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Abstract: We share two simple modifications to enhance the fixation and imaging of relatively small,
motile, and rounded model cells. These include cell centrifugation and the addition of trace amounts
of glutaraldehyde to existing fixation methods. Though they need to be carefully considered in
each context, they have been useful to our studies of the spatial relationships of the microtubule
cytoskeletal system.
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1. Introduction

The striking mobility of Dictyostelium makes for an interesting and impactful model system
to study dynamic cellular events [1]. Directed cell movement, rapid shape changes, and internal
reorganization in response to extracellular cues are frequently accentuated here over more sedentary
cell types and thus provide novel access to their study and understanding. However, one of the
tradeoffs in a dynamic lifestyle is that these cells can be less tightly adherent to their substrate, and thus
imaging and downstream structural analyses can present challenges that must be carefully considered.

For many years, we have tinkered with fixation and staining conditions in order to image
cytoskeletal arrays and GFP-tagged proteins in D. discoideum [2–6]. Likely not alone, we have been
challenged with difficulties in getting cells to sufficiently flatten to facilitate imaging and to remain
attached to coverslips for downstream structural processing. In this brief report, we would like to
share two insights that make a difference in our work, in the hopes that they benefit others as well.

2. Results

2.1. Cell Flattening

In the early 1980′s, Fukui and colleagues developed an agar overlay procedure for D. discoideum
that utilizes thin sheets of agarose to flatten cells and significantly improves some aspects of cellular
imaging [7]. This is now a widely used method that gently restricts the experimental depth of
field to around 1–3 µm. Cells under agarose can undergo division and remain viable for hours in
sealed chambers. This overlay remains our preferred method for live cell imaging, enabling us to
follow individual microtubule (MT) motions in a minimal number of focal planes [8,9]. However,
the procedure is a bit cumbersome to use for routine cell fixation, especially for multiple coverslips.
The agar sheet takes some care to set up, only covers a small portion of the coverslip, and takes slightly
longer for the fixative to penetrate to the cells, and cell loss (at least in our hands) can be significant
upon sheet removal for downstream cell processing. With any perturbation, there are caveats to
consider when flattening cells for long periods, and thus multiple strategies can be useful to distinguish
between genuine and imposed phenotypes.
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As such an alternative, we have begun to spin cells directly onto coverslips. Five minutes at
400 g in a standard tabletop centrifuge not only promotes attachment but also cell spreading. A small
volume of cell suspension is added to buffer overlying a coverslip in a centrifuge tube (Figure 1) and
spun for five minutes. The coverslip is then lifted out and gently slid into a dish containing fixative.
This approach eliminates the waiting period for cell settling; agarose is not required, and cells labeled
with a tubulin antibody [10] appear very similar to those prepared by agar overlay (Figure 2).
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rod segment (2.5 cm diameter, 3.75 cm length). The notch along the side is helpful to retrieve 
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round coverslips; these can be readily removed with curved forceps. 

Figure 1. Centrifugation devices. Panel (A) shows a side view, panel (B) shows a top down view
of a 50 mL Sorvall centrifugation tube fitted with an EPON base (yellow layer in A) and a white
Delrin rod segment (2.5 cm diameter, 3.75 cm length). The notch along the side is helpful to retrieve
coverslips with forceps, allowing access to the underside of the coverslip for lifting. Panel (C) shows a
modified multiwell holder for processing up to 12 samples at a time. The top row contains 12 mm
round coverslips; these can be readily removed with curved forceps.

