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Abstract: Newborn screening (NBS) for inborn errors of metabolism is one of the most advanced
tools for secondary prevention in medicine, as it allows early diagnosis and prompt treatment
initiation. The expanded newborn screening was introduced in Italy between 2016 and 2017 (Law
167/2016; DM 13 October 2016; DPCM 12-1-2017). A total of 1,586,578 infants born in Italy were
screened between January 2017 and December 2020. For this survey, we collected data from 15 Italian
screening laboratories, focusing on the metabolic disorders identified by tandem mass spectrometry
(MS/MS) based analysis between January 2019 and December 2020. Aminoacidemias were the
most common inborn errors in Italy, and an equal percentage was observed in detecting organic
acidemias and mitochondrial fatty acids beta-oxidation defects. Second-tier tests are widely used in
most laboratories to reduce false positives. For example, second-tier tests for methylmalonic acid
and homocysteine considerably improved the screening of CblC without increasing unnecessary
recalls. Finally, the newborn screening allowed us to identify conditions that are mainly secondary to
a maternal deficiency. We describe the goals reached since the introduction of the screening in Italy
by exchanging knowledge and experiences among the laboratories.

Keywords: aminoacidemias; fatty acid oxidation disorders; inborn errors of metabolism; newborn
screening; organic acidemias; urea cycle defects; tandem mass spectrometry

1. Introduction

Newborn screening (NBS) for inherited metabolic diseases is one of the most advanced
tools in precision medicine, as it allows the early diagnosis of genetic diseases so that an
effective treatment can be started before the onset of irreversible organ damage.

The introduction of tandem mass spectrometry (MS/MS) in NBS offered the possibility
of screening for almost 50 conditions using a single dried blood spot (DBS) [1–3].

The first Italian law that organized a NBS national system dates to 1992 (law 104/1992,
https://www.gazzettaufficiale.it/eli/id/1992/02/17/092G0108/sg, accessed on 15 April
2022) when the newborn screening for the identification and early treatment of congenital
hypothyroidism, phenylketonuria and cystic fibrosis, until then adopted in some regions
and not others, was made mandatory for all newborns in Italy.

The development of mass spectrometry led to numerous pilot projects during the last
two decades. Reports on regional NBS programs including those based on MS/MS have
been published [4–13].

In order to harmonize the regional situations, a nationwide newborn screening pro-
gram for inborn errors of metabolism was institutionalized by law between 2016 and
2017 (Law 167/2016, https://www.gazzettaufficiale.it/eli/id/2016/08/31/16G00180/sg,
accessed on 15 April 2022; DM 13 October 2016, https://www.gazzettaufficiale.it/eli/id/
2016/11/15/16A08059/sg, accessed on 15 April 2022; DPCM 12-1-2017, https://www.
gazzettaufficiale.it/eli/id/2017/03/18/17A02015/sg, accessed on 15 April 2022). The DM
13 October 2016 states that the screening program is a system articulated into four main
functions (the screening laboratory, the laboratory for confirmatory diagnosis, the clinical

https://www.gazzettaufficiale.it/eli/id/1992/02/17/092G0108/sg
https://www.gazzettaufficiale.it/eli/id/2016/08/31/16G00180/sg
https://www.gazzettaufficiale.it/eli/id/2016/11/15/16A08059/sg
https://www.gazzettaufficiale.it/eli/id/2016/11/15/16A08059/sg
https://www.gazzettaufficiale.it/eli/id/2017/03/18/17A02015/sg
https://www.gazzettaufficiale.it/eli/id/2017/03/18/17A02015/sg
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centers, and the regional coordination/supervision) that defines the panel of screening
conditions, the timing for specimen collection, the screening methodology, the confirmatory
tests and the clinical follow up. A periodic review of the list of diseases being screened for
is set up by Ministry of Health, in collaboration with other government agencies and orga-
nizations (https://www.salute.gov.it/imgs/C_17_pagineAree_1920_0_file.pdf, accessed
on 15 April 2022).

The Italian Society for the Study of Inherited Metabolic Diseases and Newborn Screen-
ing (SIMMESN) has created a group of experts to collect data about screening activity since
1980 in order to produce an annual summary document (https://www.simmesn.it/it/
documenti/rapporti-tecnici-screening-neonatale.html, accessed on 15 April 2022).

A total of 1,586,578 infants born in Italy were screened between January 2017 and
December 2020. In this paper, we report on the results from this program between 2019
and 2020, highlighting the progress made since the introduction of the law. We focus on
metabolic disorders identified by MS-based analysis. For this survey, we collected data
from 15 Italian screening laboratories that cover 97.5% of Italian newborns. To the best of
our knowledge, this is the first nationwide survey on NBS in Italy.

