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Abstract: This study introduces an improved quantum-behavior particle swarm optimization
(IQPSO), tailored for the task of maximum power point tracking (MPPT) within photovoltaic genera-
tion systems (PGSs). The power stage of the MPPT system comprises a series of buck-boost converters,
while the control stage contains a microprocessor executing the biomimetic algorithm. Leveraging
the series buck-boost converter, the MPPT system achieves optimal operation at the maximum power
point under both ideal ambient conditions and partial shade conditions (PSCs). The proposed IQPSO
addresses the premature convergence issue of QPSO, enhancing tracking accuracy and reducing
tracking time by estimating the maximum power point and adjusting the probability distribution.
Employing exponential decay, IQPSO facilitates a reduction in tracking time, consequently enhanc-
ing convergence efficiency and search capability. Through single-peak experiments, multi-peak
experiments, irradiance-changing experiments, and full-day experiments, it is demonstrated that the
tracking accuracy and tracking time of IQPSO outperform existing biomimetic algorithms, such as
the QPSO, firefly algorithm (FA), and PSO.

Keywords: photovoltaic generation systems; maximum power point tracking; improved quantum-
behavior particle swarm optimization

1. Introduction

In recent years, solar power has witnessed exponential growth attributed to its myr-
iad advantages, including environmental friendliness, minimal operational costs, and
maintenance-free characteristics [1]. Consequently, there has been a notable proliferation
of photovoltaic (PV) power generation systems, driven by substantial investments and
diverse financial incentives offered by numerous countries [2]. Therefore, numerous studies
related to solar panel applications exist in the literature, such as the design of solar panel
tracking systems aimed at tracking the path of the sun to maximize the collection of radiant
heat energy [3,4]. However, the power–voltage (P–V) curve represents a nonlinear system,
resulting in a maximum power point on the P–V curve [5]. It is essential to develop a
maximum power point tracking (MPPT) system to operate the photovoltaic generation
system (PGS) at this maximum power point (MPP). Additionally, environmental conditions
can alter the P–V curve. The P–V curve exhibits nonlinearity with changes in environmental
conditions, specifically in temperature and solar irradiance. In scenarios characterized by
partial shade conditions (PSCs), the P–V curve may exhibit multiple peaks, consequently
heightening the intricacy associated with the MPPT technique [6,7]. Accordingly, operating
the MPPT at MPP under changing environmental conditions and PSC is a focal point of the
MPPT method.
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To date, several MPPT methodologies have been proposed, such as the perturb and
observe (P and O) technique [8–10], the hill climbing approach [11,12], and the incremental
conductance method [13,14], among others. Despite their simple calculations, these meth-
ods may fail to accurately reach the MPP and achieve a balance between tracking speed
and steady-state oscillation. Some researchers have applied fuzzy control to MPPT [15–17],
but this requires establishing an MPPT model and time-consuming modifications to the
control system. Additionally, constructing the PSC module using fuzzy modeling presents
challenges. Neural networks have the capability to model complex dynamic systems, such
as the inverse kinematics of a robotic arm [18]. Other researchers have employed neural
networks for MPP tracking [19,20], but this method consumes significant memory and time
to track the MPP. On the other hand, biomimetic algorithms are a robust tool for global
optimization, suitable for complex problems, as they do not require extensive analysis
like Monte Carlo methods [21]. In recent years, a plethora of bio-inspired metaheuristic
algorithms have been proposed for addressing optimization problems. For instance, the
Liver Cancer Algorithm employs an evolutionary search methodology that simulates the
growth and progression dynamics of liver tumors, showcasing commendable efficacy in
feature selection [22]. The Slime Mold Algorithm, derived from the natural oscillation
patterns of slime molds, has developed into a stochastic optimizer renowned for its excep-
tional exploration abilities and exploitation tendencies [23]. The Moth Search Algorithm
explores engineering optimization and applications based on the most representative fea-
tures of moths, such as moth flight and phototaxis [24]. The Colony Predation Algorithm
formulates stochastic optimization strategies by emulating the hunting tactics employed
by animal groups, wherein boundary values are substituted with optimal position values
across boundaries to augment the algorithm’s exploitation prowess [25]. In reference [26],
the INFO Algorithm is introduced and implemented for global optimization, enhancing
the updating rule and vector combination through the utilization of an improved weighted
mean methodology. In reference [27], inspired by the cooperative behavior and chasing
styles of Harris’s hawks in nature, the Harris Hawks Optimizer is proposed and applied
to several engineering design problems. In reference [28], by simulating the growth and
crossover behavior of rime-rice swarms, the RIME optimization algorithm is proposed,
demonstrating good convergence accuracy and speed.

Some researchers have treated MPPT as an optimization problem and controlled it
using particle swarm optimization (PSO) [29] or other biomimetic algorithms [30–32]. Com-
pared to other MPPT methods, biomimetic algorithms are suitable for long-term operation
in MPPT systems. They can mitigate feedback ratio distortion, thereby improving tracking
accuracy. Among the array of bio-inspired algorithms, PSO emerges as notably well-suited
for implementation in MPPT within PGS. The PSO algorithm offers several advantages,
including simple calculations, low memory requirements, and easy programming, making
it more promising for MPPT systems. PSO is a relatively simple algorithm, featuring
ease of implementation and minimal hardware demands. This characteristic facilitates its
deployment on ordinary microcontrollers or other low-cost platforms, obviating the neces-
sity for high-end expensive chips. Such attributes bear considerable significance within
the realm of practical photovoltaic generation engineering, offering substantial potential
for cost reduction. Moreover, PSO commonly demonstrates accelerated computational
speeds, enabling real-time modulation of output voltage or current to effectively trace the
MPP of photovoltaic cells. This capability assumes critical importance in the context of
PGS given the propensity for the MPP to fluctuate in response to external environmental
conditions. Owing to its ability for online computation devoid of reliance on high-end
expensive hardware, PSO emerges as a favored choice for conducting MPPT investigations
within the domain of PGS. The traditional PSO algorithm exhibits steady-state oscillation,
prolonging the tracking time and decreasing tracking accuracy. An improved PSO was
proposed in the literature [33], which decayed the argument based on generation but still
exhibited steady-state oscillation. In the study cited as reference [34], a modified PSO was
employed within a MPPT system. Upon discovering a new global maximum, both the
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velocity and particle position were re-initialized. Nevertheless, the rationale behind the
selection of criteria for resetting the arguments was not elucidated. In reference [35], a
two-stage algorithm was proposed. In the first step, MPPT operated to the first peak using
P and O, and in the second stage, MPPT searched the remaining space using P and O, but
this method is only effective in multi-peak situations. In reference [36], another two-stage
algorithm was proposed to reduce steady-state oscillation by reducing velocity when the
particle approaches the MPP in PSO. When the velocity is less than the setup point, MPPT
operates at MPP using P and O. This reduces steady-state oscillation, but it requires limit-
ing the maximum velocity of particles and may still get stuck in local maximums in some
situations. In reference [37], MPPT is operated using FA. Although FA has high-speed
convergence, it must balance tracking time and accuracy.

