6-311+G** density functional theory modeling
that describe the antimicrobial properties of twenty-four triazolothiadiazine compounds against
Aspergillus niger, Aspergillus flavus and Penicillium sp., as well as the bacteria Staphylococcus aureus,
Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa. B3LYP/6-311+G** density functional
theory calculations indicated the triazolothiadiazine derivatives possess only modest variation
between the frontier orbital properties. Genetic function approximation (GFA) analysis identified
the topological and density functional theory derived descriptors for antimicrobial models using
a population of 200 models with one to three descriptors that were crossed for 10,000 generations.
Two or three descriptor models provided validated predictive models for antifungal and antibiotic
properties with R2 values between 0.725 and 0.768 and no outliers. The best models to describe
antimicrobial activities include descriptors related to connectivity, electronegativity, polarizability,
and van der Waals properties. The reported method provided robust two-dimensional QSAR models
with topological and density functional theory descriptors that explain a variety of antifungal and
antibiotic activities for structurally related heterocyclic compounds.

Keywords: antifungal; antimicrobial; food safety; machine learning; mycotoxin

1. Introduction

Quantitative structure–activity relationship (QSAR) studies identify key descriptors
and properties of structurally related molecules that are correlated to biological activities
based on the concept that similar compounds have similar activities [1,2]. This information
can be used to develop predictive models for the design and evaluation of new antimi-
crobials or to economically screen libraries of compounds for antimicrobial properties in
silico [3,4]. The resistance of pathogenic fungi and bacteria to popular antifungals and other
antimicrobials negatively impacts public health throughout the world and spurred recent
calls for the development of new antimicrobials [5,6]. Historically, heterocyclic compounds
have been widely investigated for favorable biological activities resulting in extensive
structure–activity relationship studies, and several classes of heterocyclic compounds have
been popular leads for antimicrobial compounds [7–10]. In addition, phenolic compounds,
including components of essential oils, exhibit a variety of antimicrobial properties [11,12].
Furthermore, it has been demonstrated that the efficacy of antimicrobial compounds could
be enhanced through synthetic modification [13]. To this end, we report a convenient
method to develop QSAR models based on topological descriptors and density functional
theory derived molecular orbital properties that is capable of predicting antifungal and
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antibiotic activity against Aspergillus species, Penicillium species, Gram-positive Staphy-
lococcus aureus and Bacillus subtilis, and Gram-negative Escherichia coli and Pseudomonas
aeruginosa [10].

This method has previously been applied to several classes of molecules to elucidate
the contributions of chemical structure to diverse activities. The method could evaluate the
cytotoxicity, phytotoxicity, and detection reliability of structurally related trichothecene
mycotoxins [14]. The method was recently applied to evaluate the antifungal properties of
phenolic compounds against six types of mycotoxin-producing fungi [12].

The method follows a general QSAR procedure.

• Build structures;
• Calculate density functional theory properties and descriptors;
• Calculate 1D and 2D descriptors;
• Create a training set and test set;
• Apply the genetic function approximation method for descriptor identification;
• Develop mathematical models using suitable descriptors;
• Evaluate models using internal validation and external validation.

Quantum chemical descriptors were calculated to gain insight into the quantum
chemical properties of the compounds used in this study. In addition, these quantum
chemical descriptors provide information on the range of electronic properties of the
compounds used in these models. This method is evaluated for its ability to predict
inhibition activities of a class of structurally related heterocyclic compounds against a
variety of important fungi, Gram-positive bacteria and Gram-negative bacteria.

Aspergillus species include Aspergillus niger, a common mold associated with commod-
ity spoilage, high volume citric acid production, and cosmeceutical preservation [15,16].
Certain strains of Aspergillus niger produce the carcinogenic mycotoxin ochratoxin A [16].
Aspergillus niger has been considered a contributor to aspergillosis lung disease; however,
aspergillosis is most frequently caused by the co-occurrence of more toxic species of As-
pergillus genera, with Aspergillus fumigatus being the primary cause [17]. The second most
common cause of aspergillosis lung disease is Aspergillus flavus, a primary producer of a
wide variety of mycotoxins, including the highly carcinogenic aflatoxins [18]. The most
important mycotoxins produced by Penicillium species include ochratoxins and patulin [19].
Patulin exposure to children is a concern due to its occurrence in apple-based products
that are marketed toward children. Staphylococcus aureus is a Gram-positive bacterium
associated with food poisoning and infectious diseases of the respiratory system and
skin [20]. The resistance of certain strains of Staphylococcus aureus for common antibiotics is
an emerging problem, including MSRA (methicillin-resistant Staphylococcus aureus) [21].
Certain strains of Escherichia coli are associated with food poisoning, and Pseudomonas
aeruginosa is a plant and animal pathogen [10].

