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Abstract: Due to their advantages of good stability, adaptability, and flexibility, multi-legged robots
are increasingly important in fields such as rescue, military, and healthcare. This study focuses
on the millipede, a multi-segmented organism, and designs a novel multi-segment biomimetic
robot based on an in-depth investigation of the millipede’s biological characteristics and locomotion
mechanisms. Key leg joints of millipede locomotion are targeted, and a mathematical model of the
biomimetic robot’s leg joint structure is established for kinematic analysis. Furthermore, a central
pattern generator (CPG) control strategy is studied for multi-jointed biomimetic millipede robots.
Inspired by the millipede’s neural system, a simplified single-loop CPG network model is constructed,
reducing the number of oscillators from 48 to 16. Experimental trials are conducted using a prototype
to test walking in a wave-like gait, walking with a leg removed, and walking on complex terrain.
The results demonstrate that under CPG waveform input conditions, the robot can walk stably, and
the impact of a leg failure on overall locomotion is acceptable, with minimal speed loss observed
when walking on complex terrain. The research on the structure and motion control algorithms of
multi-jointed biomimetic robots lays a technical foundation, expanding their potential applications in
exploring unknown environments, rescue missions, agriculture, and other fields.

Keywords: biomimetic robot; millipede; biologic; kinematic; CPG

1. Introduction

With the advancement of technology, robotics plays an increasingly crucial role in
various societal domains. As a significant branch, biomimetic legged robots, characterized
by intermittent contact points with the ground and small contact areas, enable smooth
robot movement. Their body, legs, and feet are arranged in parallel mechanisms, allowing
them to adjust their posture to adapt to terrain requirements. Their efficient, flexible modes
of operation and outstanding adaptability have made them a current research hotspot,
possessing high scientific value and broad application prospects across multiple fields [1–4].

The research on multi-legged robots is limited, whether through simulation models
or experimental prototypes. Inspired by common insects in the biological world, current
biomimetic research on multi-legged robots mainly focuses on quadrupedal and hexapedal
robots [5–8]. Although energy-efficient, their motion forms are limited, with poor load-
bearing capacity and stability. In contrast, the biomimetic millipede robot, with its typical
multi-legged structure, has a much larger number of legs than hexapods, featuring redun-
dant support legs, strong load-bearing capacity, good stability, diverse gait combinations,
high fault tolerance, and greater adaptability [9–12]. Currently, research on robots with
more than six legs is relatively scarce, mainly focusing on single-joint structure design and
driving methods. Wan et al. developed a leg mechanism controlled by a cam and driven by
a single motor for legged robots [13], which does not require additional actuators during
the leg returning phase. All legs can walk at a constant speed under constant rotational
input. Garcia utilized a cam configuration to design a leg mechanism driven by a single
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electromagnetic DC motor [14]. Kano et al. developed a millipede-like robot, where each
segment consists of a trunk and two legs [15], and its leg device is a single-motor-driven
system with closed-loop feedback. Koh et al. proposed a modular robot inspired by mil-
lipedes [16], introducing the concept of a flexible body structure. The robot mimics the
millipede’s elongated body, flexible body structure, and undulating gait using a single
motor and flexible transmission shaft to achieve open-loop gait control and flexible body
structure. Ozkan-Aydin et al. developed a low-cost hybrid multi-legged robot with eight
parts [17], each with two limbs driven asynchronously. Both limb components and leg
feet are driven by servo motors. Hoffman et al. developed a robot with multiple legs
and a passive flexible backbone inspired by millipedes called millirobot [18], driven by
piezoelectric bimorphs, requiring only two independent drive signals to perform various ac-
tions, demonstrating the advantages of multi-legged animal morphology in robot platform
applications. Avirovik et al. developed a crawling robot driven by L-shaped piezoelectric
actuators and a millipede-like robot driven by U-shaped piezoelectric actuators [19,20]. The
motor structure consists of two piezoelectric bimorphs arranged in different configurations,
causing elliptical motion at the end of the piezoelectric chip, driving the robot to move
similarly to a millipede. The leg structures designed in the above studies are all driven by
single motors and can only perform single-degree-of-freedom motion. They can achieve
reciprocating motion of the legs through cam or linkage mechanisms. However, such
structures cannot realize this motion on complex terrain and during multi-gait walking.
Therefore, the three-joint, three-degrees-of-freedom leg structure designed in this paper
addresses the problems of insufficient leg degrees of freedom and single control form
in the above studies, achieving multi-degree-of-freedom leg motion and enabling more
gait forms.