The PSO algorithm still faces some challenges that need to be addressed, such as
premature convergence and the trade-off between accuracy and efficiency. To enhance PSO,
the quantum-behaved particle swarm optimization (QPSO) algorithm was introduced. It
aims to meliorate global exploration by integrating principles from quantum mechanics
into the PSO model [38]. QPSO utilizes quantum behavior instead of particle position and
velocity in PSO. QPSO ensures that particles can occupy any position, thereby guarantee-
ing a good balance between tracking time and tracking accuracy. In the realm of global
optimization problems, the QPSO algorithm demonstrates superior convergence perfor-
mance in comparison to the PSO algorithm. Nonetheless, there persist several challenges
associated with QPSO. Over time, numerous researchers have endeavored to enhance
and implement QPSO in various domains. For instance, a pioneering approach involving
a novel particle dimension search strategy has been proposed, aiming to transform the
original evaluation function into a path evaluation point function for route planning of
fixed-wing UAV [39]. Furthermore, in the literature [40], an improved version of the QPSO
algorithm has been employed to train a wavelet neural network for anomaly detection
in large-scale multimedia data transmission networks. Additionally, reference [41] intro-
duces an enhanced QPSO algorithm incorporating a large-to-small contraction-expansion
coefficient strategy, specifically tailored to tackle the inverse kinematics problem encoun-
tered in robotics. Furthermore, this study devises a control allocation scheme utilizing the
improved QPSO algorithm to calculate both the thrust and rotation angle of the manned
submersible, thereby contributing to the effective minimization of energy consumption
within the thruster system [42]. However, it is worth noting that despite these advance-
ments, challenges such as the occurrence of local optima and sluggish convergence persist,
particularly as the scale of the problem enlarges.

This study presents the design of an improved quantum-behavior particle swarm opti-
mization (IQPSO) algorithm aimed at mitigating the premature convergence issue inherent
in traditional QPSO approaches, while simultaneously augmenting the convergence speed
and tracking accuracy of QPSO. To expedite convergence, a natural exponential decay
method is employed for the contraction–expansion coefficient, while accuracy enhance-
ments are achieved through the estimation of probability distributions and optimal solution
positions that evolve with each generation. By integrating biomimetic algorithms with a
series buck-boost converter, the system can operate in both buck and boost modes. The
IQPSO algorithm is then implemented into a chip for application in MPPT systems, facilitat-
ing PGS to operate at their maximum power point despite varying irradiance and shading
conditions. Subsequently, MPPT experiments are conducted using a DC programmable
power supply to simulate solar photovoltaic systems, with comparisons made against other
biomimetic algorithms such as the QPSO, FA, and PSO. Through single-peak experiments,
multi-peak experiments, and irradiance variation experiments, the superiority of IQPSO in
tracking accuracy and tracking speed is verified. Finally, practical testing involving single-
peak, multi-peak, and full-day assessments of PV arrays validate the superior performance
of IQPSO over other biomimetic algorithms under real-world conditions.

The principal contributions of this article are outlined as follows. Primarily, the intro-
duction of IQPSO addresses the challenge of premature convergence observed in traditional
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QPSO methodologies, thereby enhancing both convergence speed and tracking accuracy.
Secondly, IQPSO demonstrates superior MPPT performance in scenarios involving single-
peak, multi-peak, and changing irradiance. Lastly, the efficacy of IQPSO in practical PGS is
substantiated through comprehensive full-day testing, highlighting its ability to enhance
the power generation efficiency of PGS under realistic operating conditions.

2. The PV Circuit and the Effects of Environmental Conditions
2.1. The Equivalent Circuit of PV Cells

PV cells are composed of multiple P–N junction semiconductors. Illustrated in Figure 1
is an equivalent circuit representing PV cells. This model includes a current source Is, a
parallel diode Dj, a series resistance Rs, a PV output current Ipv, and a PV output voltage
Vpv. The output current can be represented by Equation (1), where k is the Boltzmann’s
constant, n is the ideality factor, T is the temperature in Kelvin, q is the electron charge,
and Id is the saturation current. Thus, the output power of the PV cells can be obtained
as Equation (2). Figure 2 shows the Power–Voltage (P–V) curve of PV cells, which is a
nonlinear curve due to the MPP.

