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Abstract: In today’s fast-paced and ever-changing environment, the need for algorithms with en-
hanced global optimization capability has become increasingly crucial due to the emergence of a
wide range of optimization problems. To tackle this issue, we present a new algorithm called Random
Particle Swarm Optimization (RPSO) based on cosine similarity. RPSO is evaluated using both the
IEEE Congress on Evolutionary Computation (CEC) 2022 test dataset and Convolutional Neural
Network (CNN) classification experiments. The RPSO algorithm builds upon the traditional PSO
algorithm by incorporating several key enhancements. Firstly, the parameter selection is adapted and
a mechanism called Random Contrastive Interaction (RCI) is introduced. This mechanism fosters
information exchange among particles, thereby improving the ability of the algorithm to explore
the search space more effectively. Secondly, quadratic interpolation (QI) is incorporated to boost
the local search efficiency of the algorithm. RPSO utilizes cosine similarity for the selection of both
QI and RCI, dynamically updating population information to steer the algorithm towards optimal
solutions. In the evaluation using the CEC 2022 test dataset, RPSO is compared with recent varia-
tions of Particle Swarm Optimization (PSO) and top algorithms in the CEC community. The results
highlight the strong competitiveness and advantages of RPSO, validating its effectiveness in tackling
global optimization tasks. Additionally, in the classification experiments with optimizing CNNs for
medical images, RPSO demonstrated stability and accuracy comparable to other algorithms and
variants. This further confirms the value and utility of RPSO in improving the performance of CNN
classification tasks.

Keywords: global optimization; particle swarm optimization; cosine similarity; classification

1. Introduction

Scientific and technological development generate a significant amount of data, in-
cluding medical data, transaction data, house-price data, and more. Researchers can utilize
this data to enhance their understanding of convenient technology. However, dealing with
diverse types of data requires the construction of complex models, which are processed
through machine learning. The diversity of data poses limitations on the machine learning
approach, as the parameters in machine learning need to be updated differently depend-
ing on the data being processed. Consequently, optimizing machine learning becomes a
major issue.

As an optimization technique, meta-heuristic algorithms are driven by natural phe-
nomena and behaviors [1]. These algorithms possess the benefit of not requiring specialized
understanding regarding the issue at hand. Instead, they iteratively explore and solve
problems in a certain space, providing robustness and universality [2]. Particle Swarm
Optimization (PSO) [3], a type of meta-heuristic algorithm, is representative and widely
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used. PSO is an optimization technique that mimics the natural hunting behavior of birds.
It is characterized by its simplicity, requiring fewer parameters and being easy to implement
compared to other methods. PSO exhibits good learning ability through the interaction
of individual information during the evolutionary process. Consequently, it effectively
addresses numerous real-world issues, including energy systems [4], path planning [5],
image processing [6], DNA computing [7], and engineering optimization [8]. Consequently,
there is significant research interest in combining PSO with machine learning techniques.
In summary, meta-heuristic algorithms, such as PSO, offer a powerful approach for solving
optimization problems. Their ability to adapt and explore solution spaces without requiring
explicit problem knowledge makes them valuable tools for a wide range of applications.

PSO has gained significant attention in recent research for its ability to solve challeng-
ing problems in machine learning. Several studies have applied PSO to optimize various
machine learning models and algorithms. For instance, Yong Zhu improved the LeNet-5
model by employing PSO to optimize its parameters [9]. Wu Deng optimized the parame-
ters of the Least Squares Support Vector Machine (LS-SVM) for fault classification using an
enhanced PSO algorithm [10]. Rajesh K. Yadav and Anubhav introduced a hybrid training
algorithm combining PSO and the genetic algorithm (GA) alongside Adam Optimization
to enhance the training process of artificial neural networks [11]. Kun Zhang utilized a
PSO-optimized Least Squares Support Vector Machine (LSSVM) to establish a fault diag-
nosis model [12]. J. Beschi Raja and S. Chenthur Pandian employed PSO to optimize the
Fuzzy Clustering Mean (FCM) for disease prediction [13]. Mohammed Nasser Al-Andoli
integrated PSO with the backpropagation (BP) algorithm for malware detection [14]. Chao
Huang used PSO to optimize Deep Convolutional Neural Networks (DCNNs) for auto-
matic defect detection and classification [15]. Thomas George employed PSO for feature
selection in electroencephalogram (EEG) signal classification [16]. Mohamed Issa combined
PSO with the bat optimization algorithm for improved detection techniques [17]. Ab-
hishek Dixit utilized a mix of algorithms, primarily based on the Differential Evolutionary
Algorithm (DE) and PSO, for optimizing feature selection and classification [18]. Muham-
mad Sharif employed PSO for image segmentation and the GA for feature selection [19].
Hanuman optimized the FCM clustering algorithm for medical image segmentation using
PSO [20]. Debendra Muduli leveraged Multi-Objective Discrete Particle Swarm Optimiza-
tion (MODPSO) to enhance the performance of feedforward neural networks in breast
cancer detection by optimizing hidden node parameters [21]. However, traditional PSO
approaches face challenges in complex optimization models, as they can easily become
caught in local optima, resulting in premature convergence. Additionally, the stability of
the optimization capability of PSO leaves room for improvement [22].

To further boost the optimization capability of PSO, this article proposes a random
particle swarm optimization algorithm based on cosine similarity, referred to as RPSO.
RPSO adjusts the internal parameters of PSO and introduces the Random Contrastive
Interaction mechanism and quadratic interpolation (QI). It employs cosine similarity to
choose between the two mechanisms, which efficiently and dynamically updates popula-
tion information, enhancing the global and local optimization capabilities of the algorithm.
The performance tests were carried out based on two dimensions of CEC 2022 and com-
pared with the PSO variant and the top algorithm of CEC to verify the competitiveness
and effectiveness of RPSO. Finally, RPSO was optimized for the hyperparameters of the
CNN, and the optimized model was confirmed to possess superior diagnostic abilities in
both datasets. The specific work performed and innovations produced in this study are
as follows:

• Introduction of the Random Contrastive Interaction mechanism.
• Introduction of the Quadratic interpolation mechanism.
• Design of a judgment condition based on cosine similarity.
• Comparison of PSO variants and the top algorithm in two dimensions of CEC 2022.
• Optimization of CNN for the diagnosis of two diseases.
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This paper is structured as follows: Section 2 introduces the theory of PSO and cosine
similarity; Section 3 provides the introduction and analysis of the proposed algorithm;
Section 5 presents the testing of the proposed algorithm based on CEC 2022; Section 4
highlights the improvement provided by the suggested algorithm when applied to CNN
for classification experiments; and the last section concludes the work of the paper with a
summary and discussion.

2. Related Theories
2.1. Particle Swarm Algorithms

In the PSO algorithm optimization process, the position information vector x is sym-
bolized by a matrix of N × d and xi = (xi1, xi2, · · · , xid), and the generated velocity vector
vi = (vi1, vi2, · · · , vid). The velocity and position are continuously revised through the
following equation [12].

vi(t + 1) = wvi(t) + z1r1

(
xpb,i(t)− xi(t)

)
+ z2r2

(
xgb,i(t)− xi(t)

)
xi(t + 1) = xi(t) + vi(t + 1)

(1)

In Equation (1), vi(t + 1) and xi(t + 1) represent individual i’s velocity and position
during generation t, z1 and z2 denote the two acceleration coefficients, r1 and r2 denote
the uniform random numbers [0, 1], and w is the inertia weight. xpb(t) and xgb(t) denote
the global optimum and the historical optimal position of an individual at generation
t, respectively.

2.2. Cosine Similarity

The cosine similarity measure serves to assess how similar two vectors are by finding
the cosine of their intersection angle [23]. This value ranges between −1 and 1, where a
cosine similarity value of 1 indicates that the vectors share the same direction, 0 indicates
orthogonality (a 90-degree angle between the vectors), and −1 indicates that the vectors
share opposite directions.

Unlike other similarity measures, cosine similarity disregards vector lengths and solely
examines their pointing directions. As a result, it can determine whether two vectors are
essentially heading in the same direction based solely on the cosine of the angle between
them. Cosine similarity is typically utilized for positive spaces and yields values within the
range [−1, 1]. This is illustrated in Figure 1, which represents the most common 2D space.
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Figure 1a demonstrates that as the angle between two vectors approaches 0◦, the
cosine value approaches 1, indicating a high similarity in direction. In Figure 1b, a cosine
value close to 0 indicates that the vectors are orthogonal, meaning they are independent of
each other. Figure 1c illustrates that a cosine value closer to −1 implies that the vectors are
oriented in opposite directions.

It is important to note that cosine similarity is independent of vector length and only
considers the direction of the vectors. The formula for calculating cosine similarity is as
follows [24]:

cos(θ) =
∑n

i=1 (Ai × Bi)√
∑n

i=1 (Ai)
2 ×

√
∑n

i=1 (Bi)
2

(2)
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where Ai and Bi are the i-th components of A and B, respectively.

3. The Proposed Algorithm

This subsection provides a description of the proposed algorithm and its principles.

3.1. Related Research from PSO

In recent years, researchers have made significant advancements in improving the PSO,
which can be broadly divided into four primary categories: hybrid algorithms, multiple
populations or multi-sampling approaches, adaptive learning mechanisms, and other
miscellaneous techniques.