In this paper, we demonstrate the application of QSAR methodology to a series of
triazolothiadiazine derivatives to gain insight into the contributions of electronic and
chemical properties to seven different antifungal and antibiotic activities. The predictive
models developed demonstrate the method and serve as tools to develop new antimicrobial
compounds based on the triazolothiadiazine structure. This approach has proven suc-
cessful for chalcones, phenolic compounds, coumarin derivatives, and other heterocyclic
compounds [12,14,22].

2. Materials and Methods
2.1. Date Set

The dataset consisted of 24 triazolothiadiazines with biological activities reported
in the scientific literature against Aspergillus niger, Aspergillus flavus, Penicillium species,
Gram-positive Staphylococcus aureus and Bacillus subtilis, and Gram-negative Escherichia
coli and Pseudomonas aeruginosa [9,10]. The antifungal activities were characterized by as
% mycelial growth inhibition (%MGI). The antibiotic activities are reported as minimum
inhibitory concentration (pIC50) and diameter of growth inhibition zone (DGI) [10].
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2.2. Quantum Chemistry

Quantum chemical studies on the triazolothiadiazines were carried out using ChemAxon
Marvin Suite, HyperChem v.8.0.10, OpenBabel, Mold2, Spartan ’18, and BuildQSAR soft-
ware [23–27]. Structures were built using the ChemAxon MarvinSuite for 2-dimensional
structures and HyperChem software for 3-dimensional structures. File types were con-
verted using OpenBabel software. Quantum chemical calculations were conducted using
Spartan ’18 software with the PM6 semi-empirical method and B3LYP/6-311+G** density
functional theory method. Initial geometry optimization calculations were conducted
using the PM6 semi-empirical method to efficiently obtain better starting geometries for
the more costly geometry optimization calculations using density functional theory. All
results reported in this manuscript are on fully optimized geometry structures using the
B3LYP/6-311+G** density functional theory method with default optimization parameters
in Spartan ’18. The properties of the highest occupied molecular orbitals (HOMO) and
lowest unoccupied molecular orbitals (LUMO) were used to calculate quantum-based
descriptors following previously published procedures [12,14,28–30].

2.3. Training and Test Sets

Compounds were separated into a training set and a test set based on established
procedures to test the models over a range of activities. It has been shown that the rational
design of the test set and training set supports better model development [31]. Compounds
with maximum or minimum antimicrobial activities for any of the fungi or bacteria were
included in the training set. The test set was derived from the remaining compounds to
represent a spread of the activities. The training set for Aspergillus niger, Aspergillus flavus,
Penicillium species, Staphylococcus aureus, and Bacillus subtilis contained 19 compounds. The
training set for Escherichia coli and Pseudomonas aeruginosa had 12 compounds. The test set
included 5 compounds.

2.4. QSAR Study

Molecular topological descriptors (777) were calculated using Mold2 bioinformat-
ics software provided by the FDA [26]. In addition, 8 quantum chemical descriptors
were added based on the B3LYP/6-311+G** density functional theory results. These
density functional theory descriptors were calculated following previously reported proce-
dures [12,14,28–30]. QSAR models were built and analyzed using BuildQSAR software.
Descriptor selection was based on genetic function approximation (GFA) analysis on values
that were centered on the mean and scaled [32]. One, two, and three descriptor models
were developed using GFA analysis on populations of 200 models over 10,000 generations.
Models with cross-correlations values exceeding 0.6 were not considered. The best models
were identified based on the highest leave, one out cross-validation score (Q2

LOO). Only
models without outliers are reported. Outliers are defined as compounds that have a dif-
ference between the observed activities and calculated activities that exceeds two standard
deviations. Models were validated internally by the leave one out cross-validation score
(Q2

LOO) and externally by the correlation coefficient squared of the test set (R2
ext).