Ipv = Is − Id

(
exp

(
q
(
Vpv + Ipv × Rs

)
nkT

)
− 1

)
(1)

Ppv = IpvVpv = IsVpv − IdVpv

(
exp

(
q
(
Vpv + Ipv × Rs

)
nkT

)
− 1

)
(2)
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2.2. The Effects of Irradiance, Temperature, and PSC

The inherent limitations of individual photovoltaic (PV) cells, such as their low output
voltage and current, render them impractical for direct application. Consequently, PGSs
typically consist of several PV cells to raise the output current and voltage. The power
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curve of a PGS will vary due to changes in irradiance and temperature. Figures 3 and 4,
respectively, show the changes in the power curve of a PGS when affected by irradiance
and temperature. When irradiance changes, the maximum power sharply decreases as
irradiance decreases, while the MPP voltage only shifts slightly to the left and decreases.
When the temperature changes, the maximum power decreases as temperature increases,
and the MPP voltage shifts to the left and becomes smaller. These observations underscore
the significant influence of irradiance on the output power of a PGS, as elucidated by the
depicted data in Figures 3 and 4.
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In a PGS, if some PV cells are shaded, resulting in the decreased power generation of
certain PV panels, connecting them in series and parallel with unshaded PV panels can
lead to multi-peak conditions in the overall power curve. Figure 5a illustrates a schematic
diagram of the photovoltaic panels under different shading conditions. Blue indicates no
shading, green indicates a small amount of shading, and red indicates significant shading.
Subsequently, Figure 5b presents the resultant power curve derived from the configurations
outlined in Figure 5a. When the PV panels are completely unshaded, the power curve
of the PGS exhibits a single blue peak. Conversely, when a small part of the PV panels
is shaded, the power curve of the PGS shows a green double peak. In scenarios where
shading predominantly impacts most of the PV panels, the resulting power curve assumes
a red multi-peaked characteristic. Based on the above, effectively operating the PGS at the
maximum power point under different conditions due to irradiance, temperature changes,
and partial shading poses a challenge for the MPPT approach in terms of both speed
and accuracy.
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3. IQPSO Algorithm
3.1. QPSO Algorithm

The QPSO algorithm integrates principles derived from quantum mechanics and
utilizes quantum behavior to describe the velocity and position of particles within the
PSO optimization framework. Equations (3) to (7) represent the formulas of the traditional
QPSO algorithm [31]. In Equation (3), xk+1

i denotes the new position of the ith particle at
the next iteration, Pk

i represents the local attractor at the present iteration, Bk
i denotes the

characteristic length of the delta potential well at the present iteration, and k indicates the
current iteration number. In Equation (4), β denotes the contraction–expansion coefficient.
In Equation (5), pbest,i denotes the best position of the ith particle, gbest denotes the best
position of the particle swarm, and r1 is a random variable in the interval [0, 1]. In
Equation (6), Mk denotes the mean best position of the particle swarm at the present
iteration, and u is a random variable within [0, 1]. The value of the random variable u
determines the sign in the Equation (3). If u is greater than 0.5, a negative sign is adopted;
otherwise, a positive sign is used in Equation (3). In Equation (7), N denotes the number of
particles. The QPSO algorithm fundamentally operates based on the quantum motion of
the delta potential well. The Monte Carlo approach is integrated to guarantee a balanced
exploration–exploitation trade-off during the search process. The particles have a certain
probability of being dispersed throughout the search area, increasing the likelihood of
finding the globally optimal solution across the entire domain.

xk+1
i = Pk

i ± Bk
i (3)

β = βmax −
k

kmax
× (βmax − βmin) (4)

Pk
i = r1 pbest,i + (1 − r1)gbest (5)

Bk
i = β ×

∣∣∣Mk − xk
i

∣∣∣× ln
(

1
u

)
(6)

Mk =
N

∑
i=1

pbest,i

N
(7)

3.2. IQPSO Algorithm

This paper proposes the IQPSO algorithm to address the premature convergence issue
of traditional QPSO from four perspectives, namely, the contraction–expansion coefficient
β, the range of random variables for local attractors Pk

i , the characteristic length Bk
i of the

delta potential well, and the mean best position Mk of the particle swarm. To expedite
the convergence speed of the QPSO algorithm, the contraction–expansion coefficient β is
typically designed to decrease with the increase in generations, as depicted in Equation (4).
However, during the initial phases of the QPSO algorithm, β may easily lead particles to
exceed the search space and become confined to the search boundary. In the later stages
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of the QPSO algorithm, if β becomes too small when nearing the steady state, it may
impede particle mobility, causing them to linger near the optimal point and failing to
attain the true optimal value. Consequently, this may result in premature convergence
issues, leading to the failure to attain the globally optimal solution. To circumvent these
premature convergence problems, this study exploits the characteristic that the reciprocal
of the natural exponent with a small power has a larger value in the early stages of the
algorithm and gradually decreases to a positive number that is significant as it approaches
the steady state. Equation (4) is refined into to Equation (8), enabling the contraction–
expansion coefficient β to decrease in a natural exponential fashion as the number of
iterations increases. Consequently, the proposed improved QPSO algorithm can expedite
the convergence speed in the early stages and enhance tracking accuracy in the steady state.

β = exp
(
−γ

k
kmax

)
(8)

where γ is a preset positive number.
Figure 6 illustrates a comparative analysis of β values obtained using Equations (4) and (8).

During the transient state, the β values derived from Equation (8) are smaller than those
derived from Equation (4). However, as the number of iterations approaches the steady
state, the β values of Equation (4) will become significantly smaller because Equation (4)
decreases in a linear manner. In contrast, Equation (8) exhibits exponential decrease,
ensuring that the β value does not become too small. To validate the effectiveness of
Equation (8), a multi-peak function shown in Figure 7 is employed as the objective function
for comparison. Following 10,000 simulation runs, the average tracking time was calculated,
as shown in Figure 8. It is evident that regardless of the number of particles utilized, the
average tracking time associated with the modified contraction–expansion coefficient
proposed in this article is notably shorter compared to that associated with the traditional
contraction–expansion coefficient.
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Moreover, the significance of the optimal solution of the particle swarm increases
with the progression of iterations. In the current QPSO algorithm, Equation (5) solely
employs random variables to strike a balance between the optimal solution of individual
particles and that of the particle swarm, without adjusting its weight with the iteration
count. Consequently, this approach may predispose the algorithm towards convergence
to a local optimal solution, thus failing to achieve the global optimal solution. To rectify
this limitation, this paper leverages the characteristic of the decreasing β parameter as the
number of iterations increases. Equation (5) is amended to Equation (9), wherein the range
of the random variable r1 is adjusted to [0, β] to enhance the weighting of the optimal
solution of the particle swarm in the later stages of the algorithm.