2. Materials
2.1. Data Collection

A total of 1,586,578 infants born in Italy between January 2017 and December 2020
were screened by MS/MS. In 2019, a national web portal was created to facilitate the
collection of the NBS results from each screening laboratory and the preparation of the
annual national report on behalf of SIMMESN. Here we focus on the results obtained on
806.770 infants screened in Italy between January 2019 and December 2020.

2.2. NBS Regional Organization and Coverage

The Italian territory is divided into 20 regions, administratively autonomous territories
with defined powers. Each region has identified one reference screening laboratory (except
Veneto and Sicily, which have two laboratories) and has the responsibility to organize the
NBS system in its territory. Six regions (Basilicata, Friuli, Molise, Trentino Alto Adige,
Umbria and Valle D’Aosta) do not have their own screening center and have established
interregional agreements with a neighboring region (Basilicata with Puglia, Friuli and
Trentino Alto Adige with Veneto, Molise with Lazio, Umbria with Toscana and Valle
D’Aosta with Piemonte). Only one region (Calabria) did not perform expanded NBS in
2019 and 2020. However, an agreement has been reached between Campania and Calabria,
aimed at implementing expanded NBS for all newborns in Calabria starting in 2021.

In all, 16 laboratories perform NBS tests in Italy (Figure 1). A total of 18 laboratories
are involved in biochemical confirmatory testing and 27 in molecular confirmation testing.
There are 41 clinical centers responsible for managing and caring for patients.

NBS data for this survey was therefore collected from 15 out of 16 laboratories per-
forming expanded NBS by tandem mass.

The coverage of expanded newborn screening in Italy between 2019–2020 has reached
97.5% of the total neonatal population.

2.3. Sample Collection

The recommended time for blood sampling after birth is between 48 and 72 h after
birth.

In low-birth-weight infants (<1800 or <2500 gr), blood sample collection is repeated in
the first month of life (at approximately 14 days and 30 days) according to specific protocols.
In cases treated by parenteral nutrition, a second specimen is collected two to three days
after treatment withdrawal. In case of blood transfusion in the first 48 h of life, some
regions collect a first sample before the treatment even if it is before 48 h of life and a second
one 7 days after treatment discontinuation, other regions repeat the analysis after 15 and
30 days. There is a variability in the definition of gestational weeks associated with preterm

https://www.salute.gov.it/imgs/C_17_pagineAree_1920_0_file.pdf
https://www.simmesn.it/it/documenti/rapporti-tecnici-screening-neonatale.html
https://www.simmesn.it/it/documenti/rapporti-tecnici-screening-neonatale.html
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infants (<34–36 gestational weeks). In these cases, blood sample collection is repeated in
the first month of life (approximately at 14 days and 30 days) according to local protocols.
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Screening in Italy. The red dot marks the only regional laboratory not performing NBS tests by
MS/MS in the years 2019–2020. Regions without a dot have established interregional agreements
with neighboring region as described in paragraph 2.2 NBS Regional Organization and coverage.

The time between sampling and analysis depends on the time needed for sample
shipment to the screening laboratory. To avoid delays in results, laboratories use courier
services, which enable delivery of DBS samples 24–48 h after collection.

The newborn’s personal information, also reported on the Guthrie card, is entered
into the laboratory computer system either manually by the laboratory administrative staff,
or by the birth center personnel through a web connection interface. In order to avoid
manual typing and potential errors resulting from the process, in some centers the unique
identifier number of the newborn assigned by the region is used to load data already
present in regional databases. Such system makes available the report of the NBS results to
the nursing units and eventually to the diagnostic centers. The parents are only informed if
an action is required, such as a request for an additional sample.

All the laboratories provide informational materials for parents, available as written
brochures or via websites.

2.4. Panel of Screened Conditions

Table 1 shows the panel of diseases screened by MS/MS and enclosed in the DM
13 October 2016. They are divided into four main categories: aminoacidemias, organic
acidemias, urea cycle defects and fatty acid oxidation disorders. The panel also includes
secondary conditions that should be considered in a differential diagnosis since they share
biomarkers with some diseases of the main panel.
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Table 1. Disorders currently screened by MS/MS-based newborn screening in Italy.

Group Disorders OMIM Biomarkers Ratios 2nd Tier Test

A
m

in
oa

ci
de

m
ia

s

PKU 261600
Phe Phe/TyrHPA 261600

Biopterin regenera-
tion/biosynthesis

261630
261640

TYR I 276700 Suac (primary marker),
Tyr (secondary marker)

Suac with
chromatographic

separation
TYR II 276600 Tyr

MSUD 248600 Val, Xle Xle/Ala;
Xle/Phe Ile; Leu; alloIle

CBS 236200 Met HCY
MTHFR 236250 Met ↓ HCY

O
rg

an
ic

A
ci

de
m

ia
s

GAI 231670 C5DC
IVA 243500 C5 C5-isomers
BKT 203750 C5:1, C5OH

HMG 246450 C5OH, C6DC
PA 606054 C3

(primary marker),
C16:1OH (secondary marker)

