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Abstract: Light field microscopy is a recent development that makes it possible to obtain images of
volumes with a single camera exposure, enabling studies of fast processes such as neural activity in
zebrafish brains at high temporal resolution, at the expense of spatial resolution. Light sheet microscopy
is also a recent method that reduces illumination intensity while increasing the signal-to-noise ratio
with respect to confocal microscopes. While faster and gentler to samples than confocals for a similar
resolution, light sheet microscopy is still slower than light field microscopy since it must collect volume
slices sequentially. Nonetheless, the combination of the two methods, i.e., light field microscopes that
have light sheet illumination, can help to improve the signal-to-noise ratio of light field microscopes
and potentially improve their resolution. Building these microscopes requires much expertise, and the
resources for doing so are limited. Here, we present a protocol to build a light field microscope with
light sheet illumination. This protocol is also useful to build a light sheet microscope.

Keywords: light field microscopy; light sheet fluorescence microscopy; LSFM; 3D imaging; fast
imaging; open science

1. Introduction

Recent advances in fluorescent indicators such as calcium markers and transgenic model organisms
have allowed the study of rapid dynamic biological processes in vivo like neural signaling, cardiovascular
activity, and bacterial populations. Fast image acquisition methods have emerged in recent years to record
these processes. Some of the fast methods use parts with little to no inertia in order to obtain slices at high
speeds [1–6], while other methods such as extended depth of field [7,8] and integral imaging [9] capture
the whole volume using a single camera exposure. Among these methods, Light Field Microscopy [10]
allows for the fast acquisition of volumetric information of the sample from single camera exposures, at
the expense of reduced spatial resolution. Nonetheless, light field microscopy has enabled functional
imaging of neuronal activity at single-neuron resolution in the entire organism or portions of the larval
zebrafish brain [11–13], adult Drosophila melanogaster [14], and mammalian brains [15].

This up-and-coming technique requires custom-made optical setups, which are intricate and
non-trivial to design and align. Here we show a protocol to build and align such a microscope and
include some basic design guidelines.

2. Experimental Design

The major difference between a conventional microscope and a light field microscope is the
inclusion of microlenses, which must be matched to the objective lens in f-number [16], making
objective interchanges cumbersome for a single experiment. In this setup we have included a second
detection arm to help with sample navigation, which is one of the main reasons why objectives are
changed during an experiment. This arm has a shorter tube lens that results in a lower magnification
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and a larger field of view that facilitates finding the area of interest in a sample, or the sample itself.
We also use this portion of the detection to align the system.

In the context of light field this is particularly important since it is hard to interpret light field data
by eye, as it requires additional software or hardware and is not usually done in real time, although
methods have been demonstrated [17].

In order to minimize light losses and maintain signal-to-noise ratios, the light sheet detection
arm uses the long-wavelength tail of GFP´s emission spectrum for detection. A dichroic (Semrock,
Rochester, NY, USA, FF560-FDi02) splits the light field from the light sheet detection arms around
560 nm. A bandpass (Chroma, Bellows Falls, VT, USA, ET525/50 m) filters the GFP signal for the light
field, and a second bandpass between (Chroma, Bellows Falls, VT, USA, ET575/50 m) filters the light
for the light sheet detection. Alternatively, a 90–10 beam splitter (Thorlabs, Newton, NJ, USA, BS076)
and a single GFP fluorescence filter may be used.

Several aspects should be considered in order to design the detection arm of a light field system.
First, the f-numbers of the objective and tube lens combination must be matched. Mismatch will result
in overlapping of the microlenses’ projections on the camera chip or sub-optimal use of the number of
pixels. If the f-number of the detection system is smaller than that of the microlenses there will be light
rays that will cross over from one microlens’ detection pixels to another’s, significantly compromising
the reconstruction. Conversely, if the microlenses have a much smaller f-number than the detection
system, there will be an increased number of pixels to which no light arrives. This will compromise the
axial resolution of the system as less pixels will be available for sampling the impinging light rays.
The f-numbers of microscope objectives are relatively standard, so matching is done by selecting from
off-the-shelf microlens arrays (which come in a variety of f-numbers), and, if necessary, by adjusting
the f-number of the objective-tube lens system. This is done by using a tube lens of a different focal
length than the objective’s standard. Although this will influence image quality, changes in the order
of 50% are manageable. Using a tube lens of a different focal length will result in a modified effective
magnification, affecting the final resolution of the system. Second, we consider the desired resolution.
Lateral resolution of the resulting reconstructions will be given by the number of microlenses in the
array. Axial resolution depends on the number of resolvable spots on the camera chip behind each
lenslet, as described by Levoy et al. [10]. Using a camera with a high pixel density is recommended to
adequately sample the incoming rays.

