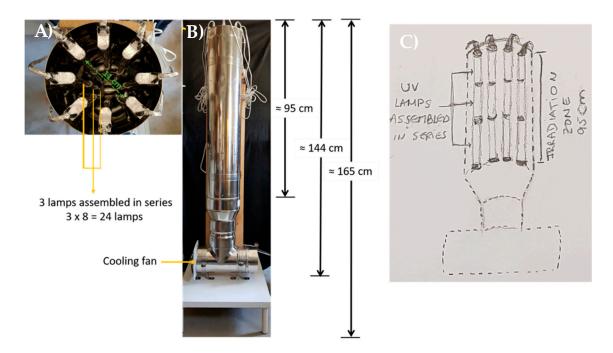
Process intensification for the synthesis of 6-allyl-6azabicyclo[3.1.0]hex-3-en-2-ol from 1-allylpyridinium salt using a continuous UV-light photoflow approach

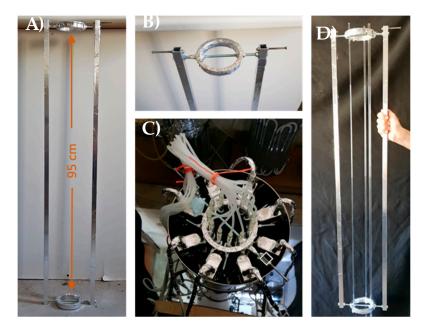
Milene A. G. Fortunato¹, Chi-Phong Ly,^{1,2} Filipa Siopa^{1,*} and Carlos A. M. Afonso^{1,*}

- 1 Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
- 2 Sorbonne Université, Faculté des Sciences et Ingénierie, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 place Jussieu, 75005 Paris, France.
- * Correspondence: filipasiopa@ff.ulisboa.pt; carlosafonso@ff.ulisboa.pt

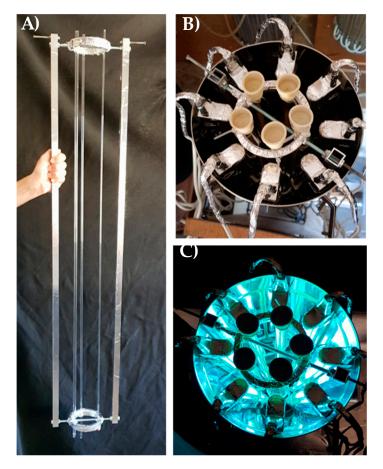
Supporting Information

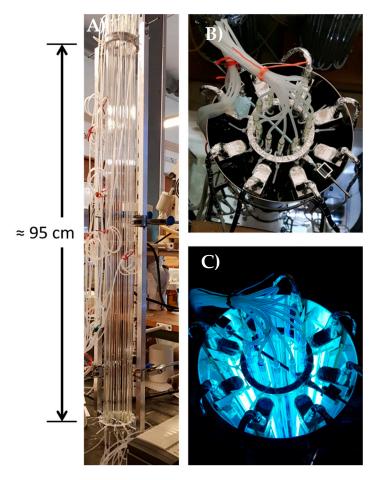

Table of Contents

Pictures of home-made UV reactor and quartz tubes reactor used for this study4
Figure S1: Home-made UV reactor containing 24 PURITEC HNS Germicidal lamps Ref. HNS 8W G5 G5 (8W at 254 nm) with 1,44 m length.; A) Top view of the reactor, 3 lamps assembled in series [8 x 3 = 24 lamps); B) Exterior view of the home-made UV reactor, with approximately 95 cm of irradiation zone; C) Interior view of half of the home-made UV reactor, is shown 4 blocks of lamps, in each one is shown 3 lamps in series
Figure S2: Quartz tubes' support for the home-made UV reactor B) Detailed view: Ring to attach the quartz tubes; C) Home-made continuous-flow parallel tube quartz reactor (PQT6): [12 tubes: 95 cm under irradiation (I) × 0.6 cm (d)] inside the home-made UV reactor (top view); D) Support with 3 tubes attached for batch experiments
5
Figure S3: Set up of the tubes for batch experiments; A) Quartz tubes' support for the home-made UV reactor with 3 tubes attached; B) Batch system inside the home-made UV reactor; C) Top view under irradiation
Figure S4: Home-made continuous-flow parallel tube quartz reactor (PQT6) [12 tubes: 95 cm (I) × 0.6 cm (d)] A) Before UV irradiation, B) Top view of the PQT6 inside the home-made UV reactor, C) Top view of the PQT6 inside the home-made UV reactor under irradiation
Figure S5: Home-made continuous-flow parallel tube quartz reactor (PQT6), [12 tubes: 95 cm (I) × 0.6 cm (d)] A) Top view before UV irradiation, B) top-view under irradiation; C) top-view after irradiation6
Figure S6: Equipment used for photochemical transformation in continuous flow
Troubleshooting7
Figure S7: PQT6 after irradiation with yellow residue on the walls
Batch experiments results
Batch experiments with different internal diameters (QT2, QT4, QT6)8