The central pattern generator (CPG) control method provides a natural and efficient
motion control strategy for multi-legged robots, particularly suitable for simulating biologi-
cal rhythmic movements, with promising applications in multi-legged robot motion control.
Establishing a CPG control model and determining the appropriate CPG control model
have become hot topics in current research. The concept of the motor neuron half-center
model was first proposed by Thomas Graham Brown in 1912 [21], where two sets of mutu-
ally promoting and inhibiting spinal neurons could generate basic rhythmic movements.
This theory reflects the concept of the widely accepted central pattern generator in today’s
research. Matsuoka from Kyushu Institute of Technology proposed a mathematical dis-
cussion on sustained oscillations generated by mutual inhibition of neurons [22]. Kimura
applied the CPG control model to the motion control of multi-legged robots [23]. His
neural model consists of CPG, responses, and reflexes, where responses directly adjust the
CPG phase rapidly, and reflexes directly produce joint torques. Righetti et al. developed a
simple oscillator model that can independently adjust the duration of the rising and falling
phases in the cycle [24], which is useful for independently adjusting swing and stance
phases. They also proposed a new method of coupling two oscillators, which can use the
theory of symmetrically coupled cells to construct the structure of the coupled oscillator
network. Auke Jan Ijspeert proposed a spinal cord model and its implementation in the
amphibious robot Salamander [25], demonstrating how to extend the primitive neural
circuit for swimming by a system evolutionarily updated limb oscillation center to explain
the salamander’s ability to switch between swimming and walking. Grabowska et al.
built a model that can simulate the coordination patterns occurring in animals with eight
legs (e.g., crayfish) and improve the model by modifying its original cyclic connection
topology [26]. Zigen proposed a theoretical approach to build a new gait CPG controller
for a quadruped locomotive based on delayed coupling VDP oscillators [27]. Lin et al. used
a controller based on central pattern generators (CPGs) to coordinate the motion of the
pectoral and caudal fins [28], achieving biomimetic motion of boxfish-like robots. While
the above research utilizes CPG models to control specific robot movements, research on
CPGs for millipede-style multi-legged robots is relatively scarce, and existing models are
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rather complex. Therefore, there is an urgent need to develop a CPG model suitable for
millipede robots that is relatively simple.

This paper takes the millipede, a multi-segmented organism, as its research subject.
From a biological perspective, it explores its neurological, skeletal, and arthropodal charac-
teristics. Based on the leg configuration characteristics and neural architecture of millipedes,
a novel multi-segment biomimetic robot is designed. Through structural optimization and
an improved central pattern generator (CPG) control strategy, the aim is to achieve stable
walking with high precision and large-scale motion in the biomimetic system inspired by
millipedes. The technical roadmap of this paper is illustrated in Figure 1.
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2. Biological Research

Millipedes possess elongated bodies and powerful legs, enabling them to move swiftly
across complex terrain and effortlessly overcome obstacles. This biological structure grants
them unique locomotive abilities, allowing adaptation to various terrains and environ-
ments, as illustrated in Figure 2. Compared to rigid-bodied insects, millipedes exhibit
distinct advantages as multi-legged animals. First, due to their multiple legs, millipedes
have numerous points of contact with the ground, providing enhanced stability. Second,
their body structure grants them a high degree of flexibility. Their flexible spine allows
them to adapt to the undulations of the terrain, maintaining close conformity to the terrain
structure and enabling efficient movement. Additionally, millipedes demonstrate remark-
able robustness. Even in the event of injury, they can adjust the gait of their other legs to
maintain overall stability and swift movement.

The high stability, good flexibility, and strong robustness of millipedes stem from
their multiple legs, which possess advantageous gaits and morphology. Therefore, it is
important to first analyze their structure and gait characteristics. The leg structure of a
millipede comprises seven parts: the coxa, prefemur, femur, postfemur, tibia, tarsus, and
claw, as shown in Figure 3.
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Figure 3. Model of the leg of a millipede.