Hybrid algorithms have gained popularity in enhancing the performance of PSO
by combining different optimization algorithms. For instance, Zeng [25] incorporated
the DE algorithm into PSO to address the issue of premature convergence. Zaman [26]
fused the Backtracking Search Optimization Algorithm (BSA) with PSO by modifying
the mutation and crossover operators using neighborhood information, resulting in an
improved convergence rate. Xu [27] proposed a strategy learning framework that utilized
an adaptive DE algorithm to learn an optimal combination of strategies. Taking inspiration
from the bee-foraging search mechanism of the Artificial Bee Colony (ABC) algorithm,
Chen [28] developed a hybrid algorithm to tackle complex global optimization problems
(GOPs). Khan [29] combined the local search ability of the Gravitational Search Algorithm
(GSA) with the social thinking capability (gbest) of PSO. Another approach was taken by
Molaei [30], who combined PSO with the GA. Ahmed [31] proposed a novel Hybrid Particle
Swarm Optimization and Genetic Algorithm (HPSOGA) to minimize the energy function
of molecules. HPSOGA balances exploration and exploitation, enhances diversity, and
avoids premature convergence. It outperforms standard PSO and benchmark algorithms in
solving large-scale global optimization problems and molecular energy functions.

In the field of multiple population or multi-sample techniques, several approaches
have been proposed to enhance Particle Swarm Optimization (PSO). Xia [32] developed
a Triple Archives PSO (TAPSO) that incorporates three different types of archives: elite
particles, profiteer particles, and outstanding exemplars. These archives guide future merit-
seeking mechanisms through genetic properties. Zhang [33] introduced the Particle Swarm
Optimization-Alternating Least Squares (PSO-ALS) algorithm, which adaptively groups
the population into sub-swarms and further divides particles into ordinary particles and the
locally best particle within each sub-swarm. Two different learning strategies are designed
to update the particles. Li [34] divides the particle swarm into elite and normal groups based
on a ranking system and defines different types of neighborhoods accordingly. Sheng [35]
proposed a PSO variant with multi-level population sampling and dynamic p-learning
mechanisms. Lu [36] proposed an Enhanced Multi-Swarm Cooperative Particle Swarm
Optimizer (EMCPSO) that divides the entire population into four identical sub-swarms.
This algorithm incorporates a delayed-activation (DA) mechanism to detect sub-swarm
stagnation and introduces a repulsive mechanism to prevent premature clustering of the
entire population.

In terms of adaptive learning mechanisms, Liu [37] developed a novel PSO algorithm
that incorporates a sigmoid-function-based weighting strategy. This strategy adjusts the
acceleration coefficients by considering the distance of particles to the global best position
and their personal best position. Liu [38] also proposed several other adaptive mechanisms,
including a chaos-based non-linear inertia weight, stochastic and mainstream learning
strategies, an adaptive position updating strategy, and a terminal replacement mechanism.
Li [39] introduced a landscape-based adaptive operator selection mechanism. This mech-
anism quantifies the landscape modality, selects the most suitable evolutionary operator
based on the population’s needs at different evolutionary stages, and adopts the mirrored
boundary handling method to alleviate trapping in local optima. Zhang [40] proposed a
particle swarm optimization algorithm with an empirical balance strategy (EBPSO), which
selects a better search strategy from two equations using an adaptive adjustment mech-
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anism. The algorithm dynamically adjusts the influence weight of the search equations
and introduces a dynamic random search mechanism. Wang [41] proposed a hybrid PSO
called Adaptive Strategy PSO (ASPSO), which incorporates a chaotic map, a position up-
dating strategy, elite and dimensional learning strategies, and a competitive substitution
mechanism. Li [42] proposed a novel PSO variant with a state-based adaptive velocity limit
strategy (PSO-SAVL). In this strategy, the velocity limit is adaptively adjusted according to
the estimated evolutionary state (ESE), with high values representing the global searching
state and low values representing the local searching state.

In addition to the aforementioned categories, there are several other methods for
improving PSO. Wang [43] presented a reinforcement learning strategy to adaptively adjust
the optimization mechanism of PSO. Tian [44] proposed Variable Surrogate Model-based
Particle Swarm Optimization (VSMPSO), which utilizes a single surrogate model con-
structed through simple random sampling and a variable model management strategy.
Liu [45] incorporated Evolutionary Game Theory (EGT) to control the population state
and proposed a selection mechanism and a mutation mechanism inspired by EGT con-
cepts. Liu [46] employed Gaussian white noise with adjustable intensity to randomly
perturb the acceleration coefficients, aiming to explore the problem space more exten-
sively. Machado [47] introduced the concepts of complex-order derivatives (CD) and
conjugate-order differentials.

Despite achieving certain optimization results, the aforementioned research approaches
still have limitations. For example, hybrid algorithms may struggle to guarantee the com-
plementary advantages of the two algorithms. Multiple swarms may not ensure effective
local development. Adaptive mechanisms may possess irreversible search mechanisms.
Additionally, it can be challenging to ensure the learning and adaptive ability of the algo-
rithm in the existing research. To solve these limitations, this paper proposes a judgment
mechanism based on cosine similarity and introduces the Random Contrastive Interaction
(RCI) and QI mechanisms to jointly enhance the effective search capability of the algorithm.

3.2. Random Contrastive Interaction

In order to cope with complex and variable optimization environments, it is difficult
for traditional particle swarms to maintain a good search ability to find high quality infor-
mation, especially when the formulas use information about historical optimal positions.
This can lead to a situation where multiple historical optimal positions cannot be updated
with the global optimal position, resulting in a lack of diversity in the algorithm. For this
reason, we introduce Random Contrastive Interaction [48], which provides better evolu-
tionary information by means of the states within the population adaptively learning from
each other. A specific schematic is shown in Figure 2.
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As shown in Figure 2, P individuals are randomly selected from the population to
form a random topology. Within this small population, there will be a local best solution,
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qbest, and a worst solution, qworst. The role of RCI is to enable the individuals within the
small population to learn from qbest and qworst, and to interact with each other to obtain
information, meaning that dynamically updating an individual’s position enhances the
flexibility of the algorithm. The details are as follows [48]:

Zi = Q1·Vi + Q2·(qbest − xPi) + φ·Q3·(qworst − xPi)
Si = xPi + Zi

(3)

where, Q1, Q2, Q3 are uniform random numbers in the range of [0, 1] and φ is the learning
parameter controlling qworst, which is 0.3. An optimal setting of ϕ for RPSO falls within
a moderate range, neither too large (such as φ = 0.5) nor too small (such as φ < 0.3),
as extremes hinder RPSO from achieving optimal performance. A φ that is too small
diminishes the impact of the worst position on each updated particle, potentially causing
rapid movement of particles towards the location of the best position and resulting in
premature convergence or being trapped in local optima. On the other hand, a φ that
is too large amplifies the influence of the worst position excessively, disrupting swarm
convergence and leading to suboptimal performance of RPSO. Zi is the velocity of the
newly generated individual and Si is the position of the newly generated individual. xPi
denotes the position of the ith individual in the selected population P. It can be seen that
the selection of individuals makes it possible to continuously move from the locally optimal
individual to the locally worst position, increasing the exchange of information in the
population and also improving the global exploration capacity.

Which the number of randomly selected individuals is constantly changing, in the
early stage of the algorithm, in the stage of global exploration needs global search capability,
at this time a larger number of individuals need to RCI operation, and in the later stage, a
portion of the individuals need to carry out a certain amount of exploration to increase the
diversity of the population. In the literature [48], the variation in the size of the selected
populations is shown in Figure 3. TS is the population size for each selection. As shown in
the Figure 3, the randomly selected population size presents an increasing manner, which
will lead to a problem that the local exploitation ability is very poor at the later stage,
and the feasible solution cannot be mined effectively. Therefore, this paper designs a new
population design scheme, which is formulated as follows:

TQ = (rand(1) + 1)× (1 − t/T)× N/2
TSt = round(max(TQ, N/10))

(4)
Biomimetics 2024, 9, x FOR PEER REVIEW 7 of 33 
 

 

 
Figure 3. TS in literature [48]. 𝑇𝑄 = (𝑟𝑎𝑛𝑑(1) + 1) × (1 − 𝑡/𝑇) × 𝑁/2 𝑇𝑆 = 𝑟𝑜𝑢𝑛𝑑(𝑚𝑎𝑥(𝑇𝑄, 𝑁/10)) 

(4)

The use of a max function is needed to ensure that there are at least N/10 individu-
als in the population. This ensures that the individuals need to carry out a certain explo-
ration, in which the value of TQ is constantly changing. The overall trend is gradually 
decreasing, but this is an oscillating change. Taking the population number of 50 as an 
example, the specific value changes as shown in Figure 4; it can be seen that the range of 
changes in the early stage is larger, and in the later stage, this value gradually becomes 
smaller, and finally the structure of N/10 is unanimously adopted. Such a screening 
mechanism not only ensures the diversity of the population but also enables a detailed 
search of a certain area to find a higher quality of feasible method. On the other hand, 
the oscillation characteristics are beneficial, mainly reflected in the reversible changes in 
the population size. This can diversify the search process and compensate for any vul-
nerabilities in the algorithm’s search. The specific pseudo-code is shown in Algorithm 1. 

 
Figure 4. Proposed TS. 

Algorithm 1. Random Contrastive Interaction (RCI) 
Input: 
t: global optimum position  
T: Matrix of population information 
N: population size 
fit: Matrix of objective function values 
x: Position of the population 

Figure 3. TS in literature [48].

The use of a max function is needed to ensure that there are at least N/10 individuals
in the population. This ensures that the individuals need to carry out a certain exploration,
in which the value of TQ is constantly changing. The overall trend is gradually decreasing,
but this is an oscillating change. Taking the population number of 50 as an example, the
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specific value changes as shown in Figure 4; it can be seen that the range of changes in the
early stage is larger, and in the later stage, this value gradually becomes smaller, and finally
the structure of N/10 is unanimously adopted. Such a screening mechanism not only
ensures the diversity of the population but also enables a detailed search of a certain area to
find a higher quality of feasible method. On the other hand, the oscillation characteristics
are beneficial, mainly reflected in the reversible changes in the population size. This can
diversify the search process and compensate for any vulnerabilities in the algorithm’s
search. The specific pseudo-code is shown in Algorithm 1.