Table S1 : Results of the batch photochemical transformation of allyl pyridinium 60 mM , using QT2: [95 cm under irradiation (<i>I</i>) × 0.2 cm (<i>d</i>)]. (The results in gree presented in Table 1 of the manuscript)	en are also
Figure S8: ¹ H NMR spectra of the batch photochemical transformation of allyl p salt, Conc. 60 mM , using a QT2, with 2 hours of irradiation time	•
Table S2: Results of the batch photochemical transformation of allyl pyridinium 60 mM , using a QT4: [95 cm under irradiation (<i>I</i>) × 0.4 cm (<i>d</i>)]. (The results in gr also presented in Table 1 of the manuscript)	een are
Figure S9: ¹ H NMR spectra of the batch photochemical transformation of allyl p salt, Conc. 60 mM , using a QT4, with 4 hours of irradiation time	-
Figure S10: ¹ H NMR spectra of the batch photochemical transformation of allyl salt, Conc. 60 mM , using a QT6, with 4 hours of irradiation time	
Batch studies different concentrations on the QT6	14
Table S4: Results of the batch photochemical transformation of allyl pyridinium 20 mM , using a QT6. (The results in green are also presented in Table 1 of the n	nanuscript)
Figure S11: ¹ H NMR spectra of the batch photochemical transformation of allyl salt, Conc. 20 mM , using a QT6, with 1 hour of irradiation time	
Table S5: Results of the batch photochemical transformation of allyl pyridinium 40 mM , using a QT6. (The results in green are also presented in Table 1 of the n	nanuscript)
Figure S12: ¹ H NMR spectra of the batch photochemical transformation of allyl salt, Conc. 40 mM , using a QT6, with 6 hours of irradiation time.	pyridinium
Table S6: Results of the batch photochemical transformation of allyl pyridinium 60 mM , using a QT6	-
Figure S13: ¹ H NMR spectra of the batch photochemical transformation of allyl salt, Conc. 60 mM , using a QT6, with 8 hours of irradiation time	
Figure S14: ¹ H NMR spectra of the batch photochemical transformation of allyl salt, Conc. 80 mM , using a QT6, with 8 hours of irradiation time	
Figure S15: Comparison of the photoreaction of the allyl pyridinium salt, at Con 60, 80 mM using a QT6 [95 cm (I) × 0.6 cm (d)]: A) Conversion (%) and B) Produc (mg/h)	tivity
Optimization of photochemical transformation of 1a to 2a under continuous-flow cor	nditions.23
Figure S16: ¹ H NMR spectra of photochemical transformation of 1a to 2a under continuous-flow conditions [Flow rate: 0.35 mL/min; rpm: 8.75; Residence time Conversion: 59%] on the PTQ6 (Table 2, Entry 1).	: 1.3 h;
Figure S17: ¹ H NMR spectra of photochemical transformation of 1a to 2a under continuous-flow conditions [Flow rate: 0.21 mL/min; rpm: 5; Residence time: 2. Conversion: 75%] on the PTQ6 (Table 2, Entry 2).	3 h;
Figure S18: ¹ H NMR spectra of photochemical transformation of 1a to 2a under continuous-flow conditions [Flow rate: 0.14 mL/min; rpm: 3.5; Residence time: Conversion: 93%] on the PTQ6 (Table 2, Entry 3).	3.3 h;

Photochemical transformation of 1a to 2a under continuous-flow conditions25
Table S8: Photochemical transformation of 1a to 2a under continuous-flow conditions ¹ .25
Figure S20 : Overview of combined ¹ H NMR spectra of photochemical transformation of 1a to 2a under continuous-flow conditions [Flow rate: 0.12 mL/min; rpm: 3; Residence time: 4h] on the PTQ6 (Table S8, entries 2-14)
Figure S21: ¹ H NMR spectra of photochemical transformation of 1a to 2a under continuous-flow conditions [Flow rate: 0.12 mL/min; rpm: 3; Residence time: 4h; Conversion: 92%] on the PTQ6 (Table 3 of the manuscript, Entry 2)
Figure S22: ¹ H NMR spectra of photochemical transformation of 1a to 2a under continuous-flow conditions [Flow rate: 0.12 mL/min; rpm: 3; Residence time: 4h; Conversion: 83%] on the PTQ6 (Table 3 of the manuscript, Entry 2)
Figure S23: ¹ H NMR spectra of photochemical transformation of 1a to 2a under continuous-flow conditions [Flow rate: 0.12 mL/min; rpm: 3; Residence time: 4h; Conversion: 66%] on the PTQ6 (Table 3 of the manuscript, Entry 4)
Figure S24: ¹ H NMR spectra of photochemical transformation of 1a to 2a under continuous-flow conditions [Flow rate: 0.12 mL/min; rpm: 3; Residence time: 4h; Conversion: 41%] on the PTQ6 (Table 3 of the manuscript, Entry 5)
¹ H NMR spectra
Figure S26: ¹ H NMR spectra of 1-allylpyridinium bromide, in accordance with literature [7].
Figure S27 : ¹ H NMR spectra of 6-allyl-6-azabicyclo[3.1.0]hex-3-en-2-ol, in accordance with literature [7]


Pictures of home-made UV reactor and quartz tubes reactor used for this study


Figure S1: Home-made UV reactor containing 24 PURITEC HNS Germicidal lamps Ref. HNS 8W G5 G5 (8W at 254 nm) with 1,44 m length.; A) Top view of the reactor, 3 lamps assembled in series [8 x 3 = 24 lamps); B) Exterior view of the home-made UV reactor, with approximately 95 cm of irradiation zone; C) Interior view of half of the home-made UV reactor, is shown 4 blocks of lamps, in each one is shown 3 lamps in series .

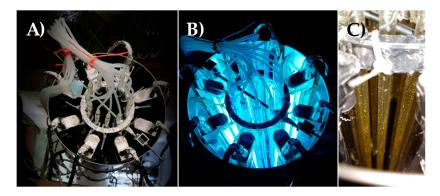

Figure S2: Quartz tubes' support for the home-made UV reactor B) Detailed view: Ring to attach the quartz tubes; C) Home-made continuous-flow parallel tube quartz reactor (PQT6): [12 tubes: 95 cm under irradiation (l) × 0.6 cm (d)] inside the home-made UV reactor (top view); D) Support with 3 tubes attached for batch experiments.

Figure S3: Set up of the tubes for batch experiments; A) Quartz tubes' support for the home-made UV reactor with 3 tubes attached; B) Batch system inside the home-made UV reactor; C) Top view under irradiation.

Figure S4: Home-made continuous-flow parallel tube quartz reactor (PQT6) [12 tubes: 95 cm (l) × 0.6 cm (d)] A) Before UV irradiation, B) Top view of the PQT6 inside the home-made UV reactor, C) Top view of the PQT6 inside the home-made UV reactor under irradiation.