The locomotion of a millipede is driven by muscles and controlled by the nervous
system. Anatomical results are depicted in Figure 4. The central nervous system of a
millipede consists of a brain, which transmits neural signals to various parts of the body via
the ventral nerve cord. Each body segment is connected by paired nerves originating from
large ganglia, emitting numerous small nerve branches on either side. Along the ventral
nerve cord on both sides of the body are nerve plexuses called ganglia, with two ganglia
per body segment. These ganglia then transmit neural signals to the muscle tissue within
the corresponding body segments, driving and controlling the movement of the legs.
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Figure 4. Diagram of the millipede nervous system.

The gait of a millipede is determined by the movement of its walking legs, with each
leg typically exhibiting three degrees of freedom, as shown in Figure 5. The first movement
involves rotation around a vertical axis at the point where the leg connects to the body,
allowing for swinging of the leg forward and backward (Figure 5a). The second movement
enables each leg to rotate around an axis parallel to the body axis at the connection point,
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resulting in lifting motion of the leg (Figure 5b). The third movement involves rotation
about the horizontal axis perpendicular to the body, causing the distal end of the leg to
swing outward and bend (Figure 5c). Analyzing the movement of walking legs facilitates
the structural design of biomimetic mechanisms.
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The coordination of these three degrees of freedom enables the millipede robot to
mimic the natural walking behavior of a millipede, achieving stable, efficient, and flexible
locomotion. When designing the millipede robot, it is essential to fully consider the
influence of these degrees of freedom and plan the structure and motion mechanism of the
robot rationally to achieve optimal performance.

Therefore, this paper proposes a three-degree-of-freedom model for the single leg
motion of the millipede, as shown in Figure 6. The model is represented by the follow-
ing equations:
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where λ is the step length and H is the maximum leg lift height.
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The three-degree-of-freedom model enables effective variation of the leg length from
the driving end to the foot end, achieving stable vertical height of the trunk. Moreover, the
spatial model is a more general model that through coordinated control of three coordinates,
can encompass the planar model.
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3. Structural Design and Mathematical Modeling
3.1. Single-Unit System

Based on the study of the morphological characteristics and gait of millipedes, we
have successfully constructed a biomimetic millipede robot model. As discussed earlier,
the body of a millipede consists of multiple segments, with each segment having four legs.
Following this structure, we have designed a robot model composed of multiple modular
systems interconnected with each other, with each modular system having four legs. This
model is inspired by the biological features of millipedes and aims to simulate their mode
of locomotion. Each modular unit is depicted in Figure 7.
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In our constructed simulation model, each leg of the millipede robot consists of
a series mechanism composed of three servo motors, as illustrated in Figure 8. This
configuration provides three degrees of freedom, corresponding to the three biological
degrees of freedom shown in Figure 4. This design is inspired by an in-depth study
of the biological characteristics and locomotion of millipedes, aiming to simulate the
gaits and movements of millipedes more accurately in natural environments. The three
degrees of freedom in the servo motor structure allow each leg to move flexibly in multiple
directions, enabling the robot to efficiently adapt to complex terrains and environments.
Each servo motor in the biomimetic millipede robot model is responsible for controlling the
movement of the corresponding leg joint, mimicking the actions of millipede legs during
ground locomotion.
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3.2. Kinematics

The movement of the swing leg is analogous to a serial manipulator structure, with
the body acting as the support. Therefore, we will proceed with the kinematic analysis of
the swing leg. Forward kinematics refers to determining the posture and position of the
swing leg end when the joint angles are known.

According to the biological research outlined earlier, we know that a millipede’s leg
comprises seven parts. In the robot designed in this paper, we simplify the leg structure to
three parts: the hip, femur, and tibia. The connection between the body and the hip joint is
denoted by θc, the connection between the hip and femur joint is denoted by θf, and the
connection between the femur and tibia joint is denoted by θt, as shown in Figure 9. In this
paper, we employ the Denavit–Hartenberg (D-H) method for the kinematic analysis of the
robot’s walking leg [29], representing the position of the foot relative to the body and the
hip joint’s rotation axis as [px py pz]T. The D-H parameters for the leg are as shown in
Table 1.
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Table 1. D-H parameter table for the legs of the biomimetic millipede robot.

i αi−1 ai−1 di θi

1 0 0 0 θc
2 90 lc 0 θf
3 0 lf 0 θt
4 0 lt 0 0

The coordinate transformation equation between adjacent joints is given by (4).