Pk
i = r1 pbest,i + (1 − r1)gbest r1 ∈

[
0 β

]
(9)

where r1 is a random variable.
Figure 7 serves as the benchmark multi-peak objective function utilized to assess the

effectiveness of Equation (9). Following 10,000 simulation runs, the average success rate of
tracking the best solution across the entire domain is computed. Figure 9 illustrates that
regardless of the number of particles, the average success rate achieved by Equation (9)
proposed in this study surpasses that of the existing Equation (5).
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During the initial phase of the conventional QPSO algorithm, while Equation (6)
aids particles in escaping from locally optimal solutions, it also elevates the likelihood of
particles not converging easily in the later stages of the algorithm. This phenomenon may
result in increased tracking time during the application of MPPT, thereby resulting in a
power loss. To mitigate this issue, this paper capitalizes on the characteristic of β decreasing
with generations and transforms Equation (6) into Equation (10), wherein Bk

i is gradually
reduced in the later stages of the algorithm to hasten the convergence speed of particles.
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Bk
i = β ×

∣∣∣Mk − xk
i

∣∣∣× ln
(

1
1 − u × β

)
(10)

To ascertain the efficacy of Equation (10), Figure 7 is employed as the multi-peak
objective function to compute the average convergence speed after 10,000 simulation runs.
Figure 10 depicts the comparison of the average convergence time between the proposed
method and the traditional one. The findings unequivocally reveal that irrespective of the
number of particles, the approach proposed in this paper achieves much faster convergence
than the existing method.
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i .

Additionally, within the traditional QPSO algorithm, Mk represents, solely, the mean’s
best position of the particle swarm, as delineated in Equation (7). However, this calculation
of Mk does not consider the relationship between the fitness value and the movement
of individual particles towards the best position of the particle swarm. Furthermore,
if the particle positions are unevenly distributed, the mean best value of the particle
swarm may be distant from the globally optimal solution, thereby resulting in slower
convergence or even convergence only to a locally optimal solution. Consequently, this
paper comprehensively considers the fitness value, individual particle position, and the
best position of the particle swarm to modify Mk, as depicted in Equation (11), aiming to
enhance the success rate of tracking within the proposed QPSO algorithm.

Mk = gbest +

N
∑

i=1

[(
Fi − Fgbest

)
×
(

xk
i − gbest

)]
∣∣∣∣ N

∑
i=1

(
Fi − Fgbest

)∣∣∣∣ (11)

Figure 7 shows the multi-peak objective function utilized to validate the efficacy of
Equation (11). Subsequently, Figure 11 illustrates the average tracking rate of the search
for the globally optimal solution after 10,000 simulation runs. The proposed Mk exhibits a
superior tracking rate compared to the existing Mk, regardless of the number of particles
utilized in the algorithm.

Building upon the insights, this paper devises an improved QPSO algorithm, incor-
porating Equations (3) along with Equations (8) to (11), thereby enhancing the tracking
accuracy and speed of the proposed biomimetic method. Figure 7 serves as the benchmark
multi-peak objective function to contrast the IQPSO algorithm with the QPSO algorithm,
with γ set to 20. Through 10,000 simulation iterations, the tracking time and success rate
are illustrated in Figures 12 and 13, respectively. The findings conclude that the proposed
IQPSO algorithm surpasses the existing QPSO algorithm and is better suited for intricate
search and tracking tasks.
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Figure 14 shows the flowchart depicting the proposed IQPSO. The optimization
process and description of IQPSO are presented herein. The process is outlined as follows:

Step 1 IQPSO Initialization: The IQPSO initialization involves setting parameters such
as the particle number N and the convergence coefficient γ. The larger the particle number
N, the longer the tracking time and the higher the tracking rate. The γ must be preset
according to various system characteristics. Typically, particles are initialized with a random
distribution over the search space.

Step 2 Fitness Evaluation: Calculate the fitness value of each particle. The fitness
function is defined as the power of the PV array.

Step 3 Update pbest,i and gbest: Based on the fitness value obtained in Step 2, the best
position of the ith particle (pbest,i) and the best position of the particle swarm (gbest) are
updated, respectively.

Step 4 Update Particle Position: Utilizing Equation (3), the particle positions are updated
incorporating Equations (8) to (11).

Step 5 Sort Particle Position: The particle positions are sorted to speed up the conver-
gence of maximum power tracking.
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4. MPPT Circuit

This paper employs a series buck-boost converter for MPPT in a PGS. Figure 15 shows
the circuit diagram of the series buck-boost converter along with its associated peripheral
circuits. Table 1 presents an overview of the specifications of the MPPT circuit. The series
buck-boost converter comprises a buck converter and a booster converter, regulating the
power switch M1 into buck mode and the power switch M2 into boost mode, respectively.
Upon receiving the signals Vpv and Ipv from the feedback circuits, the microprocessor
TMS320F28069 calculates the duty ratio using the IQPSO program stored within the chip.
Based on the calculated duty ratio, the corresponding pulse width modulation (PWM)
signal drives the insulated gate bipolar transistor (IGBT) power switch in either buck mode
or boost mode, maximizing the output power of the PGS.
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Table 1. Specifications of the MPPT circuit.