3. Results and Discussion
3.1. Chemical Structure

The chemical structures and biological activities of the triazolothiadiazines investi-
gated in this study are shown in Table 1 [10]. These structures differ in the substituents
at R1 and R2 sites and the degree of saturation of the cyclopentane ring. The substituents
at the R1 site are either a hydrogen or methyl group. The substituents at the R2 site are
hydrogen, methyl, ethyl, propyl, isopropyl, and phenyl groups.
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Table 1. Chemical structures and biological activities of triazolothiadiazine compounds investigated in this study.
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Compound R1 R2
A. niger

log(%MGI)
A. flavus

log(%MGI)
Penicillium
sp. %MGI

S. aureus
pIC50

B. sub-
tilis

pIC50

E. coli
DGI

P. aerug-
inosa

log(DGI)

1 1a -H -H 1.71 1.72 51.1 3.25 3.25
2 1b -H -CH3 1.73 1.71 55.5 2.98 3.28
3 1c -H -CH2CH3 1.77 1.74 57.7 4.20 3.90 18.3 1.26
4 1d -H -CH2CH2CH3 1.74 1.72 53.3 4.53 4.23 19.3 1.29
5 1e -H -CH(CH3)CH3 1.73 1.71 51.1 4.83 4.23 20.6 1.31
6 1f -H -Ph 1.71 1.69 50.0 3.50 3.20 18.3 1.26
7 1g -CH3 -H 1.80 1.82 62.5 4.48 5.08 22.3 1.35
8 1h -CH3 -CH3 1.83 1.84 67.7 4.51 5.11 20.6 1.31
9 1i -CH3 -CH2CH3 1.81 1.80 65.5 4.53 4.83 21.0 1.32
10 1j -CH3 -CH2CH2CH3 1.77 1.74 61.1 4.25 3.95 19.3 1.29
11 1k -CH3 -CH(CH3)CH3 1.80 1.79 65.5 4.85 4.55 21.6 1.33
12 1l -CH3 -Ph 1.74 1.77 60.0 4.00 4.00 17.3 1.24
13 2a -H -H 1.73 1.70 51.1 2.95 3.25
14 2b -H -CH3 1.70 1.69 52.5 2.97 2.97
15 2c -H -CH2CH3 1.69 1.66 50.0 3.30 3.30
16 2d -H -CH2CH2CH3 1.71 1.69 47.7 4.22 4.22 18.6 1.27
17 2e -H -CH(CH3)CH3 1.69 1.70 44.4 3.32 3.32
18 2f -H -Ph 1.66 1.69 51.1 3.07 3.07
19 2g -CH3 -H 1.85 1.84 66.6 4.18 4.78 20.6 1.31
20 2h -CH3 -CH3 1.73 1.70 51.1 3.60 3.60 18.6 1.27
21 2i -CH3 -CH2CH3 1.82 1.80 63.3 3.92 3.92 19.3 1.28
22 2j -CH3 -CH2CH2CH3 1.84 1.82 65.5 3.34 3.64 15.6 1.19
23 2k -CH3 -CH(CH3)CH3 1.82 1.79 63.3 3.34 3.64 15.0 1.18
24 2l -CH3 -Ph 1.74 1.71 48.8 3.69 4.00 15.6 1.19

Compounds 1a–1l have a saturated cyclopentane ring. Compounds 2a–2l possess
an unsaturated cyclopentane (cyclopent-[1,2]-ene) ring, which expands the conjugated
double bond system across the cyclopentane ring. Compounds 1a–1f and 2a–2f possess a
hydrogen at the R1 position. Compounds 1g–1l and 2g–2l possess a methyl group at the R1
position. Overall, these compounds are highly structurally related to varying substituents
and ideal for QSAR analysis.

The B3LYP geometries of compounds 1a–1l and 2a–2l are shown in Figure S1 (Supple-
mentary Material). The chemicals share remarkably similar three-dimension structures. The
frontier orbital properties of the triazolothiadiazine derivatives are shown in Figure 1 for
compounds 1a and 2a. Frontier orbitals for 1a–1l and 2a–2l are shown in Figure S2 (Supple-
mentary Material). It is interesting that the degree of saturation on the cyclopentane ring has a
significant influence over the position of the highest occupied molecular orbital (HOMO) and
the lowest unoccupied molecular orbitals (LUMO). Compounds with saturated cyclopentane
ring, 1a–1l, have their HOMO orbitals covering only part of the triazolothiadiazine, as repre-
sented in 1a in Figure 1. In contrast, compounds with an unsaturated cyclopentane ring, 2a–2l,
have their frontier orbitals (HOMO and LUMO) spanning the length of the triazolothiadiazine
structure, as represented in 2a of Figure 1. Frontier orbital values can be used to calculate the
properties of the compounds (see Table 2).
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Figure 1. Molecular orbitals of triazolothiadiazine compounds 1a and 2a calculated on structures geometry optimized using
B3LYP/6-311+G** density functional theory.