0
4T =


cos θc cos

(
θ f + θt

)
− cos θc sin

(
θ f + θt

)
sin θc cos θc

(
lc + l f cos θ f + lt cos(θ f + θt)

)
sin θc cos

(
θ f + θt

)
− sin θc cos

(
θ f + θt

)
− cos θc sin θc

(
lc + l f cos θ f + lt cos(θ f + θt)

)
sin

(
θ f + θt

)
cos

(
θ f + θt

)
0 lt sin

(
θ f + θt

)
+ l f sin θ f

0 0 0 1

 (4)
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Then, the position of the foot end is given by (5).

px
py
pz

 =


cos θc

(
lc + l f cos θ f + lt cos(θ f + θt)

)
sin θc

(
lc + l f cos θ f + lt cos(θ f + θt)

)
lt sin

(
θ f + θt

)
+ l f sin θ f

 (5)

The structural analysis conducted through the aforementioned forward kinematics cal-
culation indicates that the robot’s design meets the requirements, laying the foundation for
the subsequent development of motion control theory for the biomimetic millipede robot.

3.3. Inverse Kinematics

To achieve precise control of the joint angles during the robot’s motion, it is necessary
to perform inverse kinematic analysis of the walking leg. This paper employs algebraic
methods to conduct inverse kinematic analysis of the walking leg.

The known stance and position of the foot end of the walking foot is shown in
Equation (6).

cos θcnx + sin θcny cos θcox + sin θcoy cos θcax + sin θcay cos θc px + sin θc py
− sin θcnx + cos θcny − sin θcox + cos θcoy − sin θcax + cos θcay − sin θc px + cos θc py

nz oz az pz
0 0 0 1



=


cos

(
θ f + θt

)
− sin

(
θ f + θt

)
0 lt cos

(
θ f + θt

)
+ l f cos θ f + lc

0 0 −1 0
sin

(
θ f + θt

)
cos

(
θ f + θt

)
0 lt sin

(
θ f + θt

)
+ l f sin θ f

0 0 0 1


(6)

Comparing r24 elements of both sides of the equation yields (7).

− sin θc px + cos θc py = 0 (7)

The joint angle θc can be expressed as (8).

θc = arctan
(

py

px

)
(8)

We calculate θf and θt via (9).
f1(n) f1(o) f1(a) cos θ f

(
cos θc px + sin θc py

)
+ sin θ f pz − lcc2

f2(n) f2(o) f2(a) − sin θ f
(
cos θc px + sin θc py

)
+ cos θ f pz + lcs2

f3(n) f3(o) f3(a) sin θc px − cos θc py
0 0 0 1



=


cos θt − sin θt 0 lt cos θt + l f
sin θt cos θt 0 lt sin θt
0 0 1 0
0 0 0 1


(9)

Comparing r14 and r24 elements of both sides of the equation yields (10).{
cos θ f

(
cos θc px + sin θc py − lc

)
+ sin θ f pz = lt cos θt + l f

− sin θ f
(
cos θc px + sin θc py

)
+ cos θ f pz + lc sin θ f = lt sin θt

(10)

This solves the following:
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θ f = arccos
pz√(

cos θc px + sin θc py − lc
)2

+ p2
z

− arcsin


(
cos θc px + sin θc py − lc

)2
+ p2

z + l2
f − l2

t√
4l2

f

((
cos θc px + sin θc py − lc

)2
+ p2

z

)
 (11)

θt = −arccos

[(
cos θc px + sin θc py − lc

)
cos θ f + pz sin θ f − l f

lt

]
. (12)

4. Improved CPG Control Algorithm

CPG is a biologically inspired control method that mimics the neural networks re-
sponsible for generating basic movement patterns in the central nervous system. It drives
robot motion by autonomously generating periodic signals without the need for external
cyclic inputs. CPGs are capable of producing stable oscillatory behavior automatically in
the absence of higher-level control signals and external feedback, while higher-level signals
and external feedback can modulate and stabilize CPGs [30–32].

4.1. CPG Oscillation Unit Model

In this paper, the Hopf oscillator is chosen as the unit model of CPG, and its mathe-
matical model is as follows [33]:

.
x = α

(
µ − r2)x − ωy

.
y = β

(
µ − r2)y + ωx

ω = ωst
e−ay+1 + ωsw

eay+1

ωst =
1−β

β ωsw

, (13)

where x and y denote state variables of the oscillator; r2 = (x − u1)
2 + (y − u2)

2 is the
amplitude of the oscillator output signal;

√
u is the frequency of the oscillator; ωsw is

the frequency of the swing phase; ωst is the frequency of the support phase; and β is the
duty cycle.