System Power 2000 W

Input voltage Vpv 10–560 V

Output voltage Vo 100–400 V

Inductor LM 1.2 mH

Input capacitor Cin 560 µF

Output capacitor Cout 560 µF
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To search for the MPP under varying irradiance and temperature conditions, the MPPT
circuit must switch between buck and boost modes. In this paper, the duty ratio of the
power switch is designed as the particle position, distributed within the range of [0, 2].
Specifically, the particle position [0, 1] indicates that the MPPT is operated in buck mode,
wherein the duty ratio ranges from 0% to 100%. Conversely, the particle position [1, 2]
signifies that the MPPT is operated in boost mode, with the duty ratio ranging from 0%
to 100%. Figure 16 depicts the flowchart illustrating the mode conversion process. The
symbol Dnow represents the current particle position of MPPT, while ∆D represents the
change step of the duty ratio. Additionally, the symbol D_M1 denotes the duty ratio of the
power switch M1, and D_M2 denotes the duty ratio of the power switch M2. Throughout
the MPPT mode switching process, D_M1 is set to 1, D_M2 is set to 0, and a delay of 50 ms
is implemented to stabilize the input voltage before transitioning modes to reduce surges.
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5. IQPSO MPPT

Figure 17 shows the flowchart illustrating the IQPSO MPPT process. The procedure is
outlined as follows:

Step 1 System Initialization: Commence by initializing the parameters and particle
positions of the IQPSO algorithm, where i denotes the particle number and k denotes the
generation number. Set the particle position through random distribution.

Step 2 Fitness Calculation: Operate the MPPT based on the particle positions and
calculate the PV power as the fitness value.

Step 3 IQPSO Execution: Update the particle positions using the proposed IQPSO
algorithm.

Step 4 Convergence Judgment: Determine whether the convergence condition has been
met. In this study, the convergence condition is defined as the difference between the
maximum particle position and the minimum particle position being less than 0.01. If the
particle distribution falls below 0.01, it means that the IQPSO algorithm has converged,
and the PGS will operate at the MPP. If convergence has not been achieved, return to step
2 for the next iteration.

Step 5 Curve Change Judgment: When the power curve fluctuates due to changes in
irradiance, temperature, or partial shading, the PGS might not reach the maximum power
output while operating at the initially identified global best particle position. This study
defines a power curve change as the difference between the maximum power and the ideal
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value exceeding 1%. If the fitness variation surpasses 1%, indicating that the P–V curve
requires modification, revert to step 1 for further exploration.
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6. Experimental Results

Figure 18 shows the hardware implementation of the MPPT circuit system. The
62100H-600S programmable DC power supply is utilized to simulate the solar photovoltaic
system, facilitating the conduct of single-peak experiments, multi-peak experiments, and
irradiance change experiments initially. Alongside the proposed IQPSO, the existing
QPSO, FA, and PSO algorithms are also programmed into the microprocessor to enable
the comparative analysis of MPPT performance. To ensure fairness in comparing the
tracking results of various MPPT algorithms and considering computational time, the
particle number is consistently set to 5. Table 2 outlines the parameter settings for the
various MPPT algorithms. Given the stochastic nature of the four biomimetic algorithms,
the experiments are repeated one thousand times to ascertain optimal parameters. Tracking
time is defined as the duration required for the steady-state error to decrease to 1%, while
tracking accuracy is quantified according to Equation (12).

η =
PPV, MPPT

PPV, GMAX
(12)

where PPV, MPPT denotes the PV output power searched through the MPPT algorithm, and
PPV, GMAX denotes the globally maximum PV output power.
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Table 2. Parameter settings in various MPPT algorithms.

Method PSO FA QPSO IQPSO

Parameter
W 0.3 A 0.02 βmax 1.0 γ 2.0
C1 0.5 B 0.50 βmin 0.1
C2 0.5 Γ 0.50

Figure 19 illustrates the P–V curve generated by the 62100H-600S programmable DC
power supply, with an open circuit voltage of 333 V, a short-circuit current of 8.659 A, a MPP
voltage of 260 V, and a MPP current of 7.692 A. Therefore, the global maximum PV output
power PPV, GMAX is calculated to be 1999.92 W. In Figure 20, the tracking responses of the
single-peak P–V curve using various MPPT algorithms are presented. Figure 20a displays
the response of the IQPSO MPPT algorithm, which exhibits the fastest response and the
highest accuracy among the algorithms considered. Figure 20b shows the response of the
QPSO MPPT algorithm, which is slow but accurate. Figure 20c illustrates the response
of the FA MPPT algorithm, characterized by its speed but lower accuracy. Figure 20d
demonstrates the response of the PSO MPPT algorithm, featuring the slowest response and
relatively lower accuracy. Table 3 summarizes the experimental results for the single-peak
case for comparison. It is evident that the proposed IQPSO algorithm achieves the best
MPPT performance in terms of both tracking accuracy and tracking time. Table 4 lists the
ablation study for the single-peak case. It can be observed that the contraction–expansion
coefficient has the most significant impact on the MPPT performance. A possible reason
is that changes in β also induce modifications in Equations (9) and (10). Following this,
the factor with a greater impact on MPPT performance is Equation (10), followed by
Equation (11). Conversely, the factor with the smallest impact on MPPT performance is
Equation (9), as the equation solely alters the range of the random variables.
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Figure 20. MPPT responses of the single-peak P–V curve: (a) IQPSO; (b) QPSO; (c) FA; (d) PSO (Ppv:
500 W/div, Vpv: 200 V/div, Ipv: 5 A/div, time: 2 s/div).

Table 3. Experimental results in the single-peak case.

Maximum
Power (W)

Tracking
Power (W)

Tracking
Accuracy

Tracking
Time (s)

IQPSO 1999.92 1980.59 99.03 % 1.32
QPSO 1999.92 1969.62 98.48 % 3.93

FA 1999.92 1926.04 96.31 % 2.81
PSO 1999.92 1954.81 97.74 % 4.51

Table 4. Ablation study in the single-peak case.