Algorithm 1. Random Contrastive Interaction (RCI)

Input:
t: global optimum position
T: Matrix of population information
N: population size
fit: Matrix of objective function values
x: Position of the population
Output:
X*: Matrix of newly generated stock information
The number of individuals TS to be selected for this iteration is calculated according to Equation (4);
1. rs = randperm(N, TS); %Generate non-repeating individual subscripts based on TS.
2. [af, bf] = sort(fit); % af is the result of the ascending order of the fitness values and bf is the
corresponding subscript position.
3. db = find(bf == rs(1));Find the location of the optimal individual in rs.
4. dw = find(bf == rs(TS));Find the worst individual position in rs.
5. dbest = pos(bbb(db),:);
6. dworst = pos(bbb(dw),:);
7. For i = 1:size(rs,2)
8. For j = 1:size(x,2)
9. Calculate the corresponding new position in rs according to Equation (3).
10. End
11. End
Return X*
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example, the specific value changes as shown in Figure 4; it can be seen that the range of 
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smaller, and finally the structure of N/10 is unanimously adopted. Such a screening 
mechanism not only ensures the diversity of the population but also enables a detailed 
search of a certain area to find a higher quality of feasible method. On the other hand, 
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the population size. This can diversify the search process and compensate for any vul-
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3.3. Quadratic Interpolation (QI)

QI is a better local search technique that employs a parabola to adapt the form of a
quadratic function to locate the extreme points of a curve [49]. The quadratic interpolation
technique is used to further accelerate the information exchange of the population and
improve the local search ability. The specific formula is as follows [50]:

xnew = 0.5·(
(
x2

1 − x2
2
)
· f (x3) +

(
x2

3 − x2
1
)
· f (x1) +

(
x2

1 − x2
3
)
· f (x2)

(x1 − x2)· f (x3) + (x2 − x3)· f (x1) + (x1 − x3)· f (x2)
) (5)
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where x1, x2, and x3 are three individuals randomly selected from the population. In
this paper, x1 represents the location of the globally optimal individual, while x2 and x3
represent two randomly selected individuals from the population. Algorithm 2 provides
the specific pseudo-code. By facilitating information interaction between the globally
optimal individual and the two individuals from the population, the algorithm guides the
population to converge towards the vicinity of the optimal solution, thereby enhancing the
algorithm’s local search capability.

Algorithm 2. Quadratic interpolation (QI)

Input:
gbest: global optimum position
x: Matrix of population information
Output:
x*: Matrix of newly generated stock information
1. For i = 1:size(x)
2. k = randperm(N, 2)%Two non-repeating individuals were randomly generated.
3. The positional information of the new individual is calculated by substituting the three individuals k(1),
k(2), and gbest into Equation (5).
4. End
Return x*

3.4. Setting of Parameters

In the particle swarm algorithm, with fixed parameters, there is a fixed search ampli-
tude and it is difficult to increase the diversity. Many scholars have proposed using the
following formula for the setting of z1 and z2 with weights w [51].

w = wmax − (wmax − wmin)× t/T
z1 = 2.5 − 2 × t/T
z2 = 0.5 + 2 × t/T

(6)

where wmax is 0.9 and wmin is 0.2, w decreases with the number of iterations, and the
population’s diversity levels are gradually reducing. z1 and z2 changes are set by biasing
the historical optimum and the global optimum; in the early stage of the algorithm, a larger
z1 and a smaller z2 cause the historical optimum position to have a larger bias, which can
cause the global exploration ability of the algorithm to increase, and a smaller z1 and a
larger z2 can cause the search of the algorithm to bias towards the global optimum position
and enhance the precision of the solution. This analysis shows that the combined effect
of these three factors causes the algorithm to tend away from global exploration to local
exploitation, and also balances the search scope of the algorithm.

3.5. Selection Mechanisms

In the process of algorithm optimization, establishing how to judge the population
state more accurately is always an important direction of research. Making a clear plan
according to the population state is the only way to ensure that the algorithm is constantly
close to the theoretical optimal solution. Qiang Zhang used cosine similarity to dynamically
update the mutation operation of DE [52], Moutaz Alazab used CS to convert continuous
problems into binary problems [53], and Wei Li et al. used CS to upgrade algorithm
speed [54]. In this paper, cosine similarity is introduced to determine the distance of an
individual from the current optimal position, the number of individual similarity angles
greater than 90 are recorded separately, and the choice of mechanism is made based on the
number of recorded CN. When the angle is greater than 90 the cosine similarity is greater
than 0, and vice versa. The specific selection mechanism is as follows:{

RCI i f CN < N/2
QI otherwise

(7)
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where i f CN < N/2 indicates that the similarity angle between most of the individuals
within the current population and the current optimal position is less than 90 degrees. This
reflects the fact that most of the individuals have high degrees of similarity with each other,
and there is low population diversity. There also exists the probability of falling into the
local optimum. This occurs when the RCI is used to improve the learning degree of the
worst position and enhance the diversity of the population.

Meanwhile, if the number of individuals within the population with an angle greater
than ninety degrees from the current optimal position is high, then this reflects the fact
that the individuals within the population are not similar to the current optimal position
that gives better global exploration ability. Under these circumstances, the QI mechanism
is used to enhance the local search of the global optimal position, balancing the local
and global search ability of the algorithm. This mechanism of selection ensures that each
iteration does not completely lose the local exploitation or global exploration capacity, and
it dynamically regulates the learning ability of the algorithm.

3.6. Flow of the Algorithm

To improve the judgment and learning ability of PSO, this paper proposes a stochastic
learning PSO algorithm based on cosine similarity. Firstly, the algorithm is dynamically set
up, and secondly, the selection of RCI and QI is carried out according to the characteristics
of cosine similarity, jointly ensuring the capacity of the algorithm to globally explore
and locally develop and improving the accuracy of the solution. Using the minimization
problem as a case study, the specific pseudo-code of the Algorithm 3 is as follows.

Algorithm 3. RPSO

Input:
N: population size
T: Matrix of population information
Maxfes: Maximum number of iterations
Dim: Dimension of the problem
Lb: Lower bound of the problem
Ub: Upper bound of the problem
f: objective function
Output:
xgbest: Matrix of newly generated stock information
Fmin: optimal solution
1. The position matrix x is obtained by random initialization based on the set parameters.
2. Calculate the objective function value based on f to obtain the optimal position xgbest, the optimal
solution fmin
3. Fes = N;
4. T = 1;
5. While (t <= T)&&(Fes <= Maxfes)
6. Calculate the new population position x according to Equations (1) and (7)
7. Calculate the objective function value according to f to get the current optimal position xl its subscripts q,
update the optimal position xgbest, the optimal solution fmin
8. Fes = Fes + N;
9. Nk = 0
10. For i = 1:N
11. If i ̸= q
12. The cosine similarity between the individual and xl was calculated to obtain nc according to Equation
(2)
13. End
14. If nc < 0
15. Nk = Nk + 1;
16. end
17. end
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18. If Nk > N/2
19. Perform according to Algorithm 2.
20. Calculate the objective function value based on f to obtain the optimal position xgbest, the optimal
solution fmin
21. Fes = Fes + TS;
22. else
23. Perform according to Algorithm 1.
24. Calculate the objective function value based on f to obtain the optimal position xgbest, the optimal
solution fmin
25. Fes = Fes + N;
26. End
27. t = t + 1;
28. End
Return xgbest, fmin

4. Performance Tests

This section validates the proposed algorithm in the CEC 2022 test set, compares
it with the variant of PSO and the top algorithm in the CEC competition, and conducts
ablation experiments.

4.1. Comparison with PSO Variants

To demonstrate the optimized performance of RPSO, a comparison is conducted with
recent variants of PSO algorithms to highlight the novelty and feasibility of RPSO. The
compared variants include Adaptive multi-strategy ensemble particle swarm optimization
(AMEPSO) [55], Elite archives-driven particle swarm optimization (EAPSO) [56], Improved
Phasor Particle Swarm Optimization with Fitness Distance Balance (FDBPSO) [57], Velocity
pausing particle swarm optimization (VPPSO) [58], a PSO variant for single-objective
numerical optimization (PSOsono) [59], modified particle swarm optimization (MPSO),
and Pyramid particle swarm optimization (PPSO) [60]. The internal parameter settings
for each algorithm are based on the literature. The population size is set to 100, and the
algorithms are tested on 10 and 20 dimensions using a maximum number of evaluations of
200,000 and 1,000,000. The experiments are performed utilizing MATLAB 2019a on an 11th
Gen Intel(R) Core(TM) i5-11500 @ 2.70GHz processor. It is worth noting that in the program,
all functions of CEC 2022 are minimization functions. We subtract the theoretical optimal
value from the optimized result, so the theoretical optimal value becomes 0. The closer the
optimization results of each algorithm are to 0, the better the optimization performance.
Each algorithm is independently run 30 times, and the optimal value, worst value, median,
mean, and standard deviation are recorded. These metrics are used to measure the stability
and optimization capability of the algorithm. In simple terms, the smaller the value, the
better the optimization effect of the algorithm. The Wilcoxon rank-sum test is used to
analyze the differences between RPSO and other algorithms, with a significance level of
0.05. The symbol “+” indicates that RPSO performs better than a certain algorithm in a
specific function, “−” indicates the opposite, and “=” shows that the optimization efficiency
of the two algorithms is equal. Additionally, the Friedman test is used to measure the
overall differences among algorithms and provide a final ranking based on the entire CEC
2022 test set [61]. The detailed optimization results are presented in Tables 1 and 2. To
visualize the distribution of optimization performance for each algorithm, Figures 5 and 6
display the distribution of optimal solutions for each algorithm across different functions.

As shown in Table 1 and Figure 4, in the case of 10 dimensions the RPSO algorithm
performs better than the other variants of the PSO algorithm in most cases. Specifically, the
optimization standard deviation of the RPSO algorithm is the lowest value in the functions
F1(X), F2(X), F5(X), F6(X), F7(X), F10(X), and F12(X). The theoretical optimum is found
every time in F1(X), F5(X), and F11(X). In other cases, from small to large, the variance
ranks second or third, indicating strong search stability.
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Table 1. Ten dimensions with PSO algorithm variants.