Figure S5: Home-made continuous-flow parallel tube quartz reactor (PQT6), [12 tubes: 95 cm (l) × 0.6 cm (d)] A) Top view before UV irradiation, B) top-view under irradiation; C) top-view after irradiation.

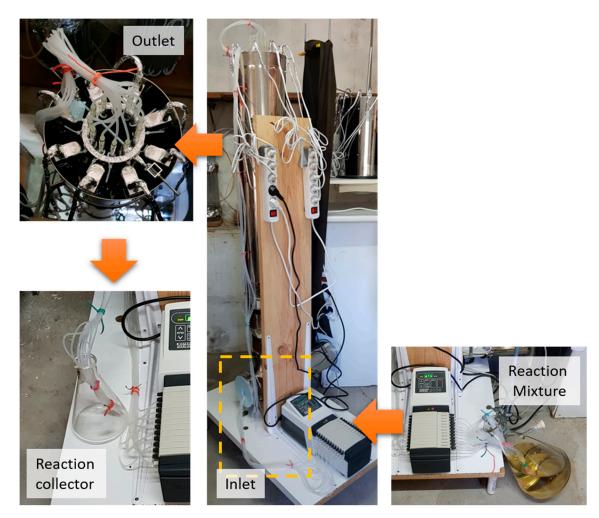


Figure S6: Equipment used for photochemical transformation in continuous flow

Troubleshooting

Figure S7: PQT6 after irradiation with yellow residue on the walls.

In all the photochemical reactions a yellow residue was gradually formed on the reactor walls. The residue was removed by disassembling the PQT6 and washing the quartz tubes using water pressure and a tube cleaning brush.

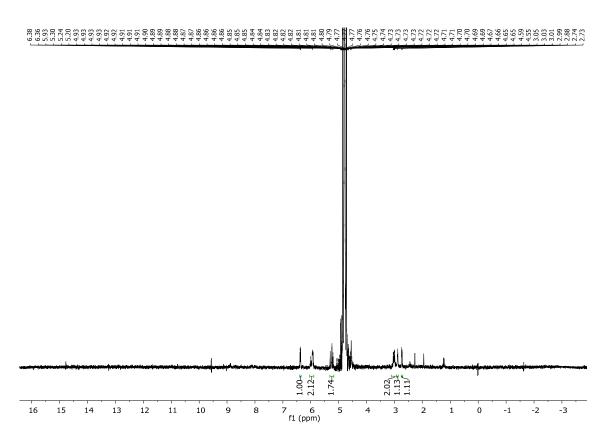
Batch experiments results Batch experiments with different internal diameters (QT2, QT4, QT6)

Table S1: Results of the batch photochemical transformation of allyl pyridinium salt, Conc. 60 mM, using QT2: [95 cm under irradiation (l) × 0.2 cm (d)]. (The results in green are also presented in Table 1 of the manuscript)

Time	Conv.(%) ^[1]	Conv.(%) ^[2]	Avg.	Product	Productivity	Productivity	Productivity
(h)			Conv. (%) ^[3]	Mass (g) ^[4]	g ^[4] L ^{-1 [5]} h ⁻¹	g ^[4] m ^{-2 [6]} h ⁻¹	mg h-1
1	80.97	81.63	81.30	0.020	6.69	3.35	19.97
2	100	100	100	0.0246	4.12	2.06	12.28
3	100	100	100	0.0246	2.74	1.37	8.19
4	100	100	100	0.0246	2.06	1.03	6.14
5	100	100	100	0.0246	1.65	0.82	4.91

^[1] ¹H NMR conversion obtained by the integration of the aziridine peak at 6.30 ppm to 1H and the pyridine peak at 8.81 ppm. Conversion =

Area of Aziridine signal (6.30 ppm) [Area of Pyridine signal (8.81 ppm)/2+ Area of Aziridine signals (6.30 ppm)]


^[2]¹H NMR conversion obtained by the integration of the aziridine peak at 6.30 pm to 1H and the pyridine peak at 8.05 ppm. Area of Aziridine signal (6.30 ppm) [Area of Pyridine signal (8.05 ppm)/2+ Area of Aziridine signals (6.30 ppm)] x100 Conversion =

^[3] Average of the Conversions

^[4] Product mass (g) = $\frac{[Avg.Conversion (\%)*MM Aziridine (138.17 g/mol)*n mol A1ziridine (0.000179 mol)]}{[4]}$

100 ^[5] Irradiation Volume - $\pi \times r^2 \times h = \pi \times 0.1^2 \times 95 = 2.99 \text{ cm}^3 = 0.00299 \text{ L}$

^[6] Area = L $\times 2\pi$ r = 0.95 $\times 2\pi \times 0.001$ = 0.006 m²

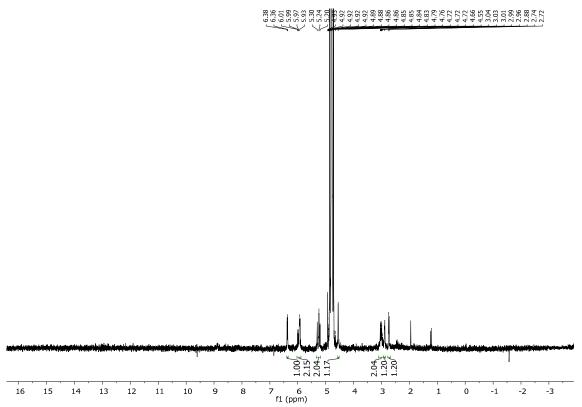
Figure S8: ¹H NMR spectra of the batch photochemical transformation of allyl pyridinium salt, Conc. **60 mM**, using a QT2, with 2 **hours** of irradiation time.