Recently, more complex methods such as compressive sensing [18], multiplexing [19], and
speckle-based structured illumination [20] have further improved the axial resolution in light field
microscopy imaging.

Then one should consider the design of the illumination. The height of light sheets should be
comparable to the field of view (FoV) of the detection, which can be calculated as

FoV =
Camera chip size

M
(1)

where M is the magnification of the detection. Thus, the height of the light sheet (its extent along the
y-axis, may be computed in terms of the original beam width and the lenses’ focal lengths as

heightlight sheet = wout
fbeam expander .long

fbeam expandershort

fscan lens

fcylindrical lens

fill. obj.

ftube lens
(2)

where wout is the beam radius at the output of the laser (typically ~500 µm). Note that the width of the
beam at the galvanometric mirror

2wgalv. = 2wout
fbeam expander .long

fbeam expandershort

(3)

may not exceed the size of the mirror, otherwise the beam will be clipped. The width of the light sheet
at its waist depends on the effective numerical aperture of the illumination:
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NAe f f . = NA
2wout

fb.e.long
fb.e.short

ftube lens
fscan lens

Pupil widthill. obj.
(4)

where Pupil widthill. obj. is the size of the back pupil of the illumination objective. If the fraction right to
NA is greater than 1, some clipping of the beam will occur at the pupil, which is manageable. The
width of the light sheet at its waist will be given by, and also its Rayleigh length (the distance at which
its width will have doubled) by

2w0 =
λ

2NAe f f .
(5)

xR =
πw2

o
λ

(6)

where λ is the laser’s wavelength. Equation (6) may be used to compute the extent of the light sheet
along the optical axis of the detection. As the light sheet widens, contrast decreases and optical
sectioning becomes less effective. The Rayleigh length of the light sheet should be matched with the
size of the sample and the FoV of the detection.

In our proposed setup, shown in Figure 1, we have a beam which is 4 mm at the galvanometric
mirror and slightly overfills the 12 mm wide back pupil of the illumination objective along the z-axis
with an extension of 13.2 mm to produce light sheets which are 350 µm high and, at best, 1 µm at their
waist. The FoV of the LF detection at Me f f . = 50× is 260 µm × 260 µm and 205 µm × 164 µm for the
orthographic detection. Olarte et al. provide more comprehensive details on the design of a light sheet
microscope [21].
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2.1. Materials

• Silver protected mirrors (Thorlabs, USA, PF10-03-P01)
• Kinematic mounts (Thorlabs, USA, KM100)
• Aperture irises (Thorlabs, USA, ID20)
• f = 7.5 mm achromat (Thorlabs, USA, AC050-008-A-ML)
• f = 40 mm achromat (Edmund Optics, Barrington, NJ, USA, 49–354)
• 1” lens mount (Thorlabs, USA, LMR1/M)
• 0.5” les mount (Thorlabs, USA, SMR05/M)
• f = 65 mm f-θ lens (Sill Optics, Wendelstein, Germany, S4LFT0061/065)
• f = 250 mm achromat (Edmund Optics, USA, 49–366)
• f = 75 mm mounted achromatic cylindrical lens (Thorlabs, USA, LJ1703RM)
• N PLAN 10x NA 0.25 dry objective (Leica Microsystems, Wetzlar, Germany)
• f = 100 mm achromat (Edmund Optics, USA, 49–360)
• Cage plate (Thorlabs, USA, CP02/M)
• SM1 coupler (Thorlabs, USA, SM1T2)
• SM1 to C-mount adapter (Thorlabs, USA, SM1A9)
• 4” cage rods (Thorlabs, USA, ER4-P4)
• Dichroic beam splitter (Semrock, USA, FF560-FDi02)
• Cage cube (Thorlabs, USA, CM1-DCH/M)
• Fluorescence band-pass filter for GFP (Chroma, USA, ET525/50 m)
• Fluorescence band-pass filter for GFP (Chroma, USA, ET575/50 m)
• LUMFLN 60x NA 1.1 water immersion objective (Olympus, Tokyo, Japan, LUMFLN 60XW)
• f = 150 mm achromat (Edmund Optics, USA, 49–362)
• 1:1 Relay pair (Thorlabs, USA, MAP10100100-A)
• Lens tube for 1” optics (Thorlabs, USA, SM30L05)
• Microlense array (RPC, USA, MLA-S100-f21)
• 6-axis kinematic mount (Thorlabs, USA, K6XS)