Tracking
Power (W)

Tracking
Accuracy

Tracking
Time (s)

IQPSO w/o Equation (8) CHG 1970.12 98.51 % 2.91
IQPSO w/o Equation (9) CHG 1977.32 98.87 % 2.32
IQPSO w/o Equation (10) CHG 1972.32 98.62 % 2.51
IQPSO w/o Equation (11) CHG 1976.12 98.81 % 2.38

Figure 21 shows the P–V curve in the case of a multi-peak, generated by the 62100H-
600S programmable DC power supply, simulating a solar photovoltaic system under partial
shading. The open circuit voltage is recorded as 349.5 V, with a short circuit current of
5.163 A, an MPP voltage of 272.39 V, and a MPP current of 4.6258 A. Therefore, the global
maximum PV output power PPV, GMAX is calculated to be 1260.02 W. Figure 22 displays the
tracking responses of the multi-peak P–V curve using various MPPT algorithms. Figure 22a
exhibits the response of the IQPSO MPPT algorithm, which demonstrates the fastest
response and the highest accuracy among the algorithms considered. Figure 22b shows
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the response of the QPSO MPPT algorithm, characterized by the slowest response but
good accuracy. Figure 22c illustrates the response of the FA MPPT algorithm, which is
fast but less accurate. Figure 22d demonstrates the response of the PSO MPPT algorithm,
exhibiting the worst accuracy and is not very fast. Table 5 lists the experimental results in
the multi-peak case for comparison. Clearly, in terms of both tracking accuracy and tracking
time, the proposed IQPSO algorithm outperforms the others in the multi-peak scenario.
Table 6 lists the results of the ablation study for the multi-peak case. It can be observed
that the contraction–expansion coefficient still has the most significant impact on MPPT
performance. Conversely, the mechanism with the least impact on MPPT performance
remains Equation (9). Following this, the effects of other mechanisms on MPPT performance
are observed in Equations (10) and (11) in sequence. These rankings align with those
presented in Table 4.
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Table 5. Experimental results in the multi-peak case.

Maximum
Power (W)

Tracking
Power (W)

Tracking
Accuracy

Tracking
Time (s)

IQPSO 1260.02 1244.99 98.81 % 1.93
QPSO 1260.02 1239.55 98.38 % 6.78

FA 1260.02 1215.66 96.48 % 2.61
PSO 1260.02 1205.78 95.70 % 5.41

Table 6. Ablation study in the multiple-peak case.

Tracking
Power (W)

Tracking
Accuracy

Tracking
Time (s)

IQPSO w/o Equation (8) CHG 1240.09 98.42 % 4.51
IQPSO w/o Equation (9) CHG 1243.99 98.73 % 2.42
IQPSO w/o Equation (10) CHG 1241.48 98.53 % 3.83
IQPSO w/o Equation (11) CHG 1243.75 98.71 % 3.25

To assess the MPPT performance of the proposed IQPSO algorithm under changing
irradiance conditions, this study implements an irradiance variation of 100 W/m2 every
10 seconds. Specifically, the irradiance decreases from 1000 W/m2 to 600 W/m2 and then
increases back to 1000 W/m2 cyclically. The experiment lasts a total of ninety seconds.
Experimental data obtained from the 62100H-600S programmable DC power supply is
utilized to construct the power curve, as depicted in Figure 23. Throughout the irradiance
decrease from 1000 W/m2 to 600 W/m2, the temperature remains fixed at 25 ◦C. The global
maximum PV output power PPV, GMAX corresponds to 1999.92 W, 1800 W, 1600 W, 1400 W,
and 1200 W, respectively.
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Figure 24 displays the MPPT responses under varying irradiance conditions using
various algorithms. Figure 24a depicts the response of the IQPSO MPPT algorithm, distin-
guished by the fastest response and highest accuracy. Figure 24b illustrates the response
of the QPSO MPPT algorithm, which exhibits slower response times and lower accuracy.
Figure 24c shows the response of the FA MPPT algorithm, known for its speed but lower
accuracy. Figure 24d presents the response of the PSO MPPT algorithm, which demon-
strates the poorest accuracy and slower response times. Table 7 provides a summary of the
experimental results under changing irradiance conditions for comparison. It is evident that
when the irradiance conditions fluctuate, the IQPSO proposed in this study consistently
demonstrates superior MPPT performance, either with respect to tracking accuracy or
tracking time.
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Table 7. Experimental results under changing irradiance conditions.

Average Tracking Accuracy Average Tracking Time (s)

IQPSO 99.84 % 2.04
QPSO 98.73 % 3.60

FA 98.55 % 2.37
PSO 98.51 % 3.29

Figure 25 showcases the actual PV arrays, comprising ten monocrystalline silicon
modules connected in series. At a temperature of 25 ◦C and an irradiance of 1000 W/m2,
the maximum power output reaches 2 kW. Figure 26 illustrates the tracking responses
of the PV arrays under single-peak conditions using various MPPT algorithms. These
experiments were conducted under similar ambient conditions (irradiance and temper-
ature), with no shading on the PV arrays. Figure 26a depicts the MPPT response using
IQPSO, characterized by the fastest response and highest accuracy. Figure 26b illustrates
the MPPT response using QPSO, which exhibits a slower but accurate response. Figure 26c
shows the MPPT response using FA, featuring a fast response speed but lower accuracy.
Figure 26d presents the MPPT response using PSO, which exhibits the slowest response
and less accuracy. Table 8 provides the experimental data presented in Figure 26. In terms
of tracking accuracy, IQPSO performs the best while FA performs the worst. Regarding
tracking time, IQPSO is the fastest, and PSO is the slowest.
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Table 8. Experimental results of the PV arrays in the single-peak case.

