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Abstract: Segmentation is one of the most important steps in microscopy image analysis.
Unfortunately, most of the methods use fluorescence images for this task, which is not suitable
for analysis that requires a knowledge of area occupied by cells and an experimental design that does
not allow necessary labeling. In this protocol, we present a simple method, based on edge detection
and morphological operations, that separates total area occupied by cells from the background using
only brightfield channel image. The resulting segmented picture can be further used as a mask for
fluorescence quantification and other analyses. The whole procedure is carried out in open source
software Fiji.
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1. Introduction

With the advances in fluorescence microscopy techniques and, especially, in the field of
quantitative fluorescence detection, microscopes are becoming more and more tools of not just
qualitative evaluations, but also quantitative measurements. This, however, also brings up the necessity
of utilizing various methods of image analysis to obtain reliable results and the image segmentation,
i.e., separation of areas in the image that are important for analysis from background, is one of the most
crucial steps [1]. Probably the most common way of image segmentation is thresholding, that separates
areas of interest from background using pixel values in fluorescence images, their spatial distribution,
and other metrics [2–7]. This method, however, cannot be used in cases when the knowledge of the
total area occupied by cells is necessary (for example for calculation of mean fluorescence intensity in
cells, integrated fluorescence density etc.) and the labeling is localized in specific organelles and not
in the whole cell volume. Another approach is the manual segmentation, that can be considered as a
reference when done properly [8], but which is impossible to be used in high-throughput analysis.

In this protocol, we present a simple method that segments microscopy images using only
brightfield channel. With modern fluorescence or confocal microscopes, it is not a problem to obtain
a brightfield image simultaneously, or consequently, at a very fast pace together with fluorescence
image, so the spatial localization of cells in both channels is the same. The areas that are recognized
as cells in brightfield images can, thus, be easily applied as selections in fluorescence channels as
well. There are methods of brightfield segmentation but, usually, they are not so simple and ready to
use [9–12]. The proposed procedure is carried out using Fiji [13] and requires the installation of Canny
edge detection plugin [14]; the rest of the functions are built-in. It does not require any additional
equipment, and only a basic level of image analysis knowledge.

2. Experimental Design

The process is based on edge detection, which highlights areas of varying brightness across
the image. This leads to the creation of a binary image with highly structuralized areas within
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areas occupied by cells. The binary image is further processed using maximum filter and basic
morphological operations to fill the insides of cells, smooth the edges, and remove debris in the
background. The resulting binary image clearly separates areas with strong edge contrast (i.e., cells)
from background.

Knowledge of pixel resolution (in nm/pixel) in the analyzed image is required. If the segmentation
is used for fluorescence analysis, all channels must have the same spatial resolution and, ideally, be
acquired simultaneously. It is recommended not to include scale bars in analyzed images as it can be
falsely positively detected. Otherwise, there are no other limitations; images in all channels should be
acquired following basic rules considering the fluorescence crosstalk, saturation of the detector, spatial
sampling frequency, etc. [15,16]

Software

Fiji, based on ImageJ 1.51h (Wayne Rasband, National Institutes of Health, Bethesda, MD, USA)

3. Procedure

The presented procedure is carried out in Fiji software, purely because of its simple use and
popularity. It can, however, be applied in any other image processing software if it supports the
necessary functions (especially edge detection and morphological operations). Each step in the
procedure includes a short explanation, ImageJ macro command, and illustrative pictures of processing
brightfield images of HCT-116 cells The presented parameters are best suited for images acquired with
high magnification objectives (40× and higher). Changes necessary for processing images acquired
with lower magnification objectives are discussed in Section 4.

1. Open brightfield image and equalize its histogram, set the portion of saturated pixels to 0%
(Figure 1).

run(“Enhance Contrast...”, “saturated=0 equalize”);

Figure 1. Brightfield channel of HCT-116 cell line. (a) Unedited picture; (b) picture with
equalized histogram.

2. Perform Canny edge detection with Gaussian kernel radius pixel resolution set according to
Table 1, Low threshold set to 0.1 and High threshold set to 8.0 (Figure 2).

CRITICAL STEP Especially high threshold setting has a significant impact on the final
segmentation, and should be first to consider when adjusting the procedure for optimal result.
run(“Canny Edge Detector”, “gaussian=1.75 low=0.1 high=8”);
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Table 1. Recommended values for pixel resolution dependent filters.

Pixel Resolution (nm/pixel) Gaussian Kernel Radius Maximum Filter Radius

90–180 1.75 5
180–270 1.5 2.5
270–360 1.25 1.67

360+ 1 1.25

Figure 2. Edge detection using Canny algorithm on Figure 1b using Gaussian kernel radius of 1.75,
low threshold 0.1, and varying values for High threshold. (a) High threshold set to 20; (b) High
threshold set to 2.0; (c) High threshold set to 8.0.

3. Run Maximum filter with radius set to value according to Table 1. This filter creates a running
window that replaces the central pixel with the maximum value of the neighboring pixels. In the
edged image, this filter fills most of the intracellular space (Figure 3).

run(“Maximum...”, “radius=5”);

Figure 3. Effect of Maximum filter. (a) Edged imaged before filtration. (b) Image after filtration using
radius = 5 pixels.