F Index AMSE
PSO EAPSO FDBPSO MPSO PPSO PSOsono VPPSO RPSO

F1(x)

Best 0.00 × 1000 1.13 × 1003 1.12 × 1003 0.00 × 1000 0.00 × 1000 0.00 × 1000 1.93 × 10−9 0.00 × 1000

Worst 1.26 × 1002 1.76 × 1004 1.29 × 1004 2.25 × 10−07 0.00 × 1000 0.00 × 1000 7.62 × 10−9 0.00 × 1000

Median 2.49 × 1001 6.75 × 1003 5.09 × 1003 1.38 × 10−10 0.00 × 1000 0.00 × 1000 4.34 × 10−9 0.00 × 1000

Mean 3.25 × 1001 6.90 × 1003 6.04 × 1003 1.40 × 10−8 0.00 × 1000 0.00 × 1000 4.39 × 10−9 0.00 × 1000

Standard 3.56 × 1001 4.25 × 1003 2.94 × 1003 4.57 × 10−8 0.00 × 1000 0.00 × 1000 1.28 × 10−9 0.00 × 1000

Contest 1.94 × 10−9 (+) 1.21 × 10−12 (+) 1.21 × 10−12 (+) 1.21 × 10−12 (+) N/A (=) N/A (=) 1.21 × 10−12 (+)

F2(x)

Best 9.47 × 10−03 4.54 × 1000 1.01 × 1001 8.20 × 10−8 2.45 × 10−04 0.00 × 1000 1.45 × 10−02 1.71 × 10−07

Worst 1.63 × 1001 9.26 × 1001 9.65 × 1001 7.08 × 1001 8.92 × 1000 1.28 × 1001 9.28 × 1000 7.32 × 10−02

Median 1.62 × 1000 1.21 × 1001 3.11 × 1001 7.32 × 1000 8.92 × 1000 3.99 × 1000 6.70 × 1000 5.91 × 10−04

Mean 2.83 × 1000 2.17 × 1001 4.00 × 1001 9.12 × 1000 5.44 × 1000 4.65 × 1000 4.81 × 1000 9.12 × 10−03

Standard 3.58 × 1000 2.16 × 1001 2.28 × 1001 1.73 × 1001 4.06 × 1000 3.69 × 1000 4.33 × 1000 1.80 × 10−02

Contest 9.92 × 10−11 (+) 3.02 × 10−11 (+) 3.02 × 10−11 (+) 3.59 × 10−07 (+) 7.41 × 10−10 (+) 7.13 × 10−05 (+) 2.15 × 10−10 (+)

F3(x)

Best 0.00 × 1000 3.31 × 1000 5.74 × 1000 2.09 × 10−11 0.00 × 1000 0.00 × 1000 1.44 × 10−04 0.00 × 1000

Worst 1.45 × 10−11 8.85 × 1000 3.02 × 1001 2.33 × 10−05 1.57 × 10−05 1.22 × 10−11 8.73 × 1000 8.79 × 10−05

Median 5.53 × 10−03 5.38 × 1000 1.39 × 1001 3.06 × 10−8 0.00 × 1000 2.56 × 10−06 5.67 × 10−11 1.42 × 10−06

Mean 2.40 × 10−02 5.75 × 1000 1.47 × 1001 8.73 × 10−07 1.30 × 10−06 5.53 × 10−03 1.74 × 1000 7.62 × 10−06

Standard 3.41 × 10−02 1.55 × 1000 5.78 × 1000 4.25 × 10−06 3.55 × 10−06 2.24 × 10−02 2.65 × 1000 1.90 × 10−05

Contest 6.48 × 10−11 (=) 2.95 × 10−11 (+) 2.95 × 10−11 (+) 9.43 × 10−03 (−) 6.38 × 10−05 (−) 4.67 × 10−11 (=) 2.95 × 10−11 (+)

F4(X)

Best 1.55 × 1000 2.40 × 1001 6.81 × 1000 1.99 × 1000 0.00 × 1000 2.98 × 1000 5.97 × 1000 2.98 × 1000

Worst 1.60 × 1001 6.64 × 1001 3.70 × 1001 1.69 × 1001 6.96 × 1000 1.69 × 1001 2.59 × 1001 9.95 × 1000

Median 8.46 × 1000 4.51 × 1001 1.88 × 1001 9.45 × 1000 1.99 × 1000 8.95 × 1000 1.69 × 1001 8.46 × 1000

Mean 8.82 × 1000 4.44 × 1001 1.86 × 1001 9.72 × 1000 2.32 × 1000 9.09 × 1000 1.64 × 1001 7.63 × 1000

Standard 3.45 × 1000 1.03 × 1001 6.25 × 1000 3.82 × 1000 1.60 × 1000 3.07 × 1000 5.12 × 1000 2.08 × 1000

Contest 1.58 × 10−11 (=) 2.93 × 10−11 (+) 3.72 × 10−10 (+) 1.94 × 10−03 (+) 4.00 × 10−10 (−) 1.64 × 10−11 (=) 5.96 × 10−10 (+)

F5(X)

Best 0.00 × 1000 3.75 × 1000 4.85 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 8.43 × 10−10 0.00 × 1000

Worst 2.69 × 10−03 9.28 × 1001 6.91 × 1002 4.54 × 10−11 4.54 × 10−11 8.95 × 10−02 2.82 × 1000 0.00 × 1000

Median 0.00 × 1000 1.77 × 1001 1.97 × 1002 0.00 × 1000 0.00 × 1000 0.00 × 1000 1.53 × 10−9 0.00 × 1000

Mean 2.77 × 10−04 2.58 × 1001 2.42 × 1002 5.44 × 10−02 2.41 × 10−02 2.98 × 10−03 3.99 × 10−11 0.00 × 1000

Standard 7.17 × 10−04 2.10 × 1001 1.77 × 1002 1.38 × 10−11 8.57 × 10−02 1.63 × 10−02 6.90 × 10−11 0.00 × 1000

Contest 2.16 × 10−04 (+) 1.72 × 10−12 (+) 1.72 × 10−12 (+) 1.26 × 10−9 (+) 1.31 × 10−03 (+) 1.00 × 1000 (=) 1.72 × 10−12 (+)

F6(X)

Best 5.43 × 1001 1.84 × 1003 1.39 × 1004 2.46 × 1001 9.30 × 1000 4.72 × 1000 1.22 × 1002 2.70 × 1000

Worst 4.98 × 1002 7.29 × 10−14 6.85 × 10−14 1.96 × 1003 4.18 × 1003 1.37 × 1003 6.25 × 1003 1.96 × 1002

Median 1.26 × 1002 7.69 × 1004 1.27 × 10−14 1.57 × 1002 5.23 × 1002 5.01 × 1001 1.82 × 1003 6.32 × 1001

Mean 1.64 × 1002 1.24 × 10−14 1.81 × 10−14 3.70 × 1002 1.13 × 1003 1.47 × 1002 2.38 × 1003 7.83 × 1001

Standard 1.11 × 1002 1.44 × 10−14 1.67 × 1005 5.25 × 1002 1.36 × 1003 2.79 × 1002 1.92 × 1003 6.02 × 1001

Contest 3.01 × 10−04 (+) 3.02 × 10−11 (+) 3.02 × 10−11 (+) 4.23 × 10−03 (+) 5.61 × 10−05 (+) 6.10 × 10−11 (=) 2.37 × 10−10 (+)

F7(X)

Best 6.35 × 10−11 2.07 × 1001 2.74 × 1001 6.44 × 10−05 2.28 × 10−02 2.81 × 10−11 1.30 × 1001 1.96 × 10−11

Worst 2.73 × 1001 7.21 × 1001 7.86 × 1001 2.25 × 1001 2.79 × 1001 2.48 × 1001 5.04 × 1001 2.26 × 1001

Median 1.83 × 1001 4.48 × 1001 5.22 × 1001 2.62 × 1000 7.69 × 1000 2.05 × 1001 3.00 × 1001 5.20 × 1000

Mean 1.43 × 1001 4.73 × 1001 5.29 × 1001 8.33 × 1000 1.23 × 1001 1.43 × 1001 2.96 × 1001 9.88 × 1000

Standard 1.10 × 1001 1.17 × 1001 1.27 × 1001 9.35 × 1000 1.04 × 1001 9.93 × 1000 8.52 × 1000 9.20 × 1000

Contest 5.94 × 10−02 (=) 6.70 × 10−11 (+) 3.02 × 10−11 (+) 5.69 × 10−11 (=) 1.71 × 10−11 (=) 2.34 × 10−11 (=) 3.50 × 10−9 (+)

F8(X)

Best 3.80 × 1000 2.83 × 1001 2.63 × 1001 9.43 × 10−11 6.80 × 1000 1.63 × 10−11 3.10 × 1000 2.21 × 10−11

Worst 2.61 × 1001 4.35 × 1001 4.45 × 1001 1.43 × 1002 2.15 × 1001 2.32 × 1001 2.78 × 1001 2.10 × 1001

Median 1.98 × 1001 3.36 × 1001 3.23 × 1001 2.09 × 1001 2.04 × 1001 2.03 × 1001 2.33 × 1001 4.36 × 1000

Mean 1.70 × 1001 3.47 × 1001 3.33 × 1001 2.23 × 1001 1.99 × 1001 1.43 × 1001 2.28 × 1001 6.25 × 1000

Standard 8.23 × 1000 4.10 × 1000 4.77 × 1000 2.40 × 1001 2.69 × 1000 9.38 × 1000 4.99 × 1000 6.40 × 1000

Contest 1.17 × 10−05 (+) 3.02 × 10−11 (+) 3.02 × 10−11 (+) 4.42 × 10−06 (+) 2.57 × 10−07 (+) 3.64 × 10−02 (+) 5.07 × 10−10 (+)