Irradiance
(W/m2)

Temperature
(◦C)

Maximum
Power (W)

Tracking
Power (W)

Tracking
Accuracy

Tracking
Time (s)

IQPSO 825 35.0 1314 1307 99.47 % 1.35
QPSO 791 35.8 1317 1304 99.01 % 4.42

FA 780 38.1 1339 1308 98.35 % 2.35
PSO 804 34.5 1272 1255 98.66 % 5.43

Figure 27 shows the tracking responses of the PV arrays utilizing different MPPT
algorithms under multi-peak conditions. These experiments were conducted under similar
ambient conditions (irradiance and temperature), with the PV arrays partially shaded.
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Figure 27a illustrates the MPPT response employing IQPSO, exhibiting the quickest re-
sponse time and the highest level of accuracy. Figure 27b showcases the MPPT response
with QPSO, characterized by its accuracy despite a slower response rate. Figure 27c dis-
plays the MPPT response with FA, demonstrating a rapid response rate albeit with reduced
accuracy. Figure 27d depicts the MPPT response with PSO, exhibiting the poorest tracking
accuracy and tracking time. Table 9 provides the experimental data shown in Figure 27.
IQPSO demonstrates superior MPPT performance, whereas PSO exhibits the poorest MPPT
performance for PV arrays under shading conditions.
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Table 9. Experimental results of the PV arrays in the multi-peak case.

Irradiance
(W/m2)

Temperature
(◦C)

Maximum
Power (W)

Tracking
Power (W)

Tracking
Accuracy

Tracking
Time (s)

IQPSO 986 39.6 1065 1064 99.91 % 1.73
QPSO 1010 37.8 1005 997 99.20 % 3.86

FA 975 38.1 967 948 98.03 % 1.93
PSO 977 38.8 968 941 97.21 % 4.63

The values of irradiance and temperature vary depending on the relative position of
the sun and the PV arrays. To compare the MPPT performance using the four biomimetic
algorithms under varying irradiance and temperatures, full-day experiments were con-
ducted from 8 a.m. to 4 p.m. MPPT measurements were taken every hour, and the currently
measured power represents the maximum generated power of the PV arrays for that hour.
Figures 28, 29 and 30 illustrate the tracking time of the full-day MPPT measurements on
the first, second, and third days, respectively. Table 10 presents the maximum power
generation output of the PV arrays over three days. From these charts, it is evident that
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utilizing IQPSO for MPPT consistently results in achieving the maximum power generation
output and the fastest tracking time each day throughout the three-day period.
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Table 10. Experimental results for maximum power generation over three days (Wh).

IQPSO QPSO FA PSO

Day1 6703.66 6388.45 6422.04 6000.40
Day2 10,521.22 10,408.85 10,319.25 10,164.69
Day3 9382.16 9284.92 9211.54 9072.42
Total 26,607.04 26,082.22 25,952.83 25,237.51

7. Conclusions

This paper presents the IQPSO algorithm, aimed at enhancing both the tracking
accuracy and efficiency of the conventional QPSO approach in the pursuit of optimal
solutions. The IQPSO algorithm is applied to a photovoltaic maximum power tracking
system, which incorporates a buck-boost converter capable of operating in both buck and
boost modes. Therefore, it enables the PGS to operate at the MPP under both single-peak
and multi-peak conditions. The investigation compares the maximum power tracking
accuracy and tracking time of four bio-inspired optimization methods through single-peak
experiments, multi-peak experiments, and irradiance variation experiments. Subsequently,
the superiority of the proposed IQPSO in practical PGS applications is validated through
single-peak testing, multi-peak testing, and comprehensive full-day testing. Experimental
findings conclusively demonstrate that the proposed IQPSO exhibits optimal convergence
speed and superior maximum power search capability, thereby significantly enhancing the
power generation efficiency of PGS under various conditions such as uniform irradiance,
partial shading, and fluctuating irradiance.

To further enhance the power generation of PV panels, future research endeavors may
explore the potential impact of employing holographic interferometry to measure the heat
transfer from the surfaces of various materials on PV panels to the surrounding air [43].
The algorithm proposed in this paper presents promising prospects for diverse renewable
energy applications, with particular relevance to wind energy conversion systems [44].
Confronting variable wind speed conditions requires swift responses to fluctuations in
wind speed, thereby presenting a significant challenge. However, the algorithm introduced
in this study emerges as a novel solution to address this pressing concern. Furthermore,
the proposed algorithm holds potential for future applications in wind turbines utilized
for agricultural water pumping [45], which can extract peak power quickly and efficiently
under changing wind speeds. Moreover, photovoltaic systems frequently situated in
desert climates encounter substantial shading caused by sand and dust accumulation,
posing formidable obstacles to power generation [46]. Leveraging its multi-peak processing
capabilities, the proposed algorithm demonstrates promising adaptability to enhance the
performance of photovoltaic systems in desert environments. Recent years have witnessed
a notable surge in interest surrounding the integration of superconducting magnetic energy
storage equipment within smart grids [47]. The proposed algorithm’s application spectrum
includes mitigating the impact of partial shading on the DC bus side of photovoltaic
systems, along with the resolution of load imbalances on the AC bus side. Furthermore, the
potential integration of photovoltaic systems with ocean-going vessels represents another
promising application realm [48]. Given the prolonged sailing durations and variable
environmental factors, including light, temperature, humidity, and climate, the need for
swift and precise responses to dynamic shadows becomes paramount. Significantly, the
algorithm proposed in this paper is poised to meet this critical demand.
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2011, Springer Proceedings in Physics; Náprstek, J., Horáček, J., Okrouhlík, M., Marvalová, B., Verhulst, F., Sawicki, J., Eds.; Springer:
New York, NY, USA, 2011; Volume 139, pp. 269–274.