Time	Conv.(%) ^[1]	Conv.(%) ^[2]	Avg.	Product	Productivity	Productivity	Productivity
(h)			Conv. (%) ^[3]	Mass (g) ^[4]	g ^[4] L ^{-1 [5]} h ⁻¹	g ^[4] m ^{-2 [6]} h ⁻¹	mg h ⁻¹
2	80.97	79.37	80.17	0.079	3.30	3.30	39.38
4	90.50	87.34	88.92	0.087	1.83	1.83	21.84
5	90.50	88.89	89.69	0.088	1.48	1.48	17.63
6	86.96	84.75	85.85	0.084	1.18	1.18	14.06
7	92.59	9132	91.96	0.090	1.08	1.08	12.91
8	92.17	92.17	92.17	0.091	0.95	0.95	11.32

Table S2: Results of the batch photochemical transformation of allyl pyridinium salt, Conc. **60 mM**, using a QT4: [95 cm under irradiation (*l*) × 0.4 cm (*d*)]. (The results in green are also presented in Table 1 of the manuscript)

[Area of Pyridine signal (8.81 ppm)/2+ Area of Aziridine signals (6.30 ppm)] x100

 $^{[2]}$ ¹H NMR conversion obtained by the integration of the aziridine peak at 6.30 pm to 1H and the pyridine peak at 8.05 ppm. Conversion = Area of Aziridine signal (6.30 ppm) v100


[Area of Pyridine signal (8.05 ppm)/2+ Area of Aziridine signals (6.30 ppm)] x100

^[3] Average of the Conversions

^[4] Product mass $(g) = \frac{[Avg.Conversion (\%)*MM Aziridine (137.18g/mol)*n mol Aziridine (0.000716mol)]}{[4]}$

¹⁴ *Product mass* (*g*) = $\frac{100}{100}$ ^[5] Irradiation Volume- $\pi \times r^2 \times h = \pi \times 0.2^2 \times 95 = 11.94 \text{ cm}^3 = 0.01194 \text{ L}$

^[6] Area = L $\times 2\pi$ r = 0.95 $\times 2\pi \times 0.002$ = 0.01194 m²

Figure S9: ¹H NMR spectra of the batch photochemical transformation of allyl pyridinium salt, Conc. **60 mM**, using a QT4, with 4 **hours** of irradiation time.

Time (h)	Conv.(%) ^[1]	Conv.(%) ^[2]	Avg.	Product	Productivity	Productivity	Productivity
			Conv. (%) ^[3]	Mass (g) ^[4]	g ^[4] L ^{-1 [5]} h ⁻¹	$g^{[4]} m^{-2} {}^{[6]} h^{-1}$	mg h ⁻¹
2	65.36	63.90	64.63	0.14	2.64	3.97	71.04
4	86.96	84.75	85.85	0.19	1.77	2.65	47.53
6	94.79	94.34	94.56	0.21	1.30	1.95	35.01
8	91.74	100	95.87	0.21	0.99	1.48	26.53
10	93.90	4.34	94.12	0.21	0.77	1.16	20.78

Table S3: Results of the batch photochemical transformation of allyl pyridinium salt, Conc. **60 mM**, using a QT6: [95 cm under irradiation (*l*) × 0.6 cm (*d*)]. (The results in green are also presented in Table 1 of the manuscript)

 $^{[1]}$ ¹H NMR conversion obtained by the integration of the aziridine peak at 6.30 ppm to 1H and the pyridine peak at 8.81 ppm. Conversion = Area of Aziridine signal (6.30 ppm) v100

Area of Aziridine signal (6.30 ppm) [Area of Pyridine signal (8.81 ppm)/2+ Area of Aziridine signals (6.30 ppm)]

 $^{[2]}$ ¹H NMR conversion obtained by the integration of the aziridine peak at 6.30 pm to 1H and the pyridine peak at 8.05 ppm. Conversion = Area of Aziridine signal (6.30 ppm) r100

[Area of Pyridine signal (8.05 ppm)/2+ Area of Aziridine signals (6.30 ppm)]

^[3] Average of the Conversions

^[4] Product mass (g) = $\frac{[Avg.Conversion (\%)*MM Aziridine (138.17 g/mol)*n mol Aziridine (0.00161 mol)]}{[4]}$

^[5] Irradiation Volume- $\pi \times r^2 \times h = \pi \times 0.3^2 \times 95 = 26.86 \text{ cm}^3 = 0.0269 \text{ L}$

^[6] Area = $L \times 2\pi$ r = 0.95 $\times 2\pi \times 0.003$ = 0.0179 m²

Figure S10: ¹H NMR spectra of the batch photochemical transformation of allyl pyridinium salt, Conc. **60 mM**, using a QT6, with 4 **hours** of irradiation time.

Batch studies different concentrations on the QT6

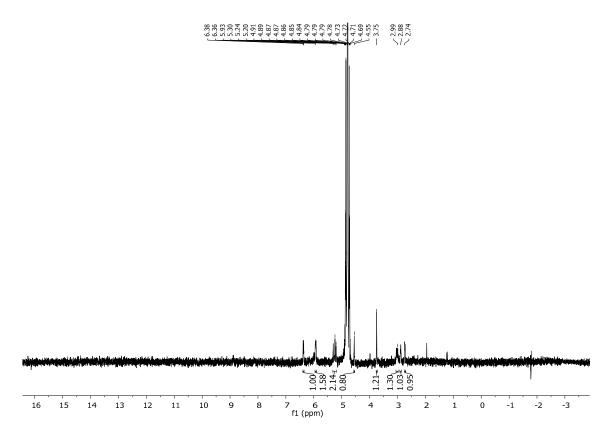
Table S4: Results of the batch photochemical transformation of allyl pyridinium salt, Conc. 20 mM, using a QT6. (The results in green are also presented in Table 1 of the manuscript)