Table 2. Frontier orbital parameters for triazolothiadiazine compounds calculated on geometry
optimized structures at the B3LYP/6-311+G** level.

εHOMO εLUMO ∆ε µ σ η χ ω

1 1a −6.67 −2.47 4.20 −4.57 0.476 2.10 4.57 4.97
2 1b −6.47 −2.39 4.08 −4.43 0.490 2.04 4.43 4.81
3 1c −6.47 −2.39 4.08 −4.43 0.490 2.04 4.43 4.81
4 1d −6.43 −2.37 4.06 −4.40 0.493 2.03 4.40 4.77
5 1e −6.44 −2.37 4.07 −4.41 0.491 2.04 4.41 4.77
6 1f −6.20 −2.46 3.74 −4.33 0.535 1.87 4.33 5.01
7 1g −6.64 −2.38 4.26 −4.51 0.469 2.13 4.51 4.77
8 1h −6.44 −2.31 4.13 −4.38 0.484 2.07 4.38 4.63
9 1i −6.43 −2.30 4.13 −4.37 0.484 2.07 4.37 4.61
10 1j −6.39 −2.28 4.11 −4.34 0.487 2.08 4.34 4.57
11 1k −6.40 −2.28 4.12 −4.34 0.485 2.06 4.34 4.57
12 1l −6.17 −2.38 3.79 −4.28 0.528 1.90 4.28 4.82
13 2a −6.29 −3.21 3.08 −4.75 0.649 1.54 4.75 7.33
14 2b −6.17 −3.13 3.04 −4.65 0.658 1.52 4.65 7.11
15 2c −6.16 −3.12 3.04 −4.64 0.658 1.52 4.64 7.08
16 2d −6.14 −3.10 3.04 −4.62 0.658 1.52 4.62 7.02
17 2e −6.15 −3.11 3.04 −4.63 0.658 1.52 4.63 7.05
18 2f −6.12 −3.17 2.95 −4.65 0.678 1.48 4.65 7.31
19 2g −6.20 −3.15 3.05 −4.68 0.656 1.53 4.68 7.17
20 2h −6.09 −3.07 3.02 −4.58 0.662 1.51 4.58 6.95
21 2i −6.08 −3.06 3.02 −4.57 0.662 1.51 4.57 6.92
22 2j −6.06 −3.07 2.99 −4.57 0.669 1.50 4.57 6.97
23 2k −6.06 −3.07 2.99 −4.57 0.669 1.50 4.57 6.97
24 2l −6.04 −3.11 2.93 −4.58 0.683 1.45 4.58 7.14

Quantum chemical properties were calculated following published procedures [28–30].

The properties and energy levels of the HOMOs and LUMOs have valuable infor-
mation on the electronic structure of compounds. Specifically, the HOMO and LUMO
energy values approximate the ionization potential and electron affinity, respectively [30].
Based on this association, several descriptor properties can be calculated to shed light on
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the electronic properties of the triazolothiadiazine compounds [28–30]. The values εHOMO
and εLUMO can provide bandgap energy, ∆ε. The chemical potential, µ, varies between
-4.28 to −4.75. The electronegativity, χ, varies between 4.28 to 4.75. The hardness, η, falls
between 1.45 and 2.13 eV. Softness, σ, provides information on the electron-accepting
properties and is the inverse of hardness (values between 0.476 to 0.683 eV−1). A valuable
descriptor calculated from the frontier orbitals is the electrophilicity index, ω (4.57 to 7.31).
Compounds 1a–1l possess larger band gaps and hardness values and lower electrophilic-
ity index compared to compounds 2a–2l. This suggests that the added double bond in
compounds 2a–2l increases the electrophilicity.