2.2. Equipment

• 488 nm CW diode laser (Oxxius, Lannion, France, LBX-488-50-CSB-PP)
• Galvanometric mirrors (Edmund Optics, USA, 6215H)
• CCD monochrome camera (Point Grey, BC, Canada, Black Fly 13H2M)
• Micromanipulator (Sutter Instruments, Novato, CA, USA, MPC-200)
• sCMOS camera (Hamamatsu, Japan, ORCA flash 4.0 V2)
• xyz kinematic mount (Newport, RI, USA, 9063-XYZ-M)

3. Procedure

3.1. Construction of Light Sheet Illumination

Time for completion: 12 h (may be interrupted at any point). This section deals with the
construction and alignment of a single-wavelength scanned-light sheet illumination. The light sheet
will be a Gaussian beam produced by a cylindrical lens scanned by a galvanometric mirror.

1. Trace the beam path: Trace the beam path from the laser (Oxxius, LBX-488-50-CSB-PP) to the
place where the sample will go by means of mirrors (Thorlabs, PF10-03-P01) in kinematic mounts
(Thorlabs, KM100), as in Figure 2. Place the galvanometric mirror (Edmund Optics, 6215H) in the
path. Mark the beam path at its end (ideally downstream from the sample’s position) with a pair
of irises (Thorlabs, ID20). Do not change the position of the irises afterwards.
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Figure 2. Tracing the beam path with a pair of mirrors, the galvanometric mirror. Record the path with
a pair of irises.

2. Expand the beam: Expand the laser beam as shown in Figure 3. Mount a pair of lenses, one of
short negative focal length (Thorlabs, f = 7.5 mm, AC050-008-A-ML) and a second lens of positive
long focal length (Edmund Optics, f = 40 mm, 49–354) in lens mounts (Thorlabs, SMR05/M and
LMR1/M, respectively). First, insert the short lens in the beam path. Finely adjust the position
and orientation of this lens to make sure that the center of the beam still passes through the
center of the irises. Insert the lens of larger focal length approximately 47.5 mm (the sum of the
focal lengths) downstream from the first lens. Finely adjust its position and orientation to make
sure that the center of the beam still passes through the center of the irises. Alternatively, cage
plates (Thorlabs, CP02/M) and cage rods (Thorlabs, ER3-P4) may be used to ensure that the lenses
are aligned along the optical axis. Adjust its position along the optical axis to ensure that an
expanded collimated beam is achieved. This may be verified by measuring the width of the beam
at two points downstream and ensuring that it remains constant by focusing the beam at infinity
(i.e., several meters away), or with the aid of a shearing interferometer (Thorlabs, SI050).

3.
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CRITICAL STEP: Insert the scan lens: Place the scan lens (We use an f-θ lens as scan lens.
A regular achromat may be used as well). (Sill Optics, S4LFT0061/065) a focal length downstream
from the galvanometric mirror, as in Figure 4. Finely adjust its position to ensure that rotations of
the mirror produce translations of the beam from the main optical axis while remaining parallel
to it. Additionally, check that translations correspond to rotations following the equation

z = fscan lens tan
(
θmirror

2

)
(7)

4. Optional Step: Produce a calibration function for the galvanometric mirror: The controlling
software of some galvanometric mirrors often indicate the voltage applied to the device, but
not the induced angle of rotation. Manufacturers should include the relationship θ(V) in
their documentation. Collect data for a beam displacement vs. voltage calibration function,
namely z(V).
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Figure 4. The scan lens should be one focal distance away from the galvanometric mirror. If placed
correctly, rotations of the mirror will produce displacements but not rotations of the beam.

5. Insert the tube lens: Place the tube lens (Edmund Optics, f = 250 mm, 49–366) and adjust its
position until a collimated beam is obtained, as in Figure 5.
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Figure 5. Placing the tube lens. The tube lens should produce a beam expander with the scan lens. If
placed correctly, a well collimated beam will be achieved and, at the its focal plane, which will coincide
with the illumination objective’s back focal plane, rotations of the mirror will produce rotations (∆θ),
but not translations (∆z) of the beam.