F9(X)

Best 2.31 × 1002 2.31 × 1002 2.47 × 1002 2.29 × 1002 2.29 × 1002 2.30 × 1002 2.29 × 1002 2.29 × 1002

Worst 2.35 × 1002 2.52 × 1002 5.27 × 1002 2.29 × 1002 2.29 × 1002 2.31 × 1002 2.29 × 1002 2.29 × 1002

Median 2.32 × 1002 2.34 × 1002 3.77 × 1002 2.29 × 1002 2.29 × 1002 2.31 × 1002 2.29 × 1002 2.29 × 1002

Mean 2.32 × 1002 2.35 × 1002 3.60 × 1002 2.29 × 1002 2.29 × 1002 2.31 × 1002 2.29 × 1002 2.29 × 1002

Standard 1.07 × 1000 4.26 × 1000 6.49 × 1001 0.00 × 1000 0.00 × 1000 3.41 × 10−11 1.58 × 10−06 0.00 × 1000

Contest 1.21 × 10−12 (+) 1.21 × 10−12 (+) 1.21 × 10−12 (+) N/A (=) N/A (=) 1.21 × 10−12 (+) 1.21 × 10−12 (+)

F10(X)

Best 1.00 × 1002 1.01 × 1002 1.01 × 1002 1.00 × 1002 1.00 × 1002 1.00 × 1002 1.00 × 1002 1.00 × 1002

Worst 2.18 × 1002 2.60 × 1002 3.15 × 1002 2.17 × 1002 2.13 × 1002 2.19 × 1002 2.32 × 1002 1.00 × 1002

Median 1.02 × 1002 2.39 × 1002 1.03 × 1002 1.00 × 1002 1.01 × 1002 1.00 × 1002 1.00 × 1002 1.00 × 1002

Mean 1.06 × 1002 2.26 × 1002 1.40 × 1002 1.29 × 1002 1.33 × 1002 1.22 × 1002 1.05 × 1002 1.00 × 1002

Standard 2.13 × 1001 4.33 × 1001 7.33 × 1001 4.92 × 1001 5.04 × 1001 4.46 × 1001 2.41 × 1001 5.59 × 10−02

Contest 5.53 × 10−8 (+) 3.02 × 10−11 (+) 3.02 × 10−11 (+) 1.69 × 10−9 (+) 4.98E-1 (+)1 3.26 × 10−07 (+) 2.20 × 10−07 (+) 0.00 × 1000

F11(X)

Best 0.00 × 1000 6.70 × 1001 1.55 × 1002 5.78 × 10−11 0.00 × 1000 0.00 × 1000 4.29 × 10−04 0.00 × 1000

Worst 1.89 × 1002 1.52 × 1002 5.27 × 1002 3.00 × 1002 3.00 × 1002 4.00 × 1002 4.00 × 1002 0.00 × 1000

Median 0.00 × 1000 1.09 × 1002 1.98 × 1002 1.87 × 1000 1.50 × 1002 0.00 × 1000 5.48 × 10−04 0.00 × 1000

Mean 2.41 × 1001 1.13 × 1002 2.26 × 1002 6.99 × 1001 1.26 × 1002 1.13 × 1002 6.39 × 1001 0.00 × 1000

Standard 5.06 × 1001 3.00 × 1001 8.51 × 1001 9.28 × 1001 1.05 × 1002 1.51 × 1002 1.25 × 1002 0.00 × 1000

Contest 5.70 × 10−03 (+) 1.68 × 10−11 (+) 1.68 × 10−11 (+) 1.68 × 10−11 (+) 7.30 × 10−04 (+) 3.48 × 10−11 (=) 1.68 × 10−11 (+) 0.00 × 1000

F12(X)

Best 1.65 × 1002 1.61 × 1002 1.64 × 1002 1.61 × 1002 1.61 × 1002 1.63 × 1002 1.59 × 1002 1.65 × 1002

Worst 1.70 × 1002 1.69 × 1002 2.26 × 1002 1.70 × 1002 1.74 × 1002 2.20 × 1002 1.65 × 1002 1.68 × 1002

Median 1.67 × 1002 1.66 × 1002 1.71 × 1002 1.64 × 1002 1.66 × 1002 1.65 × 1002 1.61 × 1002 1.66 × 1002

Mean 1.67 × 1002 1.66 × 1002 1.77 × 1002 1.64 × 1002 1.66 × 1002 1.67 × 1002 1.62 × 1002 1.66 × 1002

Standard 1.07 × 1000 1.27 × 1000 1.54 × 1001 2.40 × 1000 2.38 × 1000 9.96 × 1000 1.58 × 1000 8.15 × 10−11

Contest 4.22 × 10−04 (+) 5.49 × 10−11 (=) 5.46 × 10−9 (+) 1.44 × 10−03 (−) 4.12 × 10−11 (=) 4.08 × 10−05 (+) 4.98 × 10−11 (−)
+/=/− 9/3/0 11/1/0 12/0/0 2008/2/2 2006/4/2 5/7/0 11/0/1
Rank 3.83 6.83 7.67 3.83 3.83 3.67 4.42 1.92

The best and worst values of the PSO algorithm variant are contrasted with the best and
worst values of the RPSO algorithm, and the number of times that the best and worst values
of the PSO algorithm variant are greater than those of the RPSO algorithm in 12 functions
is counted. The RPSO algorithm beats the EAPSO algorithm and the FDBPSO algorithm
11 times, the VPPSO algorithm 10 times, the AMSEPSO algorithm 7 times, the MSPO
algorithm 5 times, the PPSO and PSOsono algorithms 4 times regarding the optimal value.
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Regarding the worst value, the RPSO algorithm beats the AMSEPSO, EAPSO, and PDBPSO
algorithms 12 times, beats the PSOsono algorithms 11 times, beats the VPPSO algorithm
10 times, and beats the MPSO and PPSO algorithms 9 times and 8 times, respectively. The
above information reveals that the RPSO algorithm outperforms the AMSEPSO, EAPSO,
FDBPSO, and VPPSO algorithms multiple times in terms of both the optimal value and
the worst value. The RPSO algorithm is obviously superior to the above four algorithms.
Although the advantages of the MPSO, PPSO and PSOsono algorithms are not obvious in
the optimal value, they show great advantages in the worst value. Therefore, the superiority
of the proposed algorithm over the variants of the PSO algorithm is verified.

Table 2. Twenty dimensions with PSO algorithm variants.

F Index AMSE
PSO EAPSO FDBPSO MPSO PPSO PSOsono VPPSO RPSO

F1(x)

Best 0.00 × 1000 2.34 × 1003 7.81 × 1003 0.00 × 1000 0.00 × 1000 0.00 × 1000 1.02 × 10−8 0.00 × 1000

Worst 1.87 × 1002 1.78 × 1004 3.39 × 1004 0.00 × 1000 7.59 × 10−11 0.00 × 1000 2.35 × 10−8 0.00 × 1000

Median 4.17 × 1001 9.44 × 1003 1.88 × 1004 0.00 × 1000 0.00 × 1000 0.00 × 1000 1.59 × 10−8 0.00 × 1000

Mean 5.48 × 1001 8.82 × 1003 1.88 × 1004 0.00 × 1000 2.53 × 10−02 0.00 × 1000 1.57 × 10−8 0.00 × 1000

Standard 5.89 × 1001 4.09 × 1003 6.63 × 1003 0.00 × 1000 1.38 × 10−11 0.00 × 1000 2.94 × 10−9 0.00 × 1000

Contest 3.98 × 10−8 (+) 7.57 × 10−12 (+) 7.57 × 10−12 (+) 2.63 × 10−8 (+) 7.46 × 10−12 (+) 3.43 × 10−02 (+) 7.57 × 10−12 (+)

F2(x)

Best 2.28 × 1001 4.91 × 1001 8.97 × 1001 2.66 × 10−11 2.39 × 10−8 2.32 × 10−04 2.47 × 10−02 6.67 × 1000

Worst 7.85 × 1001 7.43 × 1001 4.98 × 1002 6.73 × 1001 6.66 × 1001 7.15 × 1001 7.07 × 1001 4.91 × 1001

Median 5.94 × 1001 4.91 × 1001 1.62 × 1002 4.91 × 1001 4.91 × 1001 5.14 × 1001 4.70 × 1001 4.91 × 1001

Mean 5.86 × 1001 5.68 × 1001 1.96 × 1002 4.45 × 1001 4.15 × 1001 5.09 × 1001 3.12 × 1001 4.54 × 1001

Standard 1.07 × 1001 1.11 × 1001 1.05 × 1002 1.71 × 1001 1.88 × 1001 1.50 × 1001 2.55 × 1001 8.82 × 1000

Contest 5.04 × 10−10 (+) 3.00 × 10−11 (+) 3.00 × 10−11 (+) 8.19 × 10−11 (=) 4.97 × 10−03 (−) 8.44 × 10−9 (+) 7.51 × 10−11 (=)

F3(x)

Best 0.00 × 1000 9.09 × 10−02 1.02 × 1001 0.00 × 1000 3.19 × 10−07 0.00 × 1000 6.42 × 10−11 7.22 × 10−04

Worst 7.91 × 10−02 4.40 × 10−11 3.43 × 1001 9.10 × 10−02 5.53 × 10−03 5.94 × 10−11 1.85 × 1001 8.08 × 10−11

Median 1.14 × 10−13 1.82 × 10−11 1.75 × 1001 0.00 × 1000 1.69 × 10−05 8.24 × 10−03 4.70 × 1000 6.66 × 10−02

Mean 1.21 × 10−02 2.02 × 10−11 1.83 × 1001 3.03 × 10−03 4.48 × 10−04 1.02 × 10−11 7.11 × 1000 1.28 × 10−11