Time	Conv.(%) ^[1]	Conv.(%) ^[2]	Avg.	Product	Productivity	Productivity	Productivity
(h)			Conv. (%) ^[3]	Mass (g) ^[4]	g ^[4] L ^{-1 [5]} h ⁻¹	$g^{[4]} m^{-2} {}^{[6]} h^{-1}$	mg h ⁻¹
1	100	100	100	0.074	2.74	4.12	73.69
2	100	100	100	0.074	1.37	2.06	36.85
3	100	100	100	0.074	0.91	1.37	24.56
4	100	100	100	0.074	0.69	1.03	18.42
5	100	100	100	0.074	0.55	0.82	14.74
6	100	100	100	0.074	0.46	0.69	12.28
7	100	100	100	0.074	0.39	0.59	10.53

 $^{[1]}$ ¹H NMR conversion obtained by the integration of the aziridine peak at 6.30 ppm to 1H and the pyridine peak at 8.81 ppm. Conversion = Area of Aziridine signal (6.30 ppm) v100

[Area of Pyridine signal (8.81 ppm)/2+ Area of Aziridine signals (6.30 ppm)] x100

^[2] ¹H NMR conversion obtained by the integration of the aziridine peak at 6.30 pm to 1H and the pyridine peak at 8.05 ppm. Conversion =


Area of Aziridine signal (6.30 ppm) [Area of Pyridine signal (8.05 ppm)/2+ Area of Aziridine signals (6.30 ppm)] x100

^[3] Average of the Conversions

[4] Product mass $(g) = \frac{[\text{Avg.Conversion (\%)*MM Aziridine (138.17 g/mol)*n mol Aziridine (0.000537 mol)]}{[4]}$

^[5] Irradiation Volume- $\pi \times r^2 \times h = \pi \times 0.3^2 \times 95 = 26.86 \text{ cm}^3 = 0.0269 \text{ L}$

^[6] Area = $L \times 2\pi$ r = 0.95 × $2\pi \times 0.003$ = 0.0179 m²

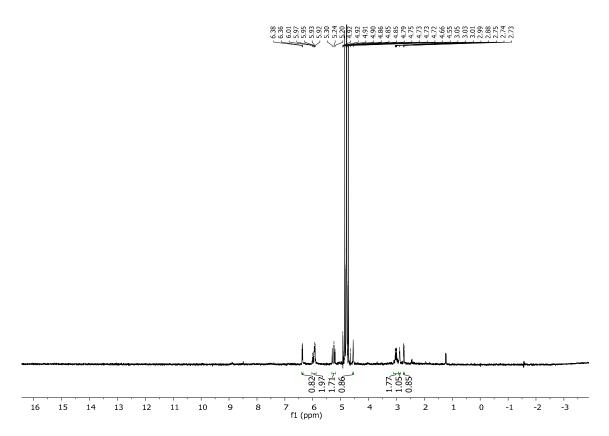


Figure S11: ¹H NMR spectra of the batch photochemical transformation of allyl pyridinium salt, Conc. **20 mM**, using a QT6, with **1 hour** of irradiation time.

Time	Conv.(%) ^[1]	C_{2}	Avg.	Product	Productivity	Productivity	Productivity
(h)		Conv.(%) ^[2]	Conv. (%) ^[3]	Mass (g) ^[4]	g ^[4] L ^{-1 [5]} h ⁻¹	g ^[4] m ^{-2 [6]} h ⁻¹	mg h -1
1	60.8	57.3	59.05	0.087	3.24	4.86	87.03
2	78.13	76.34	77.23	0.113	2.11	3.17	56.74
3	83.33	86.21	84.77	0.125	1.55	2.33	41.76
4	86.96	88.50	87.73	0.130	1.21	1.81	32.43
5	93.46	92.59	93.03	0.137	1.02	1.53	27.41
6	100	100	100	0.7	0.915	1.37	24.56
Product ma	$ass(g) = \frac{[Avg.Converse]}{[Avg.Converse]}$	sion (%)*MM Aziridine (1	38.17 g/mol)∗n mol Aziridine 100	(0.00107 mol)]			

Table S5: Results of the batch photochemical transformation of allyl pyridinium salt, Conc. 40 mM, using a QT6. (The results in green are also presented in Table 1 of the manuscript)

100

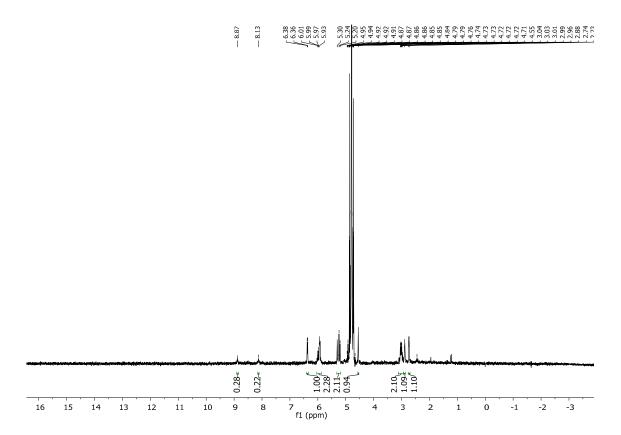
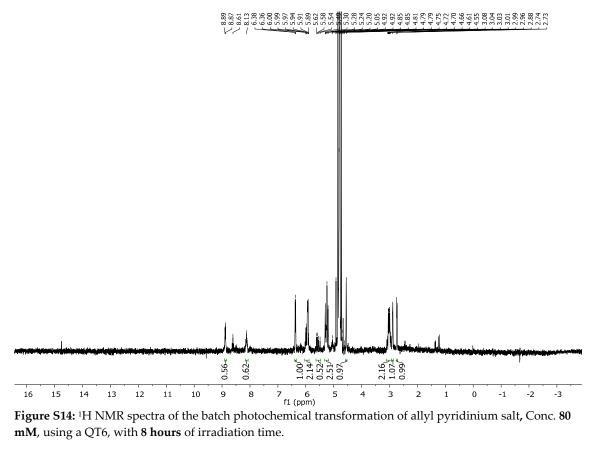


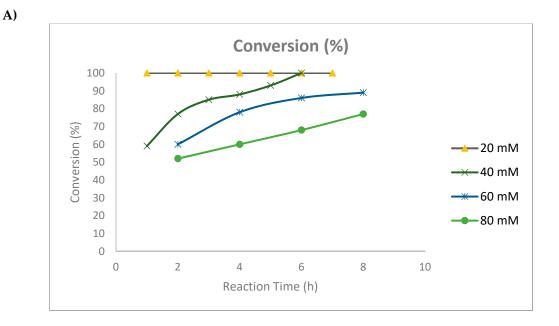
Figure S12: ¹H NMR spectra of the batch photochemical transformation of allyl pyridinium salt, Conc. **40 mM**, using a QT6, with 6 hours of irradiation time.