4.2. CPG Control Network

In traditional CPG-based robot gait control strategies, the CPG model is solely applied
in the temporal domain, meaning it is only used to achieve inter-leg coordination of the
robot without considering the coordination among joints within a single leg. Therefore, the
coupling characteristics of biological CPGs are not fully utilized. This section will investi-
gate a method whereby CPGs are simultaneously utilized to achieve coordination control
of both inter-leg and intra-leg joints in millipede-like robots, expanding the application of
CPGs from the temporal domain to the spatial domain. Combining with the neural system
structure diagram of the millipede shown in Figure 4, this paper proposes an improved
CPG network coupling model. In this model, each leg only requires the first joint to utilize
an independent CPG oscillator to generate the joint angle output signal, while the second
and third joints generate joint angles through mapping functions. With this improvement,
the entire CPG network model only needs 16 oscillators to form a complete CPG network,
reducing the complexity of the system. The CPG network connection methods are divided
into circular coupling structure and fully symmetrical coupling structure. Since the walking
legs of the millipede robot in this paper are symmetrically distributed on both sides of the
body, they are divided into two groups, and there is no interference between the walking
legs of the two groups. Therefore, the single-ring network’s inter-leg coupling structure is
more suitable for the gait control of the robot in this paper. In summary, the improved CPG
network model designed in this paper is illustrated in Figure 10.
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4.2.1. Interfoot Coordination Control

Based on the neural structural relationship of the millipede depicted in Figure 4, the
current study establishes a framework for inter-leg coordination of the millipede robot. This
is achieved by establishing mutual coupling relationships among 16 hip joint oscillators
(corresponding to the bilateral 16 nerve cords in Figure 4’s neural system diagram). This is
illustrated in Figure 10.

The mathematical model of the CPG network consisting of 16 Hopf oscillators is

[ .
xi.
yi

]
=

[
α
(
µ − r2

i
)

−ωi
ωi α

(
µ − ri

2)][xi
yi

]
+

16
∑

j=1
R
(

θ
j
i

)[xj
yj

]
, i = 1, · · · , 16

r2
i = x2

i + y2
i

ωi =
ωst

e−ayi+1
+ ωsw

eayi+1

ωst =
1−β

β ωsw

, (14)

where xi is the output of the oscillator, used as the hip joint angle control signal; that is,
θhi = xi; the second term on the right side represents the coupling between oscillators; θ

j
i

denotes the relative phase between oscillators i and j; and R
(

θ
j
i

)
is the rotation matrix,

which characterizes the phase coupling relationship between different oscillators. Its
expression is as follows:

Rji = R
(

θi
j

)
=

[
yj sin θi

j
xj cos θi

j

]
. (15)

According to the coupling mathematical model of the multi-foot oscillator of (14), the
following mathematical expression for the toroidal coupling relationship of the 16 hip Hopf
oscillator is obtained:


.
x1
...

.
x16

 = −α

x2
1 + y2

1 − 1 · · · 0
...

. . .
...

0 · · · x2
16 + y2

16 − 1


 x1

...
x16

−

ω1 · · · 0
...

. . .
...

0 · · · ω16


 y1

...
y16

+ δ · G

 y1
...

y16

− δ · M

 x1
...

x16

, (16)


.
y1
...

.
y16

 = −α

x2
1 + y2

1 − 1 · · · 0
...

. . .
...

0 · · · x2
16 + y2

16 − 1


 y1

...
y16

+

ω1 · · · 0
...

. . .
...

0 · · · ω16


 x1

...
x16

+ δ · G

 y1
...

y16

− δ · M

 x1
...

x16

, (17)
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ωi =
ωst

e−axi + 1
+

ωsw

eaxi + 1
(i = 1, 2, · · · , 16), (18)

where G and M are matrix coupling coefficients, and if the oscillators are uncorrelated with
each other, then the coefficients of the corresponding terms are zero.

G =



cos θ11 · · · · · · · · · cos θ16 1
...

. . . · · · · · ·
...

... · · · cos θ88 · · ·
...

... · · · · · · . . .
...

cos θ1 16 · · · · · · · · · cos16 16


(19)

M =



sin θ11 · · · · · · · · · sin θ16 1
...

. . . · · · · · ·
...

... · · · sin θ88 · · ·
...