C3/C2,
C3/C16,
C3/C0,
C4/C3

3-OH-propionic
acid; Methylcitric

acid;
Propionylglycine;

Methylmalonic
acid; HCY

MMA-mut 251000
CblA/B 251100/251110

CblC/D 277400/277410

C3
(primary marker),

C16:1OH, Met↓
(secondary markers)

C3/C2,
Met/Phe

2-MBG 610006 C5
MA 606761 C3DC

MCD 253270 C5OH

U
re

a
C

yc
le

D
ef

ec
ts

CIT Ia 215700 Cit
CIT II 605814 Cit
ASA 207900 ArgSucc
ARG 207800 Arg

Fa
tt

y
A

ci
d

O
xi

da
ti

on
D

is
or

de
rs

Cud 212140 C0↓, Ctot↓
CPT I 255120 C16↓, C18↓ C0/(C16+C18)
CACT 212138 C0↓, C16, C18, C18:1

CPTII 600650 C16, C18:1,
C2↓, C18, C18:2 (C16+C18:1)/C2

VLCAD 609575 C14:1, C14, C14:2 C14:1/C2
C14:1/C16

TFP 609015 C16OH, C18OH
LCHAD 609016 C16OH, C18OH
MCAD 201450 C6, C8, C10:1, C10 C6/C8

M/SCHAD 231530 C4OH
GA2/MADD 231680 C4–C18

Se
co

nd
ar

y
C

on
di

ti
on

s TYR III 276710 Tyr
GNMT 606664

MetMAT 250850
SAHH 613752

3-MGCA 250950
C5OH3-MCC 210200

2-M-3-HBD 300438 C5:1
C5OH

IBG 611283
C4

Ethylmalonic acid
IsobutyrylglycineSCAD 201470

Xle = sum of isomers Ile/Leu/AlloIle/Pro-OH (Isoleucine, Leucine, Alloisoleucine, Hydroxyproline);
HCY = Homocysteine; Suac = succinylacetone; ArgSucc = Argininosuccinate; ↓ = decreased.
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3. Methods
3.1. NBS Analysis

The most common method to perform NBS analysis was the less time-consuming un-
butylated sample preparation (13/15 laboratories) [14], while the 2 remaining laboratories
derivatized the extracted metabolites to butyl esters with HCl in N-butanol [9].

Two laboratories did not use certified kits, while the remaining ones used the commer-
cial kits provided from Perkin Elmer, (PE NeoBase Kit, 10 labs, Pe Neobase-2, 2 labs, Pe
NeoGram Kit, 1 lab). Although the majority of laboratories used available certified kits on
the market to ensure the accuracy of the test results, few were still using in-house methods
in which the validation and performance were done using internal control procedures.
Regardless, in all the laboratories, NBS results were consistent with appropriate accuracy
and precision.

The most commonly used mass spectrometer was the Waters XEVO TQD (8/15
laboratories) produced by Waters corporation, Milford, MA, USA, then the Perkin Elmer
QSight MD produced by Perkin Elmer Massachusetts, USA (4/15) and finally one API
3200, one API 4000 and one API 4500 LC-MS/MS system produced by AB Sciex (Toronto,
ON, Canada).

Each screening laboratory has its own cut-off values established on data from a healthy
population. The cut-off values are updated regularly. The cut-off values calculated on term
infants aged 48–72 h are shown in Tables S1 and S2.

3.2. Second-Tier Tests

Fourteen laboratories developed second-tier tests and employed them in their work-
flow to minimize false positives and avoid unnecessary recalls. Table 2 lists the number of
screening laboratories performing each second-tier test. The most routinely used second-
tier test (13/15 labs) was a fast LC-MS/MS-based method to measure the methylmalonic
acid in samples with elevated propionylcarnitine (C3) at the initial screening test. This test
is very effective in improving screening performance, due to the poor diagnostic prediction
of the primary marker C3 [15].

Table 2. Number of NBS laboratories performing 2nd tier-tests.

2nd Tier-Test N◦ Labs

Ile/Leu/Allo 9
Methylmalonic acid 13
2-methylcitric acid 6
Ethylmalonic acid 8

Homocysteine 9
Orotic acid 2

3-OH-propionic acid 3
Propionylglycine 3

C5-isomers 5
Succinylacetone * 2

* Succinylacetone measured in LC-MS/MS to confirm a positive value by FIA-MS/MS screening test.

During the period 2019–2020, there were differences among laboratories on performing
the second-tier tests. For a better harmonization of NBS practices in our country, the Italian
Society of Neonatal Screening developed training programs to implement the use of that
technique.

The mean recall rate for all laboratories was 1.57%, but there was a wide range of
screening performance: three laboratories had a recall rate <0.5%, three between 0.5% and
1%, four between 1% and 2% and the five remaining laboratories, >2%.