4. Perform morphological operation Closing with number of iterations set to 10 and count set to 3.
This fills the remaining small holes in the image.

run(“Options...”, “iterations=10 count=3 pad do=Close”);

5. Run morphological Opening with number of iterations set to 10 and count se to 3. This eliminates
small structures (debris, etc.) localized outside the cells.

run(“Options...”, “iterations = 20 count=3 do=Open”);
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6. OPTIONAL STEP Run morphological Erode with iterations set to 2 and count set to 3. This step
reduces the effect of morphological dilation introduced in step 3 by Maximum filter (Figure 4).

run(“Options...”, “iterations=2 count=3 pad do=Erode”);

Figure 4. Processing of filtered image (Figure 3b) using morphological operations. (a) Closing for
filling holes; (b) Opening for removing debris; (c) Erosion to shrink the volume of segmented area.

7. Overlay the outline of segmented areas with the original brightfield image and check the precision
of segmentation. If necessary, adjust the parameters of procedure, focus especially on High
threshold setting of Canny edge detection (Figure 5).

Figure 5. Original brightfield image outlined with segmented area.

4. Expected Results and Discussion

The procedure can be performed on various cell types and for images acquired with the same
optical setup, and it does not need any further adjustments in most cases. Figure 6 shows the results
of segmentation on six cell lines with various morphologies, acquired with a 63× water objective
(pixel resolution 110 nm/pixel) and using the same parameters in all cases. Since the procedure is
based on edge detection, it works best on cell types with clearly visible borders (typically HCT-116,
MCF7, HT-29). It is possible that cells with not-so-distinctive borders, such as fibroblasts, may need
adjustment of procedure parameters for better separation of intracellular space from background.
In such a case, a High threshold parameter of Canny edge detection should be first to be modified.
Since the rest of the procedure is based on morphological operations, changing the parameters of edge
detection may require further adjustments of other steps as well. For example, as is shown in Figure 2,
setting High threshold too high can, on the one hand, reduce the probability of detecting noise but,
on the other, detect a lesser amount of edges inside the cells that would need different parameters
of Closing.
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Figure 6. Results of brightfield segmentation using the same process parameters on various cell types.
Except for the added micron scale, the images were not adjusted in any way before segmentation.
(a) HaCaT; (b) MCF7; (c) 3T3 murine fibroblasts; (d) HEK-293; (e) MDA-MB 231; (f) normal human
dermal fibroblasts (NHDF). Scale bar 25 µm.

Analysis of images acquired with less powerful objectives (<20×) requires changes in procedure
parameters with respect to the different area (in numbers of pixels) occupied by a single cell. Figure 7
shows pictures of normal human dermal fibroblasts (NHDF) acquired with 5× objective (pixel
resolution >360 nm/pixel). Parameters were adjusted according to Table 1, and High threshold
setting in the Canny detection step was set to 9. In Figure 7a,b all the remaining parameters were kept
at default values from Section 3. As can be seen in the pictures, the process is a little too coarse to
precisely copy the shape of cells. This can be fine-tuned by adjusting parameters of morphological
operations to make the procedure more accurate. In Figure 7c,d are the same pictures processed with
number of iterations of Closing set to 2, and number of iterations of Opening set to 10.

Figure 7. Cont.
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Figure 7. Images of segmented NHDF acquired with 5× objective with varying confluency and digital
zoom. In (a,b) without changing parameters of morphological operations, in (c,d) with number of
iterations of Closing and Opening set to 2 and 10, respectively. Scale bar in (a,c) 100 µm, in (b,d) 300 µm.

The procedure requires images acquired with a properly set-up microscope, and with decent
contrast. Examples of poor-quality images and blank images processed with the parameters from
Section 3 are shown in Figure 8. Figure 8a,b were acquired with insufficient illumination (with (b)
being slightly out of focus) which leads, after histogram equalization, to strongly pronounced noise
that is incorrectly recognized as a cellular structure. Figure 8c,d show an empty field of view after
equalization and original image with highlighted areas that were positively detected as cells. Although
the original image seems to be a uniform background, equalization reveals impurities that possess a
certain level of contrast. As the procedure is simply based on an edge detection and morphological
operations, it is no surprise that these areas are highlighted. However, as can be seen in Figure 8e,f
images with less contrast inequalities in illumination are processed without any false positive detection.

Figure 8. Cont.
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Figure 8. (a,b) Results of processing insufficiently illuminated images. Images are shown after
histogram equalization. Scale bars 25 µm.(c–f) Blank fields of view with uneven illumination and
impurities. (d,f) Original images with highlighted areas that were positively detected; (c,e) Images
after histogram equalization. The process parameters were the same as described in Section 3 in all
cases. Scale bars 250 µm.

Precision of segmentation was validated against manual segmentation performed by two
biologists on the set of 10 images of various sizes and cell types. The parameter of interest was
the size of area positively marked as being occupied by cells. For automated segmentation, the process
parameters were adjusted according to Section 3, to match the properties of images. The results,
represented as a mean of differences between automated and manual segmentation (in % with the
result of manual segmentation considered to be 100%), are summarized in Table 2.

Table 2. Quantitative evaluation of precision of automated segmentation against manual segmentation.

Number of Analyzed Images Mean of Differences between Automated and
Manual Segmentation ± SD

Biologist 1 10 +7.9% ± 4.8%
Biologist 2 10 +8.5% ± 6.2%

The automated segmentation turned out to be more lenient than manual, resulting in 7.9% (±4.8%)
and 8.5% (±6.2%) positive difference. There are few reasons why the area detected by the process
is, in general, larger. The main reason is impurities, such as cellular debris, etc., that would not be
marked by a biologist as a cell, but can be detected if they contrast and are big enough. Another reason
is a presence of complicated cell protrusions that might be either omitted by manual segmentation,
or fused together by the automated process, with both ways resulting in a larger area detected by
the process.
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