3.2. QSAR

The QSAR equations developed for antifungal and antibiotic properties are shown in
Table 3, and the plots of observed vs. predicted activities for the models are in Figure 2.
Overall, this protocol is not automated and allows for customization. The models were
developed using a training set of molecules and validated internally against the training
set and externally with the test set. The compounds in the training set include all the
compounds with minimum and maximum activities for each of the fungi and bacteria
to ensure that external validation of the models was within the QSAR model’s range of
development and to avoid extrapolation beyond the training set. The five compounds of
the test sets for all seven QSAR models are 1d, 1g, 1i, 1l, and 2i.
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Figure 2. Observed vs. predicted plots of antifungal and antibiotic activities for triazolothiadiazines against Aspergillus niger,
Aspergillus flavus, Penicillium sp., and Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa.
Several validated quantitative structure activity relationship (QSAR) equations were developed to describe the antifungal
and antibiotic activities of triazolothiadiazines, and the best equations and their topological descriptors are given in Table 3.
QSAR models X1, X2, X3, X4, and X5 for Aspergillus niger, Aspergillus flavus, Penicillium sp., Staphylococcus aureus, and
Bacillus subtilis have 19 compounds in the training set and were developed with 3 descriptors. QSAR models X6 and X7 for
Escherichia coli and Pseudomonas aeruginosa were developed with a training set with 12 compounds with 2 descriptors. Seven
compounds did not have activities against Escherichia coli and Pseudomonas aeruginosa and are not included in the models.
The QSAR equations in Table 3 provided the best leave one out cross-validation criteria (Q2

LOO) and are free of outliers. The
QSAR equations in Table 3 have R2 values between 0.725 and 0.768 and possess suitable internal validation Q2

LOO values
0.602 to 0.622 for models X1, X2, X3, X4, X5, and X6. Models X7 has a Q2

LOO of 0.510.
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Table 3. Quantitative structure–activity relationship models of triazolothiadiazine compounds for antifungal and antibiotic activities.

Activity Eq. Equation R2 Q2
LOO n

A. niger X1 log(%MGI) = − 0.2158(GTSv6) − 17.6409(BELe8) − 0.2339(BEHp5) + 40.537 0.768 0.602 19
A. flavus X2 log(%MGI) = 0.2485(MTam7) + 2.7052(BELe3) + 0.0738(#RCRR) − 4.9326 0.725 0.614 19
Penicillium sp. X3 %MGI = −11844.7257(AVC5) − 0.0083(MTmp9) + 0.4168(CBtpc) + 843.168 0.735 0.622 19
S. aureus X4 pIC50 = 1.8950(GTSe7) + 4.6320(BEHe7) − 4.2409(εHOMO) − 41.5777 0.746 0.604 19
B. subtilis X5 pIC50 = −4.6029(GTSv3) + 2.0233(GTSe7) + 0.8941(∆ε) + 0.5419 0.749 0.613 19
E. coli X6 DGI = −13.9498(BEHm6) − 6.4231(εHOMO) + 85.321 0.763 0.617 12
P. aeruginosa X7 log(DGI) = − 1.2342(GTap2) − 0.3167(εHOMO) + 0.4678 0.754 0.510 12

GTSv6, Geary topological structure autocorrelation length-6 weighted by atomic van der Waals volumes; BELe8, lowest eigenvalue from
Burdex matrix weighted by electronegativities Sanderson scale order-8; BEHp5, highest eigenvalue from Burdex matrix weighted by
polarizabilities order-5; MTam7, Moran topological structure autocorrelation length-7 weighted by atomic masses; BELe3, lowest eigenvalue
from Burdex matrix weighted by electronegativities Sanderson scale order-3; #RCRR, number of group R~CR~R; AVC5, average vertex
connectivity order-5 index; MTmp9, molecular topological multiple path index of order 09; CBtpc, ratio of convention bonds with total path
counts; GTSe7, Geary topological structure autocorrelation length-7 weighted by atomic Sanderson electronegativities; BEHe7, highest
eigenvalue from Burdex matrix weighted by electronegativities Sanderson-Scale order-7; εHOMO, B3LYP/6-311+G** energy of HOMO;
GTSv3, Geary topological structure autocorrelation length-3 weighted by atomic van der Waals volumes; ∆ε, B3LYP/6-311+G** bandgap
energy; BEHm6, highest eigenvalue from Burdex matrix weighted by masses order-6. GTap2, Geary topological structure autocorrelation
length-2 weighted by atomic polarizabilities.