All screening results were recorded on a software that each laboratory designed to
manage NBS samples and data according to their own procedures.
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Two recall protocols, high- and low-risk, were adopted by all laboratories based on
the type and level of the increased/decreased diagnostic biomarker and on the risk of
metabolic decompensation for the suspected diagnosis. In the high-risk protocol, the
neonate is immediately referred for clinical evaluation, start of diagnostic confirmatory
testing and, when needed, start of specific treatments, including intensive care. In low-risk
cases, the neonate is re-tested on an additional DBS collected within 7 days. A flow chart of
the NBS process is shown in Figure 2.
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3.3. Confirmation Testing

Biochemical confirmation of positive cases is made by testing plasma amino acids
and acylcarnitines, urinary organic acids, urinary orotic acid, plasma homocysteine and
succinylacetone. Plasma vitamin B12 levels are determined to rule out a maternal deficiency
in cases with suspected methylmalonic acidurias. Enzymatic assays were mainly performed
to confirm disease severity in some fatty acid oxidation disorders (i.e., MCAD and VLCAD
deficiency). Molecular analysis was performed in all neonates confirmed by biochemical
supplementary tests. Mild hyperphenylaninemias were an exception, since not all clinical
centers have genetically characterized positive cases identified by NBS.

Quality controls for newborn screening provided by Centers for Disease Control and
Prevention (CDC), Atlanta, Georgia were used by all regional NBS centers. In addition, all
15 Italian NBS laboratories (+16 foreigner laboratories) were involved in the quality control
program organized by SIMMESN, providing three surveys per year for phenylalanine
evaluation and a yearly Proficiency Testing program (MSITA), consisting of three DBS
samples from confirmed patients to evaluate laboratory performance and diagnostic marker
interpretation.

Furthermore, 12 of the 15 laboratories also participate in external quality control as-
surance on blood spots organized by ERNDIM (European Research Network for Inherited
disorders of Metabolism) for interpretative acylcarnitine Proficiency Testing and for quanti-
tative evaluation of branched-chain amino acids (including alloisoleucine), phenylalanine,
methionine, succinylacetone and homocysteine.

3.4. Post-Analytical Tools

Several biomarker ratios are useful for the interpretation of NBS results. Ratios used
in the Italian laboratories are reported in Table 1.

Many screening laboratories used Region 4 Stork (R4S), active between 2004–2013 to
interpret screening results. Disease ranges were established for each pathological condition
and are constantly updated by post analytical tools [16]. A score-condition, calculated using
specific disease intervals for all informative analytes, allowed a reduction of false positive
rates, improving screening performance [17]. The advanced version of R4S, Collaborative
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Laboratory Integrated Reports (CLIR) incorporate additional demographic information
such as age, birth weight and gender which can be responsible for discrepancies among
results collected by several laboratories [18].

4. Results and Discussion

A total of 516 infants were confirmed to have metabolic disorders with a percentage of
0.06% of the total newborn population (806,770 live births screened between January 2019
and December 2020). False negative results have not yet been reported to date.

In our experience, aminoacidemias were the most common inborn errors in Italy,
representing 52% of positive cases. Equal percentages of patients had organic acidemias
and mitochondrial fatty acids beta-oxidation defects (Figure 3).
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4.1. Aminoacidemias (AA)

Before the introduction of the expanded neonatal screening, the incidence of
aminoacidemia diagnosed on clinical bases on Italian territory, excluding PKU and hyper-
phenylalaninemia, was reported to be 1:36,389 [19].

National data (Table 3) for this group of conditions over the two-year NBS period
2019–2020, identified 270 confirmed cases, with a cumulative incidence of 1:2988, (33.5 pa-
tients per 100,000 live births). This category included a large number of
PKU/hyperphenylalaninemias (n = 257/270, 95% of the total), corresponding to an inci-
dence rate of 1: 3139. The phenotypic distribution observed in Italy was different from the
global distribution, where the classical PKU phenotype is dominant [20]. In our population,
classical PKU accounted for only 20% of total hyperphenylalaninemias (Figure 3) with an
incidence of 1:15,515, a figure close to other European countries and the United States [21],
while hyperphenylalaninemias accounted for 76% of aminoacidopathies with an incidence
of 1:3935, highlighting the predominance of a milder phenotype in Italy, where most cases
do not require dietary or therapeutic intervention. This observation highlights the need for
the future development of a standardized system for case definition.

Finally, defects in the regeneration or biosynthesis of the enzyme cofactor tetrahydro-
biopterin (BH4) were found to be very rare, as observed worldwide.

Other identified aminoacidopathies (Table 3) included four cases of maple syrup
urine disease (MSUD), three cases of classical homocystinuria due to CBS deficiency, three
cases of (severe) methylenetetrahydrofolate reductase defect (MTHFR), and one case of
tyrosinemia type II.