Standard 2.06 × 10−02 8.29 × 10−02 6.23 × 1000 1.66 × 10−02 1.21 × 10−03 1.68 × 10−11 6.15 × 1000 1.71 × 10−11

Contest 1.17 × 10−06 (−) 9.52 × 10−04 (+) 3.02 × 10−11 (+) 1.37 × 10−11 (−) 5.46 × 10−11 (−) 2.71 × 10−02 (−) 4.08 × 10−11 (+)

F4(X)

Best 8.33 × 1000 1.81 × 1001 3.08 × 1001 1.69 × 1001 5.97 × 1000 5.97 × 1000 3.28 × 1001 6.96 × 1000

Worst 6.07 × 1001 1.14 × 1002 6.69 × 1001 5.27 × 1001 1.49 × 1001 4.38 × 1001 9.15 × 1001 1.99 × 1001

Median 3.89 × 1001 4.33 × 1001 4.98 × 1001 3.34 × 1001 8.95 × 1000 1.99 × 1001 4.97 × 1001 1.69 × 1001

Mean 4.01 × 1001 4.71 × 1001 5.00 × 1001 3.20 × 1001 9.42 × 1000 2.07 × 1001 5.38 × 1001 1.62 × 1001

Standard 1.08 × 1001 1.75 × 1001 9.60 × 1000 1.08 × 1001 2.66 × 1000 8.06 × 1000 1.54 × 1001 3.27 × 1000

Contest 4.48 × 10−10 (+) 5.31 × 10−11 (+) 2.92 × 10−11 (+) 5.55 × 10−10 (+) 1.91 × 10−8 (−) 2.78 × 10−02 (+) 2.92 × 10−11 (+)

F5(X)

Best 1.77 × 10−07 2.37 × 10−02 5.38 × 1002 0.00 × 1000 0.00 × 1000 0.00 × 1000 3.51 × 10−9 0.00 × 1000

Worst 1.56 × 1000 2.64 × 1000 2.93 × 1003 3.34 × 1001 3.97 × 1000 1.29 × 1001 8.87 × 1002 0.00 × 1000

Median 5.08 × 10−11 2.00 × 10−11 1.33 × 1003 2.24 × 1000 4.48 × 10−02 1.14 × 10−13 9.09 × 10−11 0.00 × 1000

Mean 6.13 × 10−11 4.13 × 10−11 1.41 × 1003 5.77 × 1000 4.27 × 10−11 1.11 × 1000 3.98 × 1001 0.00 × 1000

Standard 4.49 × 10−11 5.54 × 10−11 5.85 × 1002 8.84 × 1000 8.98 × 10−11 2.89 × 1000 1.62 × 1002 0.00 × 1000

Contest 1.40 × 10−11 (+) 1.40 × 10−11 (+) 1.40 × 10−11 (+) 7.34 × 10−11 (+) 4.94 × 10−11 (=) 8.70 × 10−11 (=) 1.40 × 10−11 (+)

F6(X)

Best 1.86 × 1002 2.53 × 1002 2.78 × 10−14 3.82 × 1001 6.54 × 1001 2.16 × 1001 1.44 × 1002 5.55 × 1001

Worst 3.29 × 1003 2.17 × 1004 6.58E+08 4.52 × 1003 6.74 × 1003 7.07 × 1003 2.30 × 1004 2.47 × 1002

Median 8.08 × 1002 3.82 × 1003 2.79E+06 7.34 × 1002 1.49 × 1003 3.14 × 1002 1.95 × 1003 1.26 × 1002

Mean 1.03 × 1003 5.20 × 1003 4.94E+07 1.29 × 1003 2.01 × 1003 1.65 × 1003 3.46 × 1003 1.30 × 1002

Standard 8.26 × 1002 5.68 × 1003 1.41E+08 1.21 × 1003 1.76 × 1003 2.31 × 1003 5.12 × 1003 5.08 × 1001

Contest 6.70 × 10−11 (+) 3.02 × 10−11 (+) 3.02 × 10−11 (+) 9.26 × 10−9 (+) 7.77 × 10−9 (+) 2.07 × 10−02 (+) 1.17 × 10−9 (+)

F7(X)

Best 2.13 × 1001 1.82 × 1001 5.92 × 1001 2.19 × 1001 2.31 × 1001 2.63 × 1001 2.20 × 1001 2.11 × 1001

Worst 5.24 × 1001 9.03 × 1001 2.05 × 1002 6.74 × 1001 7.53 × 1001 5.35 × 1001 8.82 × 1001 3.00 × 1001

Median 3.82 × 1001 4.03 × 1001 1.14 × 1002 3.70 × 1001 3.87 × 1001 3.28 × 1001 3.74 × 1001 2.66 × 1001

Mean 3.67 × 1001 4.49 × 1001 1.20 × 1002 3.81 × 1001 4.16 × 1001 3.58 × 1001 4.16 × 1001 2.58 × 1001

Standard 7.47 × 1000 1.79 × 1001 3.97 × 1001 1.24 × 1001 1.31 × 1001 7.73 × 1000 1.51 × 1001 2.75 × 1000

Contest 3.01 × 10−07 (−) 6.01 × 10−8 (+) 3.02 × 10−11 (+) 1.53 × 10−05 (+) 5.00 × 10−9 (+) 1.31 × 10−8 (+) 2.60 × 10−8 (+)

F8(X)

Best 2.16 × 1001 2.18 × 1001 2.96 × 1001 2.04 × 1001 2.04 × 1001 2.06 × 1001 2.34 × 1001 1.90 × 1001

Worst 3.17 × 1001 2.62 × 1002 3.25 × 1002 1.21 × 1002 1.42 × 1002 2.51 × 1001 4.13 × 1001 2.91 × 1001

Median 2.70 × 1001 1.44 × 1002 3.88 × 1001 2.12 × 1001 2.13 × 1001 2.18 × 1001 2.62 × 1001 2.40 × 1001

Mean 2.70 × 1001 1.07 × 1002 7.49 × 1001 2.47 × 1001 2.92 × 1001 2.21 × 1001 2.69 × 1001 2.46 × 1001

Standard 2.36 × 1000 7.85 × 1001 8.19 × 1001 1.82 × 1001 3.04 × 1001 1.08 × 1000 3.31 × 1000 2.60 × 1000

Contest 7.70 × 10−04 (+) 1.29 × 10−06 (+) 3.02 × 10−11 (+) 6.05 × 10−07 (+) 3.83 × 10−06 (+) 4.08 × 10−05 (−) 2.89 × 10−03 (+)

F9(X)

Best 1.83 × 1002 1.81 × 1002 2.35 × 1002 1.81 × 1002 1.81 × 1002 1.83 × 1002 1.81 × 1002 1.82 × 1002

Worst 1.84 × 1002 1.81 × 1002 5.39 × 1002 1.81 × 1002 1.81 × 1002 1.89 × 1002 1.81 × 1002 1.85 × 1002

Median 1.84 × 1002 1.81 × 1002 3.90 × 1002 1.81 × 1002 1.81 × 1002 1.85 × 1002 1.81 × 1002 1.84 × 1002

Mean 1.84 × 1002 1.81 × 1002 3.83 × 1002 1.81 × 1002 1.81 × 1002 1.85 × 1002 1.81 × 1002 1.84 × 1002

Standard 4.88 × 10−11 1.60 × 10−02 7.32 × 1001 0.00 × 1000 4.51 × 10−05 1.67 × 1000 2.48 × 10−05 7.37 × 10−11

Contest 4.20 × 10−11 (=) 3.02 × 10−11 (−) 3.02 × 10−11 (+) 2.36 × 10−12 (−) 3.01 × 10−11 (−) 5.32 × 10−03 (+) 3.02 × 10−11 (−)

F10(X)

Best 6.60 × 1001 2.16 × 1002 1.01 × 1002 1.27 × 1001 1.00 × 1002 1.00 × 1002 1.00 × 1002 1.00 × 1002

Worst 1.24 × 1002 2.61 × 1002 2.80 × 1003 4.98 × 1002 8.76 × 1002 2.78 × 1002 1.71 × 1003 1.01 × 1002

Median 1.06 × 1002 2.39 × 1002 1.13 × 1002 1.01 × 1002 1.01 × 1002 1.00 × 1002 1.00 × 1002 1.00 × 1002

Mean 1.06 × 1002 2.39 × 1002 4.53 × 1002 1.80 × 1002 1.87 × 1002 1.35 × 1002 1.85 × 1002 1.00 × 1002

Standard 1.01 × 1001 1.10 × 1001 7.57 × 1002 1.21 × 1002 1.76 × 1002 6.39 × 1001 2.97 × 1002 8.67 × 10−02

Contest 4.80 × 10−07 (+) 3.02 × 10−11 (+) 3.02 × 10−11 (+) 2.43 × 10−05 (+) 5.00 × 10−9 (+) 1.05 × 10−11 (=) 7.06 × 10−11 (=)

F11(X)

Best 5.60 × 10−11 3.01 × 1002 8.19 × 1002 3.00 × 1002 3.00 × 1002 0.00 × 1000 2.67 × 10−03 0.00 × 1000

Worst 5.43 × 1002 4.02 × 1002 4.10 × 1003 9.06 × 1002 4.00 × 1002 4.00 × 1002 1.76 × 1003 3.00 × 1002

Median 3.00 × 1002 3.02 × 1002 1.60 × 1003 3.00 × 1002 3.00 × 1002 3.00 × 1002 3.00 × 1002 3.00 × 1002

Mean 3.21 × 1002 3.09 × 1002 1.91 × 1003 4.29 × 1002 3.10 × 1002 3.13 × 1002 3.86 × 1002 2.80 × 1002

Standard 1.23 × 1002 2.52 × 1001 9.73 × 1002 2.09 × 1002 3.05 × 1001 7.30 × 1001 3.32 × 1002 7.61 × 1001

Contest 5.21 × 10−04 (+) 4.11 × 10−12 (+) 4.11 × 10−12 (+) 4.08 × 10−12 (+) 2.38 × 10−11 (=) 5.64 × 10−02 (=) 1.28 × 10−9 (+)
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Table 2. Cont.