22. Houssein, E.H.; Oliva, D.; Samee, N.A.; Mahmoud, N.F.; Emam, M.M. Liver Cancer Algorithm: A novel bio-inspired optimizer.
Comput. Biol. Med. 2023, 165, 107389. [CrossRef]

23. Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Future
Gener. Comput. Syst. 2020, 111, 300–323. [CrossRef]

https://doi.org/10.3390/su16031102
https://www.ren21.net/gsr-2023/
https://doi.org/10.3390/pr8050621
https://doi.org/10.1155/2015/321843
https://doi.org/10.1109/TIA.2019.2937856
https://doi.org/10.3390/su152115335
https://doi.org/10.3390/en16155665
https://doi.org/10.1109/TIA.2021.3081519
https://doi.org/10.1109/TSTE.2020.2996089
https://doi.org/10.1109/JESTPE.2021.3065916
https://doi.org/10.1109/TIE.2019.2907510
https://doi.org/10.3390/pr11041010
https://doi.org/10.1109/ACCESS.2021.3091502
https://doi.org/10.3390/en16145384
https://doi.org/10.1109/ACCESS.2019.2932694
https://doi.org/10.1109/ACCESS.2021.3058052
https://doi.org/10.35833/MPCE.2019.000086
https://doi.org/10.1177/1729881420925283
https://doi.org/10.1109/TII.2019.2901516
https://doi.org/10.1109/JSYST.2019.2949083
https://doi.org/10.1016/j.compbiomed.2023.107389
https://doi.org/10.1016/j.future.2020.03.055


Biomimetics 2024, 9, 223 24 of 24

24. Li, J.; Yang, Y.-H.; An, Q.; Lei, H.; Deng, Q.; Wang, G.-G. Moth Search: Variants, Hybrids, and Applications. Mathematics 2022, 10,
4162. [CrossRef]

25. Tu, J.; Chen, H.; Wang, M.; Gandomi, A.H. The Colony Predation Algorithm. J. Bionic Eng. 2021, 18, 674–710. [CrossRef]
26. Ahmadianfar, I.; Asghar Heidari, A.; Noshadian, S.; Chen, H.; Gandomi, A.H. INFO: An Efficient Optimization Algorithm based

on Weighted Mean of Vectors. Expert Syst. Appl. 2022, 195, 116516. [CrossRef]
27. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications.

Future Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]
28. Su, H.; Zhao, D.; Heidari, A.A.; Liu, L.; Zhang, X.; Mafarja, M.; Chen, H. RIME: A physics-based optimization. Neurocomputing

2023, 532, 183–214. [CrossRef]
29. Figueiredo, S.N.; Aquino, R.N.A.L.S. Hybrid MPPT technique PSO-P&O applied to photovoltaic systems under uniform and

partial shading conditions. IEEE Lat. Am. Trans. 2021, 19, 1610–1617.
30. Qin, Y.; Pun, C.-M.; Hu, H.; Gao, H. Logistic Quantum-behaved Particle Swarm Optimization Based MPPT for PV Systems. In

Proceedings of the 2017 Seventh International Conference on Information Science and Technology (ICIST), Da Nang, Vietnam,
16–19 April 2017.

31. Huang, Y.-P.; Huang, M.-Y.; Ye, C.-E. A fusion firefly algorithm with simplified propagation for photovoltaic MPPT under partial
shading conditions. IEEE Trans. Sustain. Energy 2020, 11, 2641–2652. [CrossRef]

32. Agwa, A.M.; Alanazi, T.I.; Kraiem, H.; Touti, E.; Alanazi, A.; Alanazi, D.K. MPPT of PEM fuel cell using PI-PD controller based
on golden jackal optimization algorithm. Biomimetics 2023, 8, 426. [CrossRef]

33. Ballaji, A.; Dash, R.; Subburaj, V.; Reddy, K.J.; Swain, D.; Swain, S.C. Design & development of MPPT using PSO with predefined
search space based on fuzzy fokker planck solution. IEEE Access 2022, 10, 80764–80783.

34. Kacimi, N.; Idir, A.; Grouni, S.; Boucherit, M.S. Improved MPPT control strategy for PV connected to grid using IncCond-PSO-
MPC approach. CSEE J. Power Energy Syst. 2023, 9, 1008–1020.

35. Ibrahim, M.H.; Ang, S.P.; Dani, M.N.; Rahman, M.I.; Petra, R.; Sulthan, S.M. Optimizing step-size of perturb & observe and
incremental conductance MPPT techniques using PSO for grid-tied PV system. IEEE Access 2023, 11, 13079–13090.

36. Sangrody, R.; Taheri, S.; Cretu, A.-M.; Pouresmaeil, E. An improved PSO-based MPPT technique using stability and steady state
analyses under partial shading conditions. IEEE Trans. Sustain. Energy 2024, 15, 136–145. [CrossRef]

37. Watanabe, R.B.; Junior, O.H.A.; Leandro, P.G.M.; Salvadori, F.; Beck, M.F.; Pereira, K.; Brandt, M.H.M.; Oliverira, F.M.D.
Implementation of the bio-inspired metaheuristic firefly algorithm (FA) applied to maximum power point tracking of photovoltaic
systems. Energies 2022, 15, 5338. [CrossRef]

38. Liu, F.; Gao, J.; Liu, H. A fault diagnosis solution of rolling bearing based on MEEMD and QPSO-LSSVM. IEEE Access 2020, 8,
101476–101488. [CrossRef]

39. Huang, C.; Fei, J.; Deng, W. A novel route planning method of fixed-wing unmanned aerial vehicle based on improved QPSO.
IEEE Access 2020, 8, 65071–65084. [CrossRef]

40. Guo, L. Research on anomaly detection in massive multimedia data transmission network based on improved PSO algorithm.
IEEE Access 2020, 8, 95368–95377. [CrossRef]

41. Cao, Y.; Wang, W.; Ma, L.; Wang, X. Inverse Kinematics Solution of Redundant Degree of Freedom Robot Based on Improved
Quantum Particle Swarm Optimization. In Proceedings of the 2021 7th International Conference on Control Science and Systems
Engineering (ICCSSE), Qingdao, China, 30 July–1 August 2021.

42. Fang, X.; Ruan, Z.; Zhao, S.; Liu, F. Conditional disturbance-compensation control for an overactuated manned submersible
vehicle. IEEE Trans. Ind. Inform. 2023, 20, 4828–4838. [CrossRef]
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