The correlation matrix for the descriptors used in the equations is provided in the
Supplementary Material. All cross-correlation values are less than 0.59. Descriptors associ-
ated with van der Waals forces, electronegativities, and polarizabilities are important to
describe the mycelial growth inhibition of Aspergillus niger by the compounds. Steric and
electrostatic chargers have been shown by 3-dimensional QSAR to be important to describe
antifungal activities against Aspergillus niger by 1,4-quinone derivatives [33]. Electronega-
tivities, atomic mass values, and alkyl functional group properties of the compounds are
associated with mycelial growth inhibition of Aspergillus flavus. Artificial neural networks
used complex partial least squares regression analysis to predict antifungal activities for As-
pergillus flavus for heterocycles [34]. The mycelial growth inhibition of Penicillium species by
the compounds is described through connectivity properties. Topological and connectivity
descriptors were found to be related to antifungal activities of phenolic compounds against
Penicillium expansum and Penicillium brevicompactum [12]. The uniqueness of the QSAR
equations for antifungal activity is expected since the antifungal assays used to develop
the models do not exhibit uniform biological activities for all species [10]. Furthermore,
Aspergillus flavus, Aspergillus niger and Penicillium species possess unique biology and the
production of certain metabolites, including mycotoxins, is species-specific [19].

The minimum inhibitory concentration of Staphylococcus aureus by the compounds is
explained by electronegativities and the HOMO energy descriptors. Electronic properties,
including electronegativities, have been shown to be related to anti-Staphylococcus aureus
activity by cannabinoids [35]. Inhibition of the growth of Gram-positive Bacillus subtilis by
the compounds is associated with van der Waals forces, electronegativities, and bandgap
energy. Growth inhibition of Gram-negative Escherichia coli by the compounds is described
by atomic masses and HOMO energy level. Growth inhibition of Pseudomonas aeruginosa
by the compounds is related to HOMO energy level and polarizabilities. Topological
descriptors have been shown to be important components for QSAR models that describe
antibacterial growth properties [36]. All QSAR equations for antibacterial activity possessed
DFT derived descriptors, although the DFT descriptors are less than 1% of the descriptors
considered. This is not unusual; the highest occupied molecular orbital energy level values,
εHOMO, have been found to be an important descriptor in antimicrobial QSAR studies for
other heterocyclic compounds [37,38].

The observed vs. predicted values for the QSAR equations X1, X2, X3, X4, X5, X6, and
X7 are given in Figure 2, and the statistic assessment and internal validation of the training
sets are provided in Table 4. Table 5 provides the external validation statistics of the test set
compounds that were not used in QSAR model development. The correlation coefficient
(R2) and Q2

LOO were previously discussed with the QSAR equations in Table 3. The s and
SPRESS values are related to the residuals of the regression of the QSAR models and the



Methods Protoc. 2021, 4, 2 8 of 11

size of the biological activity values. The values of QSAR equations X1, X2, X4, X5, and X7
utilize the log scale to generate suitable equations, which reduces the s and SPRESS values.
As seen in Figure 2, the calculated values correspond with the observed values, and there
are no outliers. The small p values indicate strong statistical significance of the models.

Table 4. Training set parameters of quantitative structure–activity relationship models of triazolothiadiazine compounds for antifungal
and antibiotic activities.

X1
A. niger

X2
A. flavus

X3
Penicillium sp.

X4
S. aureus

X5
B. subtilis

X6
E. coli

X7
P. aeruginosa

Training Set
R2 0.768 0.725 0.735 0.746 0.749 0.763 0.754

Q2
LOO 0.602 0.614 0.622 0.604 0.613 0.617 0.510

R2
adj 0.722 0.671 0.681 0.695 0.699 0.711 0.700

SPRESS 0.0393 0.0372 4.9296 0.4341 0.4315 1.495 0.0401
n 19 19 19 19 19 12 12
s 0.03 0.0313 4.130 0.348 0.347 1.176 0.028
F 16.56 13.21 13.84 14.68 14.94 14.52 13.84
p 0.0001 0.0002 0.0001 0.0001 0.0001 0.0015 0.0018

Q2, cross-validation; n, number of compounds; s, standard deviation; F, Fisher value; p, probability value.

Table 5. Test set parameters of quantitative structure–activity relationship models of triazolothiadiazine compounds for antifungal and
antibiotic activities.

X1
A. niger

X2
A. flavus

X3
Penicillium sp.