F Index AMSE
PSO EAPSO FDBPSO MPSO PPSO PSOsono VPPSO RPSO

F12(X)

Best 2.42 × 1002 2.36 × 1002 2.65 × 1002 2.34 × 1002 2.37 × 1002 2.47 × 1002 2.36 × 1002 2.53 × 1002

Worst 3.00 × 1002 2.73 × 1002 5.30 × 1002 2.95 × 1002 2.76 × 1002 3.50 × 1002 5.03 × 1002 2.70 × 1002

Median 2.69 × 1002 2.44 × 1002 3.19 × 1002 2.50 × 1002 2.53 × 1002 2.75 × 1002 2.52 × 1002 2.62 × 1002

Mean 2.69 × 1002 2.48 × 1002 3.39 × 1002 2.53 × 1002 2.55 × 1002 2.77 × 1002 2.67 × 1002 2.62 × 1002

Standard 1.22 × 1001 9.10 × 1000 6.34 × 1001 1.35 × 1001 1.10 × 1001 2.22 × 1001 4.92 × 1001 3.94 × 1000

Contest 3.85 × 10−03 (+) 3.65 × 10−8 (−) 7.39 × 10−11 (+) 7.70 × 10−04 (−) 1.52 × 10−03 (−) 4.98 × 10−04 (+) 1.70 × 10−02 (+)
+/=/− 2009/1/2 10/0/2 12/0/0 2008/1/3 2005/2/5 2007/3/2 2009/2/1
Rank 4.42 5.12 7.83 3.50 3.58 3.92 5.00 2.58

As shown in Table 2 and Figure 5, in the case of 20 dimensions, the RPSO algorithm
performs better than other variants of the PSO algorithm in most cases. Specifically, the
optimization standard deviation of the RPSO algorithm is the lowest value in functions
F1(X), F2(X), F6(X), F10(X), F11(X), and F12(X). The theoretical optimum is found every
time in F1(X) and F5(X). In other cases, from small to large, the variance ranks second or
third, indicating strong search stability.
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The best and worst values of the PSO algorithm variant are compared with the best and
worst values of the RPSO algorithm, and the number of times that the best and worst values
of the PSO algorithm variant is greater than those of the RPSO algorithm in 12 functions is
counted. The RPSO algorithm beats the FDBPSO algorithm 12 times, the EAPSO algorithm
9 times, the VPPSO and AMSEPSO algorithms 8 times, the PPSO algorithm 5 times, and the
MPSO and PSOsono algorithms 4 times regarding the optimal value. Regarding the worst
value, the RPSO algorithm beats the FDBPSO algorithm 12 times, the EAPSO and VPPSO
algorithms 11 times, the AMSEPSO and PPSO algorithms 10 times, and the MSPO and
PSOsono algorithms 9 times and 8 times, respectively. The above information shows that
the RPSO algorithm beats the AMSEPSO, EAPSO, FDBPSO and VPPSO algorithms many
times in terms of the optimal value and the worst value. The RPSO algorithm is clearly
superior to the four algorithms mentioned above. While the advantages of the MPSO, PPSO,
and PSOsono algorithms may not be obvious in terms of optimal value, they demonstrate
significant advantages in terms of worst value. Thus, the proposed algorithm’s superiority
over the variants of the PSO algorithm is confirmed. The comparison values mentioned
above are similar to the comparison values between the RPSO algorithm and the variants
of the PSO algorithm in the case of ten dimensions, indicating the strong robustness of the
RPSO algorithm.

4.2. Convergence Analysis

The convergence effect is also an important assessment index for measuring the
optimization ability of the algorithm, and the results of the iterative convergence can
show the responsiveness of the algorithm in different optimization-seeking environments,
which further reflects the learning and adaptability of the algorithm. In this section, the
convergence process for the above 30 times is averaged to obtain values, and the average
convergence of each algorithm in each function is shown in Figures 7 and 8.

As presented in Figures 7 and 8, the convergence effect of RPSO in both dimensions
has some advantages; furthermore, in ten dimensions, the convergence effect of RPSO on
F(1–2), F(5–6), F8, and F(10–11) displays a reliable ability to seek optima compared with
other algorithms, especially F(2), F(5–6), F(8), and F(11), where the convergence speed
of RPSO is more significant. In 20 dimensions, the convergence of RPSO is better in the
functions F(1), F(5–7), and F(9–11), particularly in the functions F(5–7), F(10–11), where
the convergence speeds of RPSO display a significant advantage. The optimization search
effect of RPSO still demonstrates better convergence performance in different dimensions,
which verifies the learning and adaptability of RPSO.

4.3. Comparison with the Top Algorithm

This subsection aims to reveal the competitive edge of RPSO by comparing it with
top algorithms from different years of the CEC competition, including the gaining-sharing
knowledge-based algorithm with adaptive parameters hybrid with IMODE (APGSK-
IMODE) [62], Eigen crossover in cooperative model of evolutionary algorithms (EA4eig) [63],
Improved multi-operator differential evolution (IMODE) [64], Population’s variance-based
adaptive differential evolution (PVADE) [65], and the adaptive gaining-sharing knowledge-
based algorithm (AGSK) [66]. EA4eig was the champion algorithm in CEC 2022, APGSK-
IMODE ranked fourth in CEC 2021, IMODE was the champion in CEC 2020, AGSK was the
runner-up in CEC 2020, and PVADE was a recognized algorithm in the competition. The
experimental parameters for each algorithm are set consistently as mentioned earlier, and the
optimization results are presented in Tables 3 and 4.
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Analyzing Table 3, when the RPSO algorithm was compared with the five most
advanced algorithms in ten dimensions, it can be observed that RPSO does not always
achieve the best results across the 12 functions when compared with these algorithms.
However, the optimization standard deviation of RPSO is the lowest in F(2), F(5), F(9),
F(10), and F(11), indicating a strong search stability. Moreover, RPSO outperforms the
EA4eig algorithm on the F(10) function, the IMODE algorithm on the F(4) function, the
PVADE algorithm on the F(8) and F(10) functions, and the AGSK algorithm on the F(4) and
F(10) functions in terms of the optimal value. RPSO also outperforms the APGSK-IMODE
algorithm on the F(10) function; the EA4eig algorithm on the F(2) function; the IMODE
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algorithm on the F(4), F(5), F(10), and F(11) functions; and the PVADE algorithm on the
F(2), F(8), and F(11) functions. Additionally, RPSO outperforms the AGSK algorithm on the
F(2), F(4), F(5), and F(11) functions.

Table 3. Ten dimensions with other algorithms.

F Index APGSK−IMODE EA4eig IMODE PVADE AGSK RPSO

F1(x)

Best 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000

Worst 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000

Median 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000

Mean 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000

Standard 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000

Contest N/A (=) N/A (=) N/A (=) N/A (=) N/A (=)

F2(x)

Best 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 1.71 × 10−07

Worst 0.00 × 1000 3.99 × 1000 0.00 × 1000 8.92 × 1000 8.92 × 1000 7.32 × 10−02

Median 0.00 × 1000 0.00 × 1000 0.00 × 1000 8.92 × 1000 3.99 × 1000 5.91 × 10−04

Mean 0.00 × 1000 6.64 × 10−11 0.00 × 1000 5.55 × 1000 3.09 × 1000 9.12 × 10−03

Standard 0.00 × 1000 1.51 × 1000 0.00 × 1000 3.91 × 1000 2.09 × 1000 1.80 × 10−02

Contest 1.21 × 10−12 (−) 4.70 × 10−06 (+) 1.21 × 10−12 (−) 1.74 × 10−03 (+) 1.53 × 10−03 (+)

F3(x)

Best 0.00 × 1000 0.00 × 1000 2.69 × 10−07 0.00 × 1000 0.00 × 1000 0.00 × 1000

Worst 0.00 × 1000 0.00 × 1000 4.86 × 10−05 4.85 × 10−05 2.08 × 10−05 8.79 × 10−05

Median 0.00 × 1000 0.00 × 1000 1.73 × 10−06 0.00 × 1000 1.42 × 10−06 1.42 × 10−06

Mean 0.00 × 1000 0.00 × 1000 5.93 × 10−06 1.93 × 10−06 2.75 × 10−06 7.62 × 10−06

Standard 0.00 × 1000 0.00 × 1000 9.55 × 10−06 8.84 × 10−06 4.75 × 10−06 1.90 × 10−05

Contest 9.65 × 10−11 (−) 5.63 × 10−11 (−) 8.75 × 10−02 (=) 1.98 × 10−06 (−) 1.62 × 10−11 (=)

F4(X)

Best 9.96 × 10−11 0.00 × 1000 4.97 × 1000 2.72 × 1000 3.02 × 1000 2.98 × 1000

Worst 6.96 × 1000 2.98 × 1000 1.29 × 1001 8.68 × 1000 1.13 × 1001 9.95 × 1000

Median 4.97 × 1000 9.95 × 10−11 8.95 × 1000 5.48 × 1000 7.97 × 1000 8.46 × 1000

Mean 4.61 × 1000 9.62 × 10−11 9.02 × 1000 5.45 × 1000 7.63 × 1000 7.63 × 1000

Standard 1.21 × 1000 9.23 × 10−11 2.20 × 1000 1.65 × 1000 2.14 × 1000 2.08 × 1000

Contest 7.86 × 10−06 (−) 2.39 × 10−11 (−) 2.06 × 10−02 (+) 9.69 × 10−05 (−) 9.06 × 10−11 (=)

F5(X)