4.2. Organic Acidemias (OA)

A total of 70 cases of OA were identified in Italy during 2019 and 2020 by NBS
(Table 3 and Figure 3), most of which were methylmalonic acidemias (n = 38/70, 54%),
corresponding to an overall incidence of 1:11,526. This figure is double the estimated
incidence in the Italian population (1:21,422) before NBS [19].

Retrospective data relating to methylmalonic acidemias in Italy during the pre-newborn
screening period reported an incidence of 1:61,755 [19].

The application of second-tier testing for methylmalonic acid and homocysteine made
it possible to lower the C3 cut off (median 4.7 µmol/L), without increasing the burden
of unnecessary recalls and allowing the minimization of false negatives that could occur,
especially in late-onset CblC patients [22,23]. As a result, the NBS sensitivity increased
considerably, improving diagnostic timing of affected newborns. As reported by Kalantari
2022 [24], NBS provides a great benefit of avoiding severe organ damage and diagnostic
odyssey in the CblC forms, presenting a wide spectrum of clinical manifestations. Remarkly,
CblC showed an incidence of 1: 32,271, making this disease one of the most common
inherited metabolic diseases in the Italian population, with one of the highest prevalences
in the world. The reported incidence in Portugal was 1:85,000 [22], in Spain and, in the
US, 1:100,000 [25,26], while a pilot study in Beijing, China showed the worldwide highest
incidence of 1:11,730 [27]. Defining the mutation spectrum in CblC cases was beyond the
scope of this paper. At the moment, we cannot define any kind of genotype-phenotype
correlation and further functional studies are needed to better define the incidence of this
disease.

The remaining 32 other cases of OA (46%) identified by NBS included 14 cases of 2-
methylbutyryl-CoA dehydrogenase deficiency, 7 cases of isovaleric academia (IVA), 5 cases
of glutaric aciduria type I (GAI), 4 cases of propionic aciduria, 1 case of beta-ketothiolase
deficiency and 1 case of 3-hydroxy-3-methylglutaryl-CoA lyase deficiency.
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Table 3. Diagnoses identified by expanded NBS in Italy between 1 January 2019 and 31 December
2020. 806,770 newborns were screened.

Group Disorders Total Incidence

A
m

in
oa

ci
de

m
ia

s

PKU 52 1:15,515
HPA 205 1:3935

Biopterin defect in
cofactor biosynthesis 1 1:806,770

Biopterin defect in
cofactor regeneration 1 1:806,770

TYR I 0 -
TYR II 1 1:806,770
MSUD 4 1:201,692

CBS 3 1:268,923
MTHFR 3 1:268,923

Total for group 270 1:2988

O
rg

an
ic

ac
id

ur
ia

s

GA I 5 1:161,354
IVA 7 1:115,253
BKT 1 1:806,770

HMG 1 1:806,770
PA 4 1:201,692

MMA-MUT 12 1:67,230
CblA/B 1 1:806,770
CblC/D 25 1:32,271
2MBG 14 1:57,626

Malonic Acidemia 0 -
MCD 0 -

Total for group 70 1:11,526

U
re

a
C

yc
le

D
ef

ec
ts

CIT I 14 1:57,626
CIT II 0 -
ASA 13 1:62,059
ARG 1 1:806,770

Total for group 28 1:28,813

Fa
tt

y
A

ci
d

O
xi

da
ti

on
D

is
or

de
rs

CUD 10 1:80,677
CPT I 4 1:20,1692
CACT 0 -
CPT II 3 1:268,923

VLCAD 22 1:36,671
TFP 1 1:806,770

LCHAD 3 1:268,923
MCAD 39 1:20,686

M/SCHAD 0 -
GA2/MADD 3 1:268,923

Total for group 85 1:9491

Se
co

nd
ar

y
C

on
di

ti
on

s

TYR III 2 1:403,385
GNMT 0 -
MAT 13 1:62,059

SAHH 0 -
3MGCA 2 1:403,385
3MCC 23 1:35,077

2M3HBA 0 -
IBG 1 1:806,770

SCAD 22 1:36,671
CPS 0 -

Total for group 63 1:12,806

Total of disorders 516 1:1563
AA = Aminoacidemias; OA = Organic Acidurias; UCD = Urea Cycle Disorders; FAO = Fatty Acid Oxidation
Disorders.
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4.3. Fatty Acids Beta-Oxidation Defects (FAO Defects)