X4
S. aureus

X5
B. subtilis

X6
E. coli

X7
P. aeruginosa

Test Set
Rext 0.845 0.955 0.830 0.792 0.983 0.867 0.794
R2

ext 0.713 0.911 0.688 0.627 0.966 0.751 0.631
R2

ext-adj 0.618 0.882 0.584 0.502 0.956 0.668 0.508
F 7.47 30.90 6.62 5.04 87.44 9.06 5.13

RMSE 0.030 0.018 3.47 0.375 0.152 0.948 0.050
MAE 0.025 0.009 2.230 0.300 0.105 0.736 0.043

MAPE 1.4 0.5 3.7 7.0 2.4 4.0 3.4

Test Set RTO
R2

ext-RTO 1 1 0.997 0.992 0.999 0.998 0.998
F 15,112 124,471 1456 526 3997 1710 2562

n 5 5 5 5 5 5 5

Rext, correlation coefficient of the test set; R2
ext, squared correlation coefficient of the test set; R2

ext-adj adjusted squared correlation coefficient;
RMSE, root-mean-square error; MAE, mean absolute error; MAPE, mean absolute percentage error; n, number of compounds; s, standard
deviation; F, Fisher value; p, probability value.

Table 5 provides information on the performance of the QSAR models on compounds
that were not used to develop the models. The R2

ext values that measure the correlation
coefficient of the test set values using the model developed from the training set are between
0.627 and 0.966. The F values are between 5.04 to 87.44 and indicate that predicted activities
of the models are associated with the variation of the descriptors. This infers the descriptors
are important components of the models and supports the validity of the models. The
variability between the test set validation values can be attributed to the differences in
activities of the seven different fungi and bacteria investigated and unique activities of
triazolothiadiazine compounds that are not fully captured by the models. However, the
test set properties indicate the models are suitable for predicting activities for compounds
not used to develop the models. The RMSE and MAE values are excellent, and the scale
of these values is related to the magnitude of the activities used to create the models. The
mean absolute percentage error (MAPE) permits the comparison of the mean absolute error
across varying activities and is between 0.5 and 7.0% for the compounds evaluated. Most
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of the models are at or below 4% mean absolute percentage error, with model X4 as the
exception.

The correlation coefficient of regression through the origin (R2
ext-RTO) is considered

an important parameter to characterize the test set values [39,40]. All QSAR equations
have R2

ext-RTO approach 1, which indicates that the descriptors are highly correlated to
the activities when regression is through the origin. The R2

ext-RTO and R2
ext-adj (not shown)

were identical. The F values are between 526 to 15,112, which indicates certain models (X1
and X2) were more associated with the descriptors than other models. The p values for
regression through the origin of QSAR equations were all <0.0001, principally due to the
lack of intercept in the regression.

4. Conclusions

In conclusion, 2-dimensional topological and quantum chemical descriptors were able
to generate QSAR models to describe the antimicrobial activities of triazolothiadiazine
compounds against Aspergillus niger, Aspergillus flavus, and Penicillium sp. fungi, as well
as, Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa bacte-
ria. All models include topological descriptors, and the models to describe antibacterial
properties include descriptors obtained by DFT methods. These findings will aid in the
design of more potent antimicrobial compounds and systems. The method described
enabled the rapid development of predictive models to serve as simple tools to screen
and evaluate potential antimicrobials based on the triazolothiadiazine substructure. The
protocol described provides an efficient method to develop QSAR models against a variety
of biological activities.

Supplementary Materials: The following are available online at https://www.mdpi.com/2409
-9279/4/1/2/s1, Figure S1: B3LYP/6-311+G** geometry-optimized structures of triazolothiadi-
azine compounds, Figure S2: Molecular orbitals of triazolothiadiazine compounds optimized using
B3LYP/6-311+G** density functional theory, correlation matrix, B3LYP/6-311+G** geometry opti-
mized coordinates.
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K.; Handzlik, J. Phenylpiperazine 5,5-Dimethylhydantoin Derivatives as First Synthetic Inhibitors of Msr(A) Efflux Pump in
Staphylococcus epidermidis. Molecules 2020, 25, 3788. [CrossRef]

22. Sivakumar, P.M.; Kumar, T.M.; Doble, M. Antifungal Activity, Mechanism and QSAR Studies on Chalcones. Chem. Biol. Drug Des.
2009, 74, 68–79. [CrossRef] [PubMed]

23. Shao, Y.; Molnar, L.F.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.; Brown, S.T.; Gilbert, A.T.; Slipchenko, L.V.; Levchenko, S.V.; O’Neill,
D.P.; et al. Advances in methods and algorithms in a modern quantum chemistry program package. Phys. Chem. Phys. 2006, 8,
3172–3191. [CrossRef] [PubMed]

24. Hypercube Inc. Hyperchem Professional 8.0.10; Hypercube Inc.: Gainesville, FL, USA, 2011.
25. O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J.