... · · · · · · . . .
...

sin θ1 16 · · · · · · · · · sin16 16


(20)

When the millipede robot walks using a wave-like gait, the phase difference between
legs on each side is π/4, and the phase difference between each pair of legs is π. This
arrangement allows the legs on both sides of the robot to swing cyclically with the same
phase difference, thereby completing the entire gait cycle.

4.2.2. Intrafoot Coordination Control

The CPG network is responsible for generating periodic control signals for each joint.
However, controlling all joints of the robot using CPG networks would significantly increase
the number of output periodic signals, thus increasing the complexity of the entire CPG
network and reducing real-time performance due to prolonged computation time. To
address this issue, CPG control can be applied only to the hip joints of the biomimetic
millipede robot. Then, through the mapping relationship between the femur and tibia joints
with the hip joint, the motion of the femur and tibia joints of the same walking leg can be
controlled. This significantly reduces the number of required control signals, simplifying
the overall CPG network structure of the millipede robot. Based on this, the following
control scheme is proposed: using 16 Hopf oscillators corresponding to the 16 legs of the
millipede robot, the x output of the oscillators is directly used as the angle control signal
for the hip joints, while the y output is transformed and then used as the angle control
signal for the femur and tibia joints. The expression for the control signal of a single leg is
as follows: 

θhi = xi

θ f i =

{
−sgn(φ)

A f
Ah

yi, yi ≤ 0
0, yi > 0

θti =

{
−sgn(φ) At

Ah
yi, yi ≤ 0

0, yi > 0

(21)

where Ah, Af, and At are the hip, femur, and tibia joint amplitudes, respectively. The
output curves of each joint within the leg of the millipede robot traveling wave gait can be
generated as shown in Figure 11.
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5. Robot Physical Prototypes and Experiments

In this section, a physical prototype of the millipede robot will be constructed based on
the design outlined in the previous sections. Subsequently, a motion control system will be
designed according to the neural structure diagram of the millipede. Finally, experiments
will be conducted to validate the feasibility of the aforementioned structure and the CPG
control model.

5.1. Robot Hardware Composition

The hardware composition structure of the bio-inspired millipede robot’s motion
control system is shown in Figure 12. The core controller of the system adopts an Arduino
Uno control board, which is responsible for the overall motion control logic and data
processing of the robot. In addition, the system includes servo motor driver modules, TOF
laser ranging modules, a power supply module, and an attitude sensor. The workflow of
the system is as follows: The CPG model is discretized to generate the gait data required for
the leg movements of the robot. These data are converted into specific servo motor rotation
commands within the controller (Arduino). These commands are transmitted to the servo
motor driver modules via I2C communication. Upon receiving the commands, the servo
motor driver modules generate corresponding drive signals to control the servo motors
of the robot’s legs. The servo motors precisely execute the leg movements according to
the gait test data, thereby driving the robot to perform coordinated and stable movements.
During the robot’s motion, the attitude sensor (MPU6050) continuously monitors the robot’s
posture, while the TOF laser ranging sensor measures the distance between the robot and
surrounding obstacles in real-time. If the measured distance falls below a predetermined
safety threshold, indicating a potential collision with obstacles, the robot immediately
pauses its motion to ensure its safety.
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To control the rotation of 48 servos, four PCA9685 control boards are connected in
series, with each PCA9685 board capable of controlling 12 servos. These boards are then
connected to an Arduino Uno to form the entire control system. The hardware connection
diagram is shown in Figure 13.
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Each PCA9685 board has a set of address jumpers in the upper right corner, allowing
users to change the communication address of the board by shorting certain points. This
design enables a single Arduino to conveniently control multiple servo control boards
without communication conflicts. By using different jumper combinations, a unique address
can be created for up to 62 servo control boards operating simultaneously. In this system,
the addresses of the four PCA9685 boards are set to 0 × 40, 0 × 41, 0 × 42, and 0 × 43,
respectively. If it is necessary to change the address of a board, we simply solder a jumper
on the two address terminals. Additionally, each PCA9685 servo control board is equipped
with two power terminals at the top, requiring a power supply of 5–6 V. These power
terminals not only provide power to the control board itself but also supply the required
power to the 16 output terminals at the bottom for controlling the servos.