Eighty-five defects of fatty acid beta-oxidation were identified, corresponding to an
incidence of 1:9491 live births (Table 3 and Figure 3). As expected, the highest incidence
rate 1:20,686 (39/85 cases among FAO defects, corresponding to 46%) was recorded for
MCADD. In the pre-expanded newborn screening era, MCADD was considered a very rare
disorder in southern European countries [28], with only 3 symptomatic cases identified
in Italy in a 13 year survey [19]. The 2-year NBS study identified 22 cases with VLCADD,
which corresponds to an incidence of 1:36,671, which is far more frequent than suggested
by a former study on symptomatic patients, which identified only 7 cases in the years
1985–1997 [19]. The striking difference in the number of positive MCADD and VLCADD
cases identified by NBS, compared to selective screening in symptomatic patients, suggests
that some patients may have died suddenly/unexpectedly without a diagnosis in the
pre-screening era or, more likely, that most affected individuals have a milder disease
phenotype and are therefore at low risk. Since similarly high incidences have been reported
in other countries where these diseases are included in NBS programs, the systematic use
of genotyping to detect disease-associated variants, combined with functional enzymatic
studies, especially when novel variants are identified [29] ought to be adopted. As stated
above, the definition of the mutation spectrum in MCAD and VLCAD cases was beyond
the scope of this paper. At the moment, we cannot define any kind of genotype-phenotype
correlation and further functional studies are needed to better define the incidence of
these diseases.

The other FAO defects identified in the study are listed in Table 3.

4.4. Urea Cycle Defects (UCD)

The Italian NBS panel includes citrullinemia Type I, argininosuccinic aciduria and
argininemia, while citrin deficiency and HHH syndrome are included in secondary condi-
tions. A total of 28 patients were identified with an overall incidence of 1:28,813. Citrulline-
mia type I was the most common UCD (14 patients) while argininosuccinic aciduria was
diagnosed in 13 cases. One patient was identified with argininemia. Similar to the other
disease categories, the overall incidence of UCDs detected by NBS was far more frequent
than suggested by a former national study based on selective screening which revealed
an incidence of 1:41,506, and which also included ornithine transcarbamylase deficiency
(OTCD), the most common UCD [19] (Dionisi-Vici 2002).

4.5. Maternal Defects

NBS identified 365 cases of maternal conditions/deficiencies. A total of 328 cases
were related to maternal vitamin B12 deficiency with an incidence in our study of 1:4837
newborns, which is more frequent than the incidence of inborn errors of metabolism
included in the NBS panel. This result is consistent with other studies which report
incidences ranging from 1:2959 in Estonia to 1:4837 in Germany [30,31] and confirm the
results of a former Italian regional study in Campania [9]. In the majority of cases, maternal
B12 deficiency was due to dietary restrictions and, less frequently, to atrophic gastritis or
other pathological conditions.

Other maternal disorders included 15 asymptomatic cases of 3-methylcrotonyl CoA
carboxylase deficiency (3MCC), 20 cases of carnitine uptake deficiency (CUD) and 2 mild
cases of glutaric aciduria type 1.

5. Conclusions

A total of 1,586,578 infants born in Italy were screened between January 2017 and
December 2020 after the introduction of the above cited law. For this survey, we collected
data on metabolic disorders identified by tandem mass spectrometry (MS/MS) between
January 2019 and December 2020. Aminoacidemias were the most common inborn errors in
Italy. Equal percentages of organic acidemias and mitochondrial fatty acids beta-oxidation
defects were observed.
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Second-tier tests were widely applied with good results; methylmalonic acid and
homocysteine testing increased considerably the number of identified cases of CblC without
increasing the number of unnecessary recalls. A striking finding is the high incidence of
CblC defects in the Mediterranean area compared to Northern Europe.

NBS also allows maternal deficiencies which are potentially harmful for the neonate
to be identified. Recent data from newborn screening suggest that combining folate sup-
plementation with vitamin B12 supplementation in pregnant women may be useful in
reducing the risk of long-term neurologic and intellectual sequelae in children born to
women deficient in the vitamin.

The data analysis here presented reflects the benefits of close collaboration among
screening and confirmation laboratories, metabolic pediatricians and maternity wards. In
Italy, where health care tends to be regionally fragmented, a system for sharing data and
evaluating the efficacy of newborn screening programs is essential.
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CblC/D, Cobalamin C/D defect; CBS, cystathionine beta-synthase deficiency; CIT I, citrullinemia
type I; CIT II, citrullinemia type II; CPS, Carbamoyl phosphate synthetase I deficiency; CPT I,
Carnitine palmitoyltransferase I; CPT II, Carnitine palmitoyltransferase II; CUD, carnitine uptake
defect; DBS, dried blood spot; GA I, glutaric aciduria type I; GA2/MADD, Glutaric Acidemia Type
II/Multiple Acyl-CoA Dehydrogenase Deficiency; GNMT, Glycine N-methyltransferase deficiency;
HHH, hyperornithinemia–hyperammonemia-homocitrullinuria; HMG, 3-Hydroxy-3-methylglutaryl-
CoA lyase deficiency; HPA, hyperphenylalaninaemia; IBG, Isobutyrylglycinuria; LC-MS/MS, liquid
chromatography-tandem mass spectrometry; LCHAD, Long-chain 3-hydroxyacyl-CoA dehydro-
genase deficiency; M/SCHAD, medium/short chain L-3-hydroxyacyl-CoA dehydrogenase; MAT,
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Methionine adenosyltransferase deficiency; MCADD, medium chain acyl-CoA dehydrogenase de-
ficiency; MCD, Multiple Carboxylase Deficiency; MMA-MUT, methylmalonic acidemia caused by
methylmalonyl-CoA mutase deficiency; MS/MS, tandem mass spectrometry; MSUD, maple syrup
urine disease; MTHFR methylenetetrahydrofolate reductase deficiency; NBS, newborn screening;
OA, organic acidemia; IVA, isovaleric academia; PA, propionic aciduria; PKU, phenylketonuria;
SAHH, S-adenosylhomocysteine hydrolase deficiency; SCAD, Short-chain acyl-CoA dehydrogenase
deficiency; SIMMESN, Italian Society for the Study of Inherited Metabolic Diseases and Newborn
Screening; TFP, trifuncional protein deficiency; TYR I, tyrosinaemia type I; TYR II, tyrosinaemia type
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References
1. Millington, D.S.; Kodo, N.; Norwood, D.L.; Roe, C.R. Tandem Mass Spectrometry: A New Method for Acylcarnitine Profiling with