The take-home message here is that the organization of the MT array in centrifuged cells appears
to be very similar if not identical to what we would select as the “best” cells from either direct fix or
agar overlay procedures. However, a primary benefit is that they are significantly more plentiful on
the centrifuged coverslip than in the other two preparations. For example, approximately 10% of the
cells on a gravity settled coverslip are sufficiently flat enough to project a useful characterization of MT
arrays for the types questions that interest us. On a centrifuged coverslip, this increases to at least 60%
of the population. This percentage is similar in the agar overlay preparations, but centrifuged cells
extend across the entire coverslip and do not suffer detachment due to agar sheet removal.
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Figure 2. Examples of antibody-labeled microtube (MT) patterns in cells (A) directly added to 
coverslips and fixed after a 10 min period; (B) cells fixed after overlay with agar sheets; and (C,D) 
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of mononucleated cells (left) and binucleates (right). Panel (D) shows mitotic cells in late anaphase 
(left) and late telophase (right). While the three different cell preparations look similar, it is important 
to note that there are typically far fewer flattened cells on the direct fix coverslips and substantially 
fewer cells in general on the agarose overlay coverslip. MTs are shown in green, DNA in blue, Scale 
bar = 5 μm. 

2.2. Cell Attachment 

The second perhaps underappreciated impact derives from a fixation recipe that includes a small 
amount of glutaraldehyde (0.05% final). This concentration is not sufficient to preserve cell structure 
on its own, nor does it require autofluorescence quenching by sodium borohydride, but it 
substantially improves cell retention on the coverslip (Figure 3). Although formaldehyde alone or 
−20° methanol can provide structural preservation at the light microscopy (LM) level, cell loss from 
the coverslip is substantial at each wash or incubation step. This is particularly a problem for mitotic 
cells, since they are more rounded and less adherent than during interphase. The fixation recipe 
provided below does not interfere with GFP labels, and thus expressed tags can be imaged alongside 
antibody staining. Compared to the use of higher concentrations of glutaraldehyde (i.e., 0.5%) as the 
sole fixative, this recipe also has the advantage that it improves preservation of MTs without the 

Figure 2. Examples of antibody-labeled microtube (MT) patterns in cells (A) directly added to coverslips
and fixed after a 10 min period; (B) cells fixed after overlay with agar sheets; and (C,D) cells fixed after
5 min centrifugation onto coverslips. Panels (A–C) show interphase arrangements of mononucleated
cells (left) and binucleates (right). Panel (D) shows mitotic cells in late anaphase (left) and late telophase
(right). While the three different cell preparations look similar, it is important to note that there are
typically far fewer flattened cells on the direct fix coverslips and substantially fewer cells in general on
the agarose overlay coverslip. MTs are shown in green, DNA in blue, Scale bar = 5 µm.

2.2. Cell Attachment

The second perhaps underappreciated impact derives from a fixation recipe that includes a
small amount of glutaraldehyde (0.05% final). This concentration is not sufficient to preserve cell
structure on its own, nor does it require autofluorescence quenching by sodium borohydride, but it
substantially improves cell retention on the coverslip (Figure 3). Although formaldehyde alone or −20◦

methanol can provide structural preservation at the light microscopy (LM) level, cell loss from the
coverslip is substantial at each wash or incubation step. This is particularly a problem for mitotic cells,
since they are more rounded and less adherent than during interphase. The fixation recipe provided
below does not interfere with GFP labels, and thus expressed tags can be imaged alongside antibody
staining. Compared to the use of higher concentrations of glutaraldehyde (i.e., 0.5%) as the sole fixative,
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this recipe also has the advantage that it improves preservation of MTs without the often-encountered
negative effects that glutaraldehyde has on antigenicity for antibodies directed against other structures.
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Figure 3. Phase contrast images of identical aliquots of D. discoideum cells spun onto coverslips and
fixed (A) with or (B) without the addition of 0.05% glutaraldehyde and rinsed four times with buffer.
Scale bar = 50 µm.

3. Discussion

As with any cell perturbation, centrifugation may not universally be a good idea and needs to be
approached with caution. However, side-by-side comparisons of the MT array (interphase or mitotic
cells) prepared by agar overlay or centrifugation are indistinguishable, and thus in our case, we feel
the method affords a useful strategy for our imaging.