Time (h)	Conv.(%) ^[1]	Conv.(%) ^[2]	Avg.	Product	Productivity	Productivity	Productivity
			Conv. (%) ^[3]	Mass (g) ^[4]	g ^[4] L ^{-1 [5]} h ⁻¹	g ^[4] m ^{-2 [6]} h ⁻¹	mg h-1
2	61.16	59.70	60.43	0.133	2.47	3.70	66.33
4	78.43	77.52	77.98	0.172	1.61	2.41	43.11
6	86.21	84.75	85.48	0.190	1.18	1.77	31.69
8	87.72	90.09	88.90	0.197	0.9156	1.37	24.60

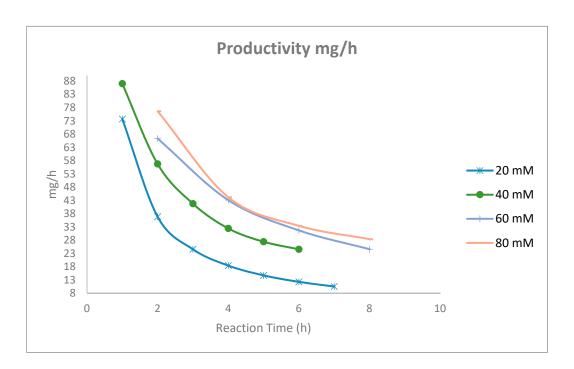
Table S6: Results of the batch photochemical transformation of allyl pyridinium salt, Conc. 60 mM, using a QT6

 $[4] Product mass (g) = \frac{[Avg.Conversion (\%)*MM Aziridine (138.17 g/mol)*n mol Aziridine (0.00161 mol)]}{100}$

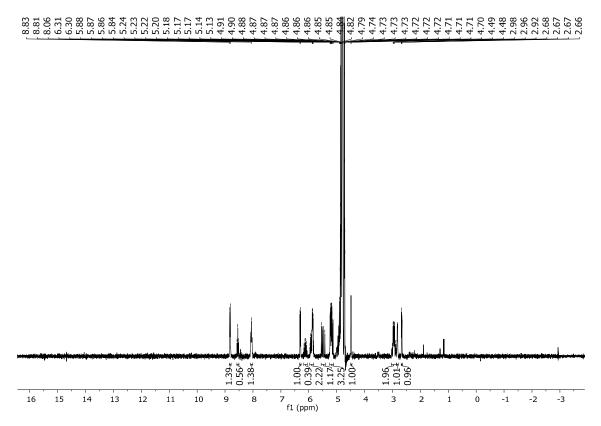



Figure S13: ¹H NMR spectra of the batch photochemical transformation of allyl pyridinium salt, Conc. **60 mM**, using a QT6, with **8 hours** of irradiation time.

Time (h)	Conv.(%) ^[1]	$C_{0} = (0/)^{[2]}$	Avg.	Product	Productivity	Productivity	Productivity
		Conv.(%) ^[2]	Conv. (%) ^[3]	Mass (g) ^[4]	g ^[4] L ^{-1 [5]} h ⁻¹	$g^{[4]} m^{-2} {}^{[6]} h^{-1}$	mg h-1
2	52.77	59.70	60.43	0.133	2.47	3.70	76.64
4	60.98	77.52	77.98	0.172	1.61	2.41	44.22
6	68.73	67.80	68.26	0.200	1.24	1.87	33.41
8	78.13	76.34	77.23	0.227	1.06	1.58	28.37


Table S7: Results of the batch photochemical transformation of allyl pyridinium salt, Conc. 80 mM, using a QT6. (The results in green are also presented in Table 1 of the manuscript)

 $[4] Product mass (g) = \frac{[Avg.Conversion (\%)*MM Aziridine (138.17 g/mol)*n mol Aziridine (0.00215 mol)]}{100}$



B)

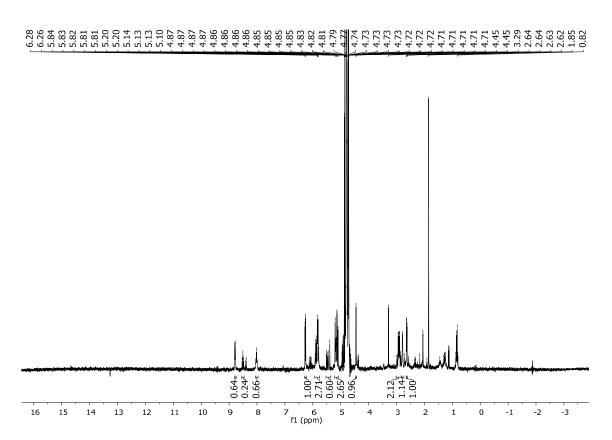


Figure S15: Comparison of the photoreaction of the allyl pyridinium salt, at Conc. 20, 40, 60, 80 mM using a QT6 [95 cm (l) × 0.6 cm (d)]: A) Conversion (%) and B) Productivity (mg/h).