Potential for Neonatal Screening for Inborn Errors of Metabolism. J. lnher. Metab. Dis. 1990, 13, 321–324. [CrossRef] [PubMed]
2. Rashed, M.S.; Ozand, P.T.; Harrison, M.E.; Watkins, P.J.F.; Evans, S.; Baillie, T.A. Electrospray Tandem Mass Spectrometry in the

Diagnosis of Organic Acidemias. Rapid Commun. Mass Spectrom. 1994, 8, 129–133. [CrossRef]
3. Schulze, A.; Lindner, M.; Kohlmü, D.; Olgemö, K.; Mayatepek, E.; Hoffmann, G.F. Expanded Newborn Screening for Inborn

Errors of Metabolism by Electrospray Ionization-Tandem Mass Spectrometry: Results, Outcome, and Implications. Pediatrics
2003, 111, 1399–1406. [CrossRef] [PubMed]

4. Burlina, A.B.; Corsello, G. Survey of Italian Pediatricians’ Perspectives and Knowledge about Neonatal Screening. Ital. J. Pediatrics
2015, 41, 41. [CrossRef] [PubMed]

5. Cavarzere, P.; Camilot, M.; Teofoli, F.; Tatò, L. Neonatal Screening for Congenital Adrenal Hyperplasia in North-Eastern Italy: A
Report Three Years into the Program. Horm. Res. 2005, 63, 180–186. [CrossRef]

6. la Marca, G.; Giocaliere, E.; Malvagia, S.; Funghini, S.; Ombrone, D.; della Bona, M.L.; Canessa, C.; Lippi, F.; Romano, F.;
Guerrini, R.; et al. The Inclusion of ADA-SCID in Expanded Newborn Screening by Tandem Mass Spectrometry. J. Pharm. Biomed.
Anal. 2014, 88, 201–206. [CrossRef]

7. Maguolo, A.; Rodella, G.; Dianin, A.; Monge, I.; Messina, M.; Rigotti, E.; Pellegrini, F.; Molinaro, G.; Lupi, F.; Pasini, A.; et al.
Newborn Screening for Biotinidase Deficiency. The Experience of a Regional Center in Italy. Front. Pediatrics 2021, 9, 431.
[CrossRef]

8. Maguolo, A.; Rodella, G.; Dianin, A.; Nurti, R.; Monge, I.; Rigotti, E.; Cantalupo, G.; Salviati, L.; Tucci, S.; Pellegrini, F.; et al.
Diagnosis, Genetic Characterization and Clinical Follow up of Mitochondrial Fatty Acid Oxidation Disorders in the New Era of
Expanded Newborn Screening: A Single Centre Experience. Mol. Genet. Metab. Rep. 2020, 24, 100632. [CrossRef]

9. Scolamiero, E.; Cozzolino, C.; Albano, L.; Ansalone, A.; Caterino, M.; Corbo, G.; di Girolamo, M.G.; di Stefano, C.; Durante, A.;
Franzese, G.; et al. Targeted Metabolomics in the Expanded Newborn Screening for Inborn Errors of Metabolism. Mol. BioSystems
2015, 11, 1525–1535. [CrossRef]

10. Messina, M.A.; Meli, C.; Raudino, F.; Pittalá, A.; Arena, A.; Barone, R.; Giuffrida, F.; Iacobacci, R.; Muccilli, V.; Sorge, G.; et al.
Expanded Newborn Screening Using Tandem Mass Spectrometry: Seven Years of Experience in Eastern Sicily. Int. J. Neonatal
Screen. 2018, 4, 12. [CrossRef]