An important benefit is that this method can be applied to cells that do not readily attach to
the coverslip. For example, treatment of D. discoideum with latrunculin A (5 µM) results in actin
filament disruption and cell rounding [11]. Centrifugation of Lat-A-treated cells onto coverslips
followed by immediate fixation preserves a significant percentage of the population for downstream
imaging. We have used this strategy to examine how the MT array may be integrated into the cortical
actin meshwork.

Laboratories already comfortable with their staining procedures are not likely to do anything
different, but for those frustrated that D. discoideum cells (or other cell types) are less adherent than
mammalian tissue culture cells, these hints provide alternative strategies to consider.

4. Experimental Design

4.1. Centrifugation

For a limited number of samples, we used 50 mL polycarbonate Sorvall centrifuge tubes, which
were roughly the same diameter as the ubiquitous 50 mL disposable screw cap tubes and could
accommodate 18 mm2 coverslips. We partially filled a set with EPON resin (a common epoxy resin
found in electron microscopy labs) to serve as a base, then inserted 3.75 cm long Delrin spacers of
almost the same diameter as the centrifuge tube, for the coverslip to rest on. We added a small notch
in the top of the spacer to facilitate forceps removal of the coverslip. In order for the spacer alone
or multiple other configurations to work, one only needs a smooth surface that will support the
coverslip; remain perpendicular to the centrifugal force; and, importantly, provide the ability to reach
the coverslip with a pair of forceps for retrieval.

For processing more than a few coverslips, we used custom 12-(flat) well titer plates (about half the
size of a standard 24-well plate) that fit into the buckets of a swing-out rotor. Round coverslips (12 mm)
were placed into the wells prior to adding cells and centrifugation. There were also commercially
available 24-well 0.17 mm glass bottom plates that fit into many swing-out buckets. Using these plates,
the centrifugation method may more easily be applicable for live cell imaging.
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A clean coverslip was added to the tube followed by sufficient phosphate buffer to cover the
coverslip by about 5 mm. Using a micropipette, ~100 µL of D. discoideum cells were scraped from
the bottom of a nearly confluent culture dish and gently added into the buffer volume directly over
the coverslip. Depending on the desired cell density, this volume of cells can be adjusted. Tubes can
be centrifuged as soon as convenient after adding cells; no settling period is required. While fixing
D. discoideum cells directly in culture media should be avoided due to auto fluorescent components
in some recipes, the dilution into buffer (~1:50) and time over the brief spin period is sufficient to
substantially reduce the fluorescent background.

The tubes or dishes were placed in a table top clinical centrifuge with a swinging bucket rotor and
spun for five minutes (400 g setting). Coverslips were then quickly removed and placed cell side up in
35 mm petri dishes prefilled with fixative, and incubated for 15–30 min. All downstream washing and
incubation steps were performed as usual for antibody or reporter labeling. The centrifugation time
and force settings were not rigorously optimized; we tinkered with them, and these settings worked
for our purpose.

4.2. D. discoideum Fixative

• 50% PHEM buffer (30 mM PIPES, 12.5 mM HEPES, pH 6.9, 4 mM EGTA, 1 mM MgCl2). pH 6.9
• 3.7% formaldehyde
• 0.05% glutaraldehyde
• 0.1% Triton X-100

Coverslips are acid washed by soaking in 1N HCl for one hour, followed by rinsing with milli Q
H2O, and a brief 100% ETOH wash, then air dried in a glass petri dish.

4.3. Phosphate Development Buffer

• 20 mM KCL
• 2.5 mM MgCl2·6H20
• 27 mM NaH2PO4·H20
• 24 mM Na2HPO4

• pH 6.4 (see reference [12] for detail)

4.4. Light Microscopy

Imaging was performed on a DeltaVision microscope workstation using the softWoRx 2.50 imaging
package. Z-series stacks were collected at 0.5 µm step intervals and deconvolved. Maximum intensity
projections of the entire stack are presented here, performed using FIJI [13]. DNA is labeled with
Hoechst 33342. The panels were assembled using Adobe Photoshop.
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