Cheminform. 2011, 3, 33. [CrossRef] [PubMed]
26. Hong, H.; Xie, Q.; Ge, W.; Qian, F.; Fang, H.; Shi, L.; Su, Z.; Perkins, R.; Tong, W. Mold (2), molecular descriptors from 2D

structures for chemoinformatics and toxicoinformatics. J. Chem. Inf. Model. 2008, 48, 1337–1344. [CrossRef] [PubMed]
27. de Oliveira, D.B.; Gaudio, A.C. BuildQSAR: A new computer program for QSAR analysis. Quant. Struct.-Act. Relat. 2000, 19,

599–601. [CrossRef]
28. Koopmans, T. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica

1934, 1, 104–113. [CrossRef]
29. Parr, R.G.; Szentpály, L.V.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922–1924. [CrossRef]
30. Domingo, L.R.; Ríos-Gutiérrez, M.; Pérez, P. Applications of the Conceptual Density Functional Theory Indices to Organic

Chemistry Reactivity. Molecules 2016, 21, 748. [CrossRef]
31. Martin, T.; Harten, P.; Young, D.M.; Muratov, E.N.; Golbraikh, A.; Zhu, H.; Tropsha, A. Does Rational Selection of Training and

Test Sets Improve the Outcome of QSAR Modeling? J. Chem. Inf. Model. 2012, 52, 2570–2578. [CrossRef]
32. Rogers, D.; Hopfinger, A.J. Application of Genetic Function Approximation to Quantitative Structure-Activity Relationships and

Quantitative Structure-Property Relationships. J. Chem. Inf. Model. 1994, 34, 854–866. [CrossRef]

https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
http://dx.doi.org/10.22159/ajpcr.2017.v10i2.15673
http://dx.doi.org/10.3390/molecules19011163
http://dx.doi.org/10.1016/j.bmc.2007.01.039
http://dx.doi.org/10.1016/j.ejmech.2011.08.019
http://dx.doi.org/10.1016/j.chemosphere.2013.05.076
http://dx.doi.org/10.1007/s11224-020-01549-1
http://dx.doi.org/10.3390/antibiotics9090537
http://www.ncbi.nlm.nih.gov/pubmed/32854223
http://dx.doi.org/10.1016/j.jhazmat.2015.01.051
http://www.ncbi.nlm.nih.gov/pubmed/25698572
http://dx.doi.org/10.3390/toxins11020122
http://dx.doi.org/10.3390/jof6030151
http://dx.doi.org/10.3390/toxins12090562
http://dx.doi.org/10.1080/02681219480000701
http://dx.doi.org/10.3390/molecules25173955
http://dx.doi.org/10.3390/molecules25173788
http://dx.doi.org/10.1111/j.1747-0285.2009.00828.x
http://www.ncbi.nlm.nih.gov/pubmed/19519746
http://dx.doi.org/10.1039/B517914A
http://www.ncbi.nlm.nih.gov/pubmed/16902710
http://dx.doi.org/10.1186/1758-2946-3-33
http://www.ncbi.nlm.nih.gov/pubmed/21982300
http://dx.doi.org/10.1021/ci800038f
http://www.ncbi.nlm.nih.gov/pubmed/18564836
http://dx.doi.org/10.1002/1521-3838(200012)19:6&lt;599::AID-QSAR599&gt;3.0.CO;2-B
http://dx.doi.org/10.1016/S0031-8914(34)90011-2
http://dx.doi.org/10.1021/ja983494x
http://dx.doi.org/10.3390/molecules21060748
http://dx.doi.org/10.1021/ci300338w
http://dx.doi.org/10.1021/ci00020a020


Methods Protoc. 2021, 4, 2 11 of 11

33. Choi, S.-Y.; Shin, J.H.; Ryu, C.K.; Nam, K.-Y.; No, K.T.; Choo, H.-Y.P. The development of 3D-QSAR study and recursive
partitioning of heterocyclic quinone derivatives with antifungal activity. Bioorg. Med. Chem. 2006, 14, 1608–1617. [CrossRef]
[PubMed]
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