11. Viggiano, E.; Marabotti, A.; Burlina, A.P.; Cazzorla, C.; D’Apice, M.R.; Giordano, L.; Fasan, I.; Novelli, G.; Facchiano, A.;
Burlina, A.B. Clinical and Molecular Spectra in Galactosemic Patients from Neonatal Screening in Northeastern Italy: Structural
and Functional Characterization of New Variations in the Galactose-1-Phosphate Uridyltransferase (GALT) Gene. Gene 2015, 559,
112–118. [CrossRef] [PubMed]

12. Funghini, S.; Tonin, R.; Malvagia, S.; Caciotti, A.; Donati, M.A.; Morrone, A.; la Marca, G. High Frequency of Biotinidase
Deficiency in Italian Population Identified by Newborn Screening. Mol. Genet. Metab. Rep. 2020, 25, 100689. [CrossRef] [PubMed]

13. Porta, F.; Pagliardini, V.; Celestino, I.; Pavanello, E.; Pagliardini, S.; Guardamagna, O.; Ponzone, A.; Spada, M. Neonatal Screening
for Biotinidase Deficiency: A 30-Year Single Center Experience. Mol. Genet. Metab. Rep. 2017, 13, 80–82. [CrossRef] [PubMed]

14. Azzari, C.; la Marca, G.; Resti, M. Neonatal Screening for Severe Combined Immunodeficiency Caused by an Adenosine
Deaminase Defect: A Reliable and Inexpensive Method Using Tandem Mass Spectrometry. J. Allergy Clin. Immunol. 2011, 127,
1394–1399. [CrossRef]

15. Malvagia, S.; Forni, G.; Ombrone, D.; la Marca, G. Development of Strategies to Decrease False Positive Results in Newborn
Screening. Int. J. Neonatal Screen. 2020, 6, 84. [CrossRef]

16. Marquardt, G.; Currier, R.; McHugh, D.M.S.; Gavrilov, D.; Magera, M.J.; Matern, D.; Oglesbee, D.; Raymond, K.; Rinaldo, P.;
Smith, E.H.; et al. Enhanced Interpretation of Newborn Screening Results without Analyte Cutoff Values. Genet. Med. 2012, 14,
648–655. [CrossRef]

17. Hall, P.L.; Marquardt, G.; McHugh, D.M.S.; Currier, R.J.; Tang, H.; Stoway, S.D.; Rinaldo, P. Postanalytical Tools Improve
Performance of Newborn Screening by Tandem Mass Spectrometry. Genet. Med. 2014, 16, 889–895. [CrossRef]

http://doi.org/10.1007/BF01799385
http://www.ncbi.nlm.nih.gov/pubmed/2122093
http://doi.org/10.1002/rcm.1290080124
http://doi.org/10.1542/peds.111.6.1399
http://www.ncbi.nlm.nih.gov/pubmed/12777559
http://doi.org/10.1186/s13052-015-0147-1
http://www.ncbi.nlm.nih.gov/pubmed/26021374
http://doi.org/10.1159/000085021
http://doi.org/10.1016/j.jpba.2013.08.044
http://doi.org/10.3389/fped.2021.661416
http://doi.org/10.1016/j.ymgmr.2020.100632
http://doi.org/10.1039/C4MB00729H
http://doi.org/10.3390/ijns4020012
http://doi.org/10.1016/j.gene.2015.01.013
http://www.ncbi.nlm.nih.gov/pubmed/25592817
http://doi.org/10.1016/j.ymgmr.2020.100689
http://www.ncbi.nlm.nih.gov/pubmed/33312878
http://doi.org/10.1016/j.ymgmr.2017.08.005
http://www.ncbi.nlm.nih.gov/pubmed/28971021
http://doi.org/10.1016/j.jaci.2011.03.040
http://doi.org/10.3390/ijns6040084
http://doi.org/10.1038/gim.2012.2
http://doi.org/10.1038/gim.2014.62


Int. J. Neonatal Screen. 2022, 8, 47 14 of 14

18. Mørkrid, L.; Rowe, A.D.; Elgstoen, K.B.P.; Olesen, J.H.; Ruijter, G.; Hall, P.L.; Tortorelli, S.; Schulze, A.; Kyriakopoulou, L.;
Wamelink, M.M.C.; et al. Continuous Age- and Sex-Adjusted Reference Intervals of Urinary Markers for Cerebral Creatine
Deficiency Syndromes: A Novel Approach to the Definition of Reference Intervals. Clin. Chem. 2015, 61, 760–768. [CrossRef]

19. Dionisi-Vici, C.; Rizzo, C.; Burlina, A.B.; Caruso, U.; Sabetta, G.; Uziel, G.; Abeni, D. Inborn errors of metabolism in the Italian
pediatric population: A national retrospective survey. J. Pediatr. 2002, 140, 321–327. [CrossRef]

20. Hillert, A.; Anikster, Y.; Belanger-Quintana, A.; Burlina, A.; Burton, B.K.; Carducci, C.; Chiesa, A.E.; Christodoulou, J.;
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