5.2. Robot Software Section

The software part of the biomimetic millipede robot’s motion control system is tasked
with converting the designed CPG control model from previous chapters into code suitable
for execution on the Arduino platform. This process involves translating complex math-
ematical models and algorithms into concise instructions that Arduino can understand
and execute. By writing and compiling code in the Arduino IDE, the code is downloaded
into the Arduino Uno microcontroller. The motion control flowchart of the biomimetic
millipede robot is illustrated in Figure 14.

5.3. Experimental

After modeling the structural design from Section 3 and 3D printing the components,
the physical prototype of the millipede robot is assembled using screws, as shown in
Figure 15. The biomimetic millipede robot prototype consists primarily of the main body
trunk and sixteen legs. The body segments are connected by springs, and the leg joints
are driven by servo motors. As mentioned earlier, the body segments of the robot are
rectangular in shape, facilitating the installation of motion control systems, power modules,
and other components. The legs of the robot are arranged uniformly around the body trunk
for balanced distribution.
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The main structural parameters of the bionic millipede robot prototype are shown in
Table 2.
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Table 2. Table of main structural parameters of bionic millipede robot prototype.

Parameters Numerical Value

size of body segments 190 mm × 150 mm × 6 mm
length of first connecting rod 110 mm

length of second connecting rod 95 mm
length of third connecting rod 130 mm

hip angle −30–30◦

femur and tibia angle −45–45◦

spring length 120 mm
spring stiffness 1.3 N/mm

weight 8 kg

5.3.1. Standard Traveling Wave Gait Walking

The output signals of the traveling wave gait CPG model are utilized to construct a
ring-like network of CPG coupling structure to ensure stable phase differences among the
robot’s legs. Building upon this, a mapping function for the internal joints of the robot legs
is further established. This function is capable of outputting the rotational angle values of
the hip joint, femur joint, and tibia joint within a single leg of the robot. These output angle
values undergo discretization processing and are then used in gait validation experiments
to verify the robot’s gait performance during actual motion.

The acceleration curves of the bio-inspired millipede robot’s traveling wave gait are
depicted in Figure 16. From the figure, it can be observed that the fluctuation of longitudinal
acceleration is less than 0.2 m/s2, and the fluctuation of lateral acceleration is less than
0.3 m/s2. The experimental results indicate that the bio-inspired millipede robot exhibits
smooth motion and coordinated gait during walking. The pitch attitude angles of the robot
platform during the traveling wave gait are illustrated in Figure 17. Since the rotation
around the z-axis does not affect the stability of the robot’s walking, the angle variation
curve is not presented. However, from the curves of the x-axis and y-axis attitude angles, it
can be inferred that the bio-inspired millipede robot possesses a good longitudinal straight-
line walking capability with minimal attitude angles, ensuring stability throughout the
walking process.
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Figure 16. (a) Longitudinal acceleration profiles of walking with traveling wave gait in a bionic
millipede robot. (b) Walking transverse acceleration profile of a bionic millipede robot with traveling
wave gait.

The velocity curve of the bio-inspired millipede robot is depicted in Figure 18. Accord-
ing to the measurement and analysis of experimental results, the average velocity of the
robot is determined to be 10.33 mm/s. Within a period of 30 s, the bio-inspired millipede
robot platform traversed a distance of 310 mm, demonstrating its ability to maintain a
relatively stable walking speed.
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5.3.2. Walk with Broken Legs

The purpose of this section’s experiment is to simulate the scenario where a robot
experiences a malfunction during walking, leading to the inability of one or more legs
to operate. Based on the physiological study of the biological millipede, it is known that
millipedes exhibit high robustness, and they can continue to walk normally even when one
or more legs are damaged. Therefore, this section aims to experimentally verify whether
the robot can still walk normally after disconnecting the signals to two servo motors. The
schematic diagram of disconnecting the signal servo motors is shown in Figure 19.
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Figure 19. Schematic diagram of the millipede robot walking with broken legs.

The acceleration curve and attitude angle curve measured by the attitude sensor are
shown in Figure 20 and Figure 21, respectively. The velocity curve obtained from the
frequency domain transformation of the acceleration data is shown in Figure 22. From the
figures, it can be observed that after disconnecting the servo motor signals as shown in
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Figure 16, the fluctuations in acceleration, attitude angles, and velocity of the millipede
robot are similar to those during normal walking. However, it is evident from the lateral
acceleration curve, Y-axis attitude angle curve, and velocity curve that there are significant
fluctuations at certain moments during walking. These fluctuations occur because some
servo motors, which should have been disconnected, are still attempting to move the legs.
Despite these fluctuations, the robot is still able to walk relatively normally. Therefore, the
robot platform designed in this study also demonstrates a certain level of robustness.
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5.3.3. Walking on Complex Surfaces

In this section, experiments were conducted to test the walking capabilities of the
biomimetic millipede robot on complex terrain. The experiments were performed on the
complex terrain depicted in Figure 23, with the red arrow indicating the direction of travel.
The purpose was to verify whether the designed millipede robot has the ability to walk on
complex terrain.
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Figure 23. Experimental diagram of the millipede robot walking on complex road surface.