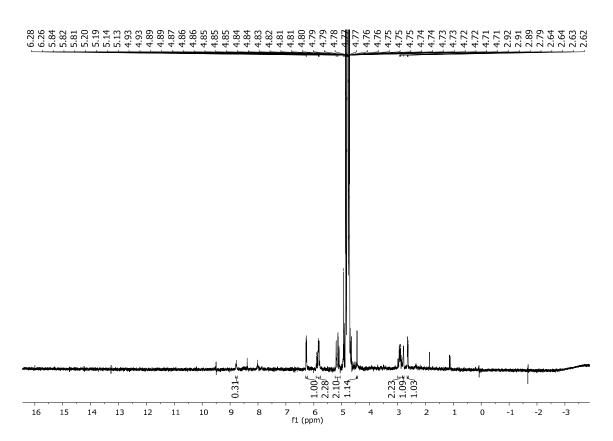
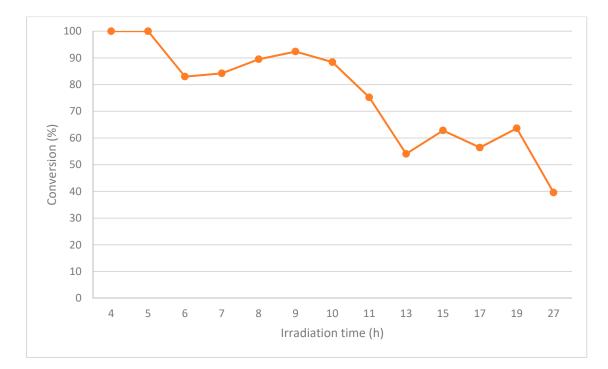
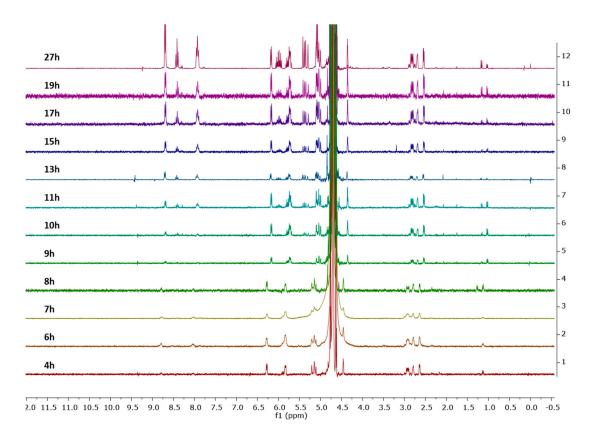

Optimization of photochemical transformation of 1a to 2a under continuousflow conditions

Figure S16: ¹H NMR spectra of photochemical transformation of 1a to 2a under continuous-flow conditions [Flow rate: 0.35 mL/min; rpm: 8.75; Residence time: 1.3 h; Conversion: 59%] on the PTQ6 (Table 2, Entry 1).

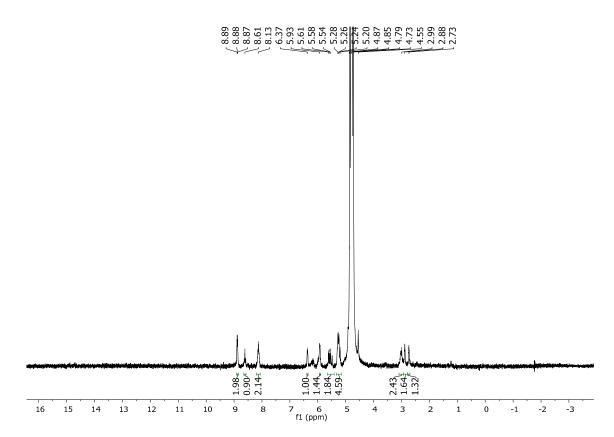
Figure S17: ¹H NMR spectra of photochemical transformation of 1a to 2a under continuous-flow conditions [Flow rate: 0.21 mL/min; rpm: 5; Residence time: 2.3 h; Conversion: 75%] on the PTQ6 (Table 2, Entry 2).


Figure S18: ¹H NMR spectra of photochemical transformation of 1a to 2a under continuous-flow conditions [Flow rate: 0.14 mL/min; rpm: 3.5; Residence time: 3.3 h; Conversion: 93%] on the PTQ6 (Table 2, Entry 3).

Photochemi	ical	trans	formati	on of	f 1a to	2 a ⁻	under	continu	ous-fl	ow conditions.	


Table S8: Photochemical transformation of 1a to 2a under continuous-flow condition	s^1 .
--	---------

Entry	Irradiation	Fraction	Conv.	Cycle	Volume out of the
	time (h)		(%) ²		reactor (mL)
1	0 - 4	0	49	0	350
2	4	F1	100	-	-
3	5	F2	100 ³	-	-
4	6	F3	83	-	-
5	7	F4	84	-	-
6	8	F5	89	1	360
7	9	F6	92	-	-
8	10	F7	88	-	-
9	11	F8	75	-	-
10	13	F9	54	2	450
11	15	F10	63	-	-
12	17	F11	56	-	-
13	19	F12	64	3	550
14	27	F13	40	4	710


¹ Flow rate of 0.12 mL/min (3 rpm), residence time 4 h. ² Determined by ¹H NMR. ³Data not showed