6. Insert the cylindrical lens: Place the cylindrical lens (Thorlabs, f = 75mm, LJ1703RM) and adjust
its position along the optical axis until a sharp focused line appears precisely on the galvanometric
mirror, as in Figure 6. Galvanometric mirrors are very small; check that the beam is not clipped
by the mirror. The orientation of the lens matters: place its flat face pointing toward its focus and
ensure that a line along the z-axis will be produced at the back pupil of the illumination objective.
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Figure 6. Place the cylindrical lens before the galvanometric mirror. Ensure that its focal plane lies on
the mirror’s surface.

7. Check the alignment: The focused line formed by the cylindrical lens should be relayed by the
scan and tube lenses onto the back focal plane of the microscope objective. Check that while
rotating the galvanometric mirror, the light sheet rotates but is not displaced at this plane.

8. Insert the illumination objective: Place the illumination microscope objective (Leica N PLAN
10x NA 0.25). Adjust its position along the optical axis until a beam which is collimated along the
y-axis but highly divergent along the z-axis is achieved, as in Figure 7.
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Figure 7. Placing the illumination objective. If placed correctly, a collimated beam should be achieved
along the y-axis, while strongly converging into a light sheet along the z-axis.

3.2. Construction of the Orthographic Detection

Time for completion: 3 h

1. Set up an orthographic detection system: Mount an achromatic tube lens (Edmund Optics,
f = 100 mm, 49–360) in a cage plate (Thorlabs, CP02/M). Attach an inspection camera (Point Grey,
Black Fly 13H2M) to a cage plate by means of a SM1 coupler (Thorlabs, SM1T2) and a SM1
to C-mount adapter (Thorlabs, SM1A9). Assemble the cage system with the use of four rods
(Thorlabs, ER4). Adjust the distance from the tube lens to the camera sensor by obtaining a
point-like image of a collimated light beam, or alternatively, by imaging a distant object, as in
Figure 8.

2. Insert the beamsplitter: Mount a dichoric beamsplitter (Semrock, FF560-FDi02) in a cage cube
(Thorlabs, CM1-DCH/M). Attach the cube to the cage system built on step 1 so that the transmitted
light from the beamsplitter reaches the inspection camera. Mind the orientation of the beamsplitter
(refer to the manufacturer’s documentation for this).

3. Insert two fluorescence filters: Mount a fluorescence band-pass filter (Chroma, ET525/50 m) in
a cage plate. Attach the cage plate to the cage cube from step 2 by means of cage rods. Light
reflected from the dichroic filter should then go through the bandpass filter. Mind the orientation
of the bandpass filter. Mount a second fluorescence band-pass filter (Chroma, USA, ET575/50 m),
this time for the inspection camera. See Figure 9.

4. Insert a detection objective: Mount an infinity-corrected microscope objective 140–170 mm in
front of the achromatic tube lens to a cage plate, as in Figure 10. Use a dry long-working distance
objective for microscope construction, even if the apparatus is designed to work with water
immersion objectives. We use a Leica 10×NA 0.25 air objective with external M25 threads that
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we couple via a thread adapter (Thorlabs, SM1A12) to a cage plate. Attach the cage plate to the
two by means of cage rods.
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5. Use homogeneous high-NA illumination: Place a Köhler Illumination module in front of the
objective. Maximize the NA of the illumination to reduce the depth of field of the system and
thus ensure better positioning of the light field camera in the upcoming steps.
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6. Focus a high contrast sample: Place a flat, high-contrast sample (ideally of known size) and
obtain a sharp image of it on the inspection camera by adjusting its distance to the microscope
objective, as in Figure 11. A micromanipulator (Sutter Instruments, MPC-200) is useful for this
task. Keep the sample in this fixed position.
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CRITICAL STEP: Acquire a reference image: Acquire an image of the sample at this
moment. Measure it using image analysis software, such as ImageJ [22]. This image is important
to guarantee that the right magnification is achieved when a relay pair of lenses is inserted in the
upcoming steps. Keep the sample at its position until indicated. Do not pause the protocol until
the end of step 4. The position of the sample may be lost, and magnification of the system may
not be guaranteed.