The millipede robot moves in the direction indicated by the red arrow on the complex
terrain, and its acceleration curve is shown in Figure 24, while the attitude angle curve is
depicted in Figure 25.
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From the acceleration and attitude angle curves, it can be observed that the millipede
robot experiences the influence of the irregularities on the terrain while walking on the
complex surface. The fluctuations in both longitudinal and lateral accelerations are greater
compared to walking on a hard surface, with the longitudinal acceleration fluctuation
increasing to 0.4 m/s2 and the lateral acceleration fluctuation increasing to 0.5 m/s2.
Moreover, the X-axis and Y-axis attitude angles of the robot’s body also increase compared
to walking on a hard surface, especially the Y-axis attitude angle, which increases by about
10◦. Despite the increased fluctuations compared to walking on a hard surface, the platform
can still walk relatively steadily.

The speed and displacement curves of the millipede robot walking on complex terrain
are illustrated in Figure 26. According to the measurement and analysis of the experimental
results, it is determined that the average speed of the millipede robot walking on complex
terrain is 11 mm/s. Within 30 s, it covers a distance of approximately 330 mm. This
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represents a 10.78% reduction in speed compared to walking on a hard surface, indicating
a relatively minor decrease in speed. Thus, it is demonstrated that walking on complex
terrain can still maintain its walking speed.
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Observing the velocity curves of the three sets of experiments above, it can be observed
that around the fifth second, the velocity curves of all three experiments approach zero.
This occurs because the gait cycle of the millipede robot is approximately 5 s. At around 5 s,
its legs have completed one cycle of movement and are preparing to start the next cycle,
which results in a brief pause of the millipede robot’s body. This temporary pause leads to
the velocity approaching zero around the 5th second.

6. Conclusions

In this study, we have systematically investigated the locomotion mechanism and
biological characteristics of the millipede as the biomimetic prototype. Our research
outcome culminated in the successful development of a prototype of a biomimetic millipede
robot, which embodies key features inspired by the biological millipede. Building upon this
robot, we conducted in-depth analysis of the kinematics and control algorithms governing
its walking legs, effectively validating its locomotive capabilities and stability during
motion. Through experimental testing, our biomimetic millipede robot prototype has
demonstrated outstanding locomotion capabilities and stability. It can efficiently traverse
irregular and rugged terrain, exhibiting remarkable agility and stability. The robot’s body
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structure and locomotion mechanism closely resemble those of real millipede organisms,
enabling it to flexibly navigate various complex environments and obstacles.

1. In studies of millipede’s wave gait, single-leg reference circle or ellipse models are
commonly used, but ensuring stability of posture is challenging. This paper proposes
a general model with three degrees of freedom based on the analysis of millipede
physiology and locomotion mechanisms. By implementing forward and inverse
kinematics of the leg structure, which consists of three linked rods in series, the
effective and controllable variation of leg length is achieved, ensuring smooth motion
of the entire robot while also accommodating a planar model at the foot end.

2. The three-degree-of-freedom walking mechanism combined with the matching CPG
algorithm offers higher computational efficiency and simpler model construction
compared to traditional control methods based on static stability and dynamic model-
based control.

3. Modeled after the actual neural structure, the oscillatory coupling framework reduces
the number of oscillators by 75%. During locomotion, the fluctuation of longitudinal
acceleration is less than 0.2 m/s2, and the fluctuation of lateral acceleration is less
than 0.3 m/s2, ensuring the stability of the walking gait.

4. The ecological analysis of the millipede and its corresponding locomotion system can
be applied not only to conventional hard surfaces; they can also be further optimized
to adapt to harsh environments such as farmland slopes, tidal flats, deserts, and barren
wastelands. By incorporating various attachments, the millipede robot can achieve
functions including load-bearing, operation, rescue, and detection.
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