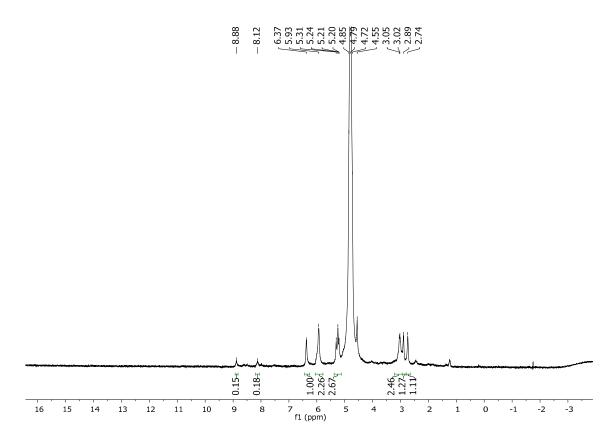
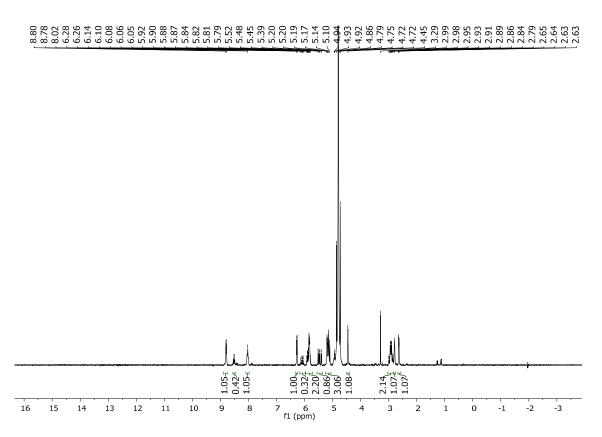

Figure S19: Conversion (%) for the continuous-photoflow of **1a** at 20 mM with 4 h of residence time using the PQT6 reactor.

Figure S20: Overview of combined ¹H NMR spectra of photochemical transformation of 1a to 2a under continuous-flow conditions [Flow rate: 0.12 mL/min; rpm: 3; Residence time: 4h] on the PTQ6 (Table S8, entries 2-14).


Figure S21: ¹H NMR spectra of photochemical transformation of 1a to 2a under continuousflow conditions [Flow rate: 0.12 mL/min; rpm: 3; Residence time: 4h; Conversion: 49%] on the PTQ6 (Table 3 of the manuscript, Entry 1).

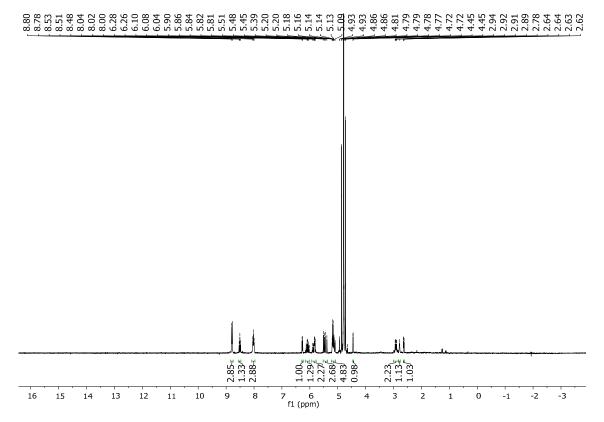

Figure S22: ¹H NMR spectra of photochemical transformation of 1a to 2a under continuous-flow conditions [Flow rate: 0.12 mL/min; rpm: 3; Residence time: 4h; Conversion: 92%] on the PTQ6 (Table 3 of the manuscript, Entry 2)

Figure S23: ¹H NMR spectra of photochemical transformation of 1a to 2a under continuous-flow conditions [Flow rate: 0.12 mL/min; rpm: 3; Residence time: 4h; Conversion: 83%] on the PTQ6 (Table 3 of the manuscript, Entry 2)

Figure S24: ¹H NMR spectra of photochemical transformation of 1a to 2a under continuous-flow conditions [Flow rate: 0.12 mL/min; rpm: 3; Residence time: 4h; Conversion: 66%] on the PTQ6 (Table 3 of the manuscript, Entry 4)

Figure S25: ¹H NMR spectra of photochemical transformation of 1a to 2a under continuous-flow conditions [Flow rate: 0.12 mL/min; rpm: 3; Residence time: 4h; Conversion: 41%] on the PTQ6 (Table 3 of the manuscript, Entry 5)

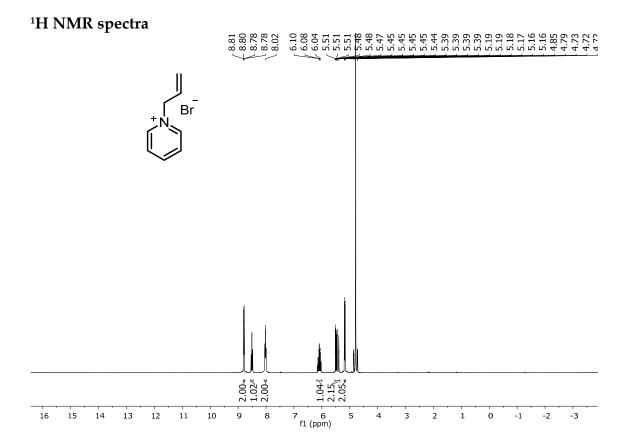


Figure S26: ¹H NMR spectra of 1-allylpyridinium bromide, in accordance with literature [7].

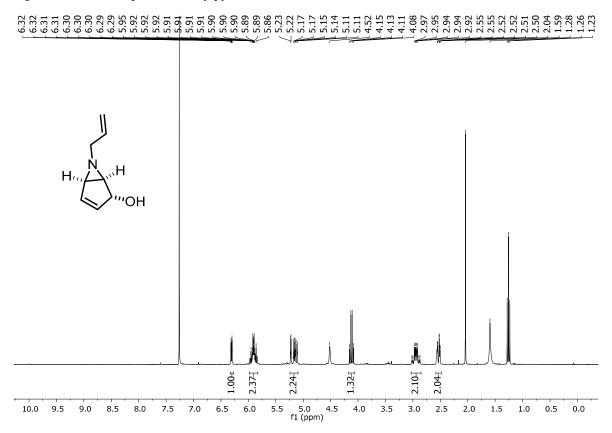


Figure S27: ¹H NMR spectra of 6-allyl-6-azabicyclo[3.1.0]hex-3-en-2-ol, in accordance with literature [7].