4. Insert a relay pair: Move the main camera away from the main tube lens in order to give space to
a relay lens pair. Insert the relay pair (Thorlabs, MAP10100100-A) in the light field detection; see
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Figure 14. Ideally, it should be mounted so that it may be moved jointly with the main camera, as
by attaching it to a lens tube (Thorlabs, SM30L05). The relay pair is needed to project the back
focal plane of the microlenses onto the LF camera’s chip, as microlenses have a very short focal
length. Adjust the positions of the camera and the relay pair until a sharp image with the desired
magnification (that introduced by the relay pair) is achieved. Calculate the magnification by
measuring the size of the sample’s image and comparing it with the one obtained in step 3.
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Figure 15. Insert the microlens array at the image plane of the tube lens. This is ensured when an 
image of the microlenses appears superimposed on the image of the sample. Then, using paraxial 
illumination, jointly move the relay pair and the camera until a grid of dots appears on the sensor. 
This ensures that the back focal plane of the lenslet array is imaged. 

6. OPTIONAL STEP: Remove the sample from the field of view. 
7.  CRITICAL STEP: Image the back focal plane of the microlenses: Provide paraxial 

illumination, as in Figure 15. This may be done by closing both the field and aperture diaphragm 

Figure 14. Insert a relay pair. Move the camera backwards and place the relay pair. An image of the
sample should appear in focus with the correct magnification (from the relay).

5. Insert the microlens array: Mount a microlens array (RPC, MLA-S100-f21) in a 6-axis kinematic
mount (Thorlabs, K6XS). Insert the microlens array at the image plane of the LF tube lens, as in
Figure 15. The microlenses will sit on the image plane of the main tube lens when a sharp image
of their edges appears on top of the sample. Adjust the pitch and yaw angles of the microlens
array by means of the 6-axis kinematic mount until the central region of the microlens array is
uniformly in focus. Rotate the microlens array to have it as aligned as possible with the pixel grid
of the camera. Move the camera backwards and place the relay pair. An image of the sample
should appear in focus with the correct magnification (from the relay).
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Figure 15. Insert the microlens array at the image plane of the tube lens. This is ensured when an
image of the microlenses appears superimposed on the image of the sample. Then, using paraxial
illumination, jointly move the relay pair and the camera until a grid of dots appears on the sensor. This
ensures that the back focal plane of the lenslet array is imaged.

6. OPTIONAL STEP: Remove the sample from the field of view.



Methods Protoc. 2019, 2, 56 13 of 15

7.
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spots is visible, such as in Figure 16. If possible, use light of a long wavelength to maximize the
effects of diffraction on the lenslet array [23].

Methods Protoc. 2019, 2, x FOR PEER REVIEW 14 of 16 

of the Köhler illumination system or by sending an expanded well-collimated beam through the 
detection. 

8. Move the relay pair and the main camera away from the microlens array by its back focal length. 
Image the back focal plane of the microlenses. This will be achieved when a grid of the smallest 
spots is visible, such as in Figure 16. If possible, use light of a long wavelength to maximize the 
effects of diffraction on the lenslet array [23]. 

 
Figure 16. Back focal plane of the microlenses. When imaging the back focal plane, a grid of dots will 
appear in the camera chip. Each dot should be located at the center of each microlens. Use the 6-axis 
kinematic mount to ensure that the yaw and pitch angles of the microlens array are correct (if they 
are not, some microlenses will be in focus, while others are not). Ensure that the microlens grid is as 
aligned with the pixel grid as possible. (Magnified view). 

9. Place the high NA detection objective: Put the high magnification, high NA objective 
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To produce 3D imagery from light fields, such as those illustrated in Figure 18, there is open 
software for reconstructions [10,11,17,23,24]. In our reconstructions, we show that by using light 
sheets to selectively illuminate the sample’s volume, we may separate features in complementary 
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Figure 17. Registered light field of 6μm fluorescent beads in agar. The light field should appear as a 
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Figure 16. Back focal plane of the microlenses. When imaging the back focal plane, a grid of dots will
appear in the camera chip. Each dot should be located at the center of each microlens. Use the 6-axis
kinematic mount to ensure that the yaw and pitch angles of the microlens array are correct (if they
are not, some microlenses will be in focus, while others are not). Ensure that the microlens grid is as
aligned with the pixel grid as possible. (Magnified view).

9. Place the high NA detection objective: Put the high magnification, high NA objective (Olympus,
LUMFLN 60XW) in the detection path. We use a custom 3D printed chamber to place the sample.
Record a light field, such as the one in Figure 17.
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4. Expected Results

To produce 3D imagery from light fields, such as those illustrated in Figure 18, there is open
software for reconstructions [10,11,17,23,24]. In our reconstructions, we show that by using light sheets
to selectively illuminate the sample’s volume, we may separate features in complementary acquisitions,
which may in turn ease localization and improve resolution.
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