Best 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000

Worst 0.00 × 1000 0.00 × 1000 1.68 × 1001 0.00 × 1000 1.14 × 10−13 0.00 × 1000

Median 0.00 × 1000 0.00 × 1000 6.33 × 10−11 0.00 × 1000 0.00 × 1000 0.00 × 1000

Mean 0.00 × 1000 0.00 × 1000 1.83 × 1000 0.00 × 1000 7.58 × 10−15 0.00 × 1000

Standard 0.00 × 1000 0.00 × 1000 3.20 × 1000 0.00 × 1000 2.88 × 10−14 0.00 × 1000

Contest N/A (=) N/A (=) 6.93 × 10−12 (+) N/A (=) 5.70 × 10−11 (=)

F6(X)

Best 6.55 × 10−02 1.63 × 10−03 9.90 × 10−02 2.67 × 10−02 5.02 × 10−03 2.70 × 1000

Worst 4.49 × 10−11 4.28 × 10−11 4.99 × 1000 1.70 × 1001 4.75 × 10−11 1.96 × 1002

Median 1.86 × 10−11 1.85 × 10−02 1.18 × 1000 3.72 × 10−11 2.47 × 10−11 6.32 × 1001

Mean 2.30 × 10−11 5.70 × 10−02 1.65 × 1000 1.48 × 1000 2.50 × 10−11 7.83 × 1001

Standard 1.17 × 10−11 9.46 × 10−02 1.29 × 1000 3.57 × 1000 1.32 × 10−11 6.02 × 1001

Contest 3.01 × 10−11 (−) 3.02 × 10−11 (−) 4.98 × 10−11 (−) 6.70 × 10−11 (−) 3.02 × 10−11 (−)

F7(X)

Best 0.00 × 1000 0.00 × 1000 2.65 × 10−05 0.00 × 1000 0.00 × 1000 1.96 × 10−11

Worst 1.94 × 10−07 3.76 × 10−9 1.24 × 10−03 2.10 × 1001 2.09 × 10−10 2.26 × 1001

Median 0.00 × 1000 5.68 × 10−13 1.71 × 10−04 3.12 × 10−11 4.55 × 10−13 5.20 × 1000

Mean 6.47 × 10−9 2.77 × 10−10 3.05 × 10−04 3.76 × 1000 1.83 × 10−11 9.88 × 1000

Standard 3.54 × 10−8 8.53 × 10−10 3.52 × 10−04 7.67 × 1000 5.06 × 10−11 9.20 × 1000

Contest 1.65 × 10−11 (−) 2.71 × 10−11 (−) 3.02 × 10−11 (−) 7.49 × 10−06 (−) 2.70 × 10−11 (−)

F8(X)

Best 2.17 × 10−02 1.39 × 10−03 4.30 × 10−02 7.44 × 10−11 1.19 × 10−11 2.21 × 10−11

Worst 2.64 × 1000 8.21 × 10−11 8.09 × 1000 2.16 × 1001 1.61 × 1000 2.10 × 1001

Median 1.99 × 10−11 3.37 × 10−11 1.42 × 1000 1.17 × 1000 6.47 × 10−11 4.36 × 1000

Mean 3.68 × 10−11 3.24 × 10−11 2.72 × 1000 4.35 × 1000 7.84 × 10−11 6.25 × 1000

Standard 5.11 × 10−11 2.21 × 10−11 2.34 × 1000 7.15 × 1000 4.37 × 10−11 6.40 × 1000

Contest 2.66 × 10−9 (−) 2.44 × 10−9 (−) 2.32 × 10−02 (−) 4.06 × 10−02 (−) 1.03 × 10−06 (−)

F9(X)

Best 2.29 × 1002 1.86 × 1002 1.37 × 10−06 2.29 × 1002 2.29 × 1002 2.29 × 1002

Worst 2.29 × 1002 1.86 × 1002 2.29 × 1002 2.29 × 1002 2.29 × 1002 2.29 × 1002

Median 2.29 × 1002 1.86 × 1002 2.29 × 1002 2.29 × 1002 2.29 × 1002 2.29 × 1002

Mean 2.29 × 1002 1.86 × 1002 2.14 × 1002 2.29 × 1002 2.29 × 1002 2.29 × 1002

Standard 0.00 × 1000 4.22 × 10−13 5.82 × 1001 0.00 × 1000 8.67 × 10−14 0.00 × 1000

Contest N/A (=) 4.16 × 10−14 (−) 7.64 × 10−9 (−) 1.69 × 10−14 (−) N/A (=)

F10(X)

Best 6.72 × 1001 1.00 × 1002 3.75 × 1000 1.00 × 1002 1.00 × 1002 1.00 × 1002

Worst 1.00 × 1002 1.00 × 1002 1.00 × 1002 1.00 × 1002 1.00 × 1002 1.00 × 1002

Median 1.00 × 1002 1.00 × 1002 1.00 × 1002 1.00 × 1002 1.00 × 1002 1.00 × 1002

Mean 9.91 × 1001 1.00 × 1002 8.35 × 1001 1.00 × 1002 1.00 × 1002 1.00 × 1002

Standard 6.02 × 1000 3.69 × 10−02 3.45 × 1001 3.82 × 10−02 3.49 × 10−02 5.59 × 10−02

Contest 9.47 × 10−11 (=) 1.24 × 10−03 (−) 1.63 × 10−02 (−) 6.10 × 10−03 (−) 4.20 × 10−11 (=)

F11(X)

Best 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000

Worst 4.55 × 10−13 0.00 × 1000 2.61 × 10−07 3.00 × 1002 4.55 × 10−13 0.00 × 1000

Median 0.00 × 1000 0.00 × 1000 2.96 × 10−8 0.00 × 1000 4.55 × 10−13 0.00 × 1000

Mean 1.36 × 10−13 0.00 × 1000 5.19 × 10−8 1.00 × 1001 3.49 × 10−13 0.00 × 1000

Standard 2.12 × 10−13 0.00 × 1000 6.11 × 10−8 5.48 × 1001 1.96 × 10−13 0.00 × 1000

Contest 5.19 × 10−02 (=) N/A (=) 6.92 × 10−8 (+) 4.76 × 10−05 (+) 1.56 × 10−11 (=)

F12(X)

Best 1.59 × 1002 1.45 × 1002 1.63 × 1002 1.59 × 1002 1.59 × 1002 1.65 × 1002

Worst 1.63 × 1002 1.59 × 1002 1.65 × 1002 1.65 × 1002 1.61 × 1002 1.68 × 1002

Median 1.62 × 1002 1.46 × 1002 1.64 × 1002 1.63 × 1002 1.60 × 1002 1.66 × 1002

Mean 1.61 × 1002 1.47 × 1002 1.64 × 1002 1.63 × 1002 1.60 × 1002 1.66 × 1002

Standard 1.54 × 1000 3.55 × 1000 6.54 × 10−11 2.08 × 1000 9.91 × 10−11 8.15 × 10−11

Contest 2.52 × 10−11 (−) 3.02 × 10−11 (−) 4.08 × 10−11 (−) 9.36 × 10−11 (−) 2.56 × 10−11 (−)
+/=/− 2000/5/7 2001/3/8 2003/2/7 2002/2/8 2001/7/4
Rank 2.54 1.96 4.00 4.12 3.83 4.50
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Table 4. Twenty dimensions with other algorithms.

F Index APGSK−IMODE EA4eig IMODE PVADE AGSK RPSO

F1(x)

Best 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000

Worst 5.68 × 10−14 0.00 × 1000 0.00 × 1000 0.00 × 1000 5.68 × 10−14 0.00 × 1000

Median 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000

Mean 7.58 × 10−15 0.00 × 1000 0.00 × 1000 0.00 × 1000 1.89 × 10−14 0.00 × 1000

Standard 1.97 × 10−14 0.00 × 1000 0.00 × 1000 0.00 × 1000 2.73 × 10−14 0.00 × 1000

Contest N/A (=) N/A (=) N/A (=) N/A (=) N/A (=)

F2(x)

Best 3.63 × 10−06 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 6.67 × 1000

Worst 4.91 × 1001 3.99 × 1000 4.91 × 1001 8.92 × 1000 4.91 × 1001 4.91 × 1001

Median 4.91 × 1001 0.00 × 1000 4.91 × 1001 3.99 × 1000 4.91 × 1001 4.91 × 1001

Mean 4.47 × 1001 7.97 × 10−11 3.45 × 1001 5.36 × 1000 2.92 × 1001 4.54 × 1001

Standard 1.18 × 1001 1.62 × 1000 2.27 × 1001 3.69 × 1000 2.42 × 1001 8.82 × 1000

Contest 1.20 × 10−03 (−) 6.27 × 10−12 (−) 3.14 × 10−11 (=) 8.20 × 10−11 (−) 2.95 × 10−05 (−)

F3(x)

Best 0.00 × 1000 0.00 × 1000 2.11 × 10−11 0.00 × 1000 0.00 × 1000 3.49 × 10−03

Worst 1.14 × 10−13 1.14 × 10−13 3.49 × 1000 1.42 × 10−06 8.36 × 10−11 4.56 × 1000

Median 1.14 × 10−13 1.14 × 10−13 1.03 × 1000 0.00 × 1000 3.41 × 10−13 1.61 × 1000

Mean 1.06 × 10−13 7.96 × 10−14 1.08 × 1000 7.11 × 10−8 3.56 × 10−12 1.75 × 1000

Standard 2.88 × 10−14 5.30 × 10−14 6.96 × 10−11 2.70 × 10−07 1.52 × 10−11 1.30 × 1000

Contest 2.36 × 10−12 (−) 1.01 × 10−11 (−) 2.37 × 10−10 (−) 3.16 × 10−12 (−) 2.89 × 10−11 (−)

F4(X)

Best 1.29 × 1001 3.98 × 1000 3.68 × 1001 0.00 × 1000 1.98 × 1001 6.96 × 1000

Worst 2.98 × 1001 1.69 × 1001 8.36 × 1001 5.97 × 1000 4.58 × 1001 1.99 × 1001

Median 2.19 × 1001 8.95 × 1000 5.62 × 1001 1.99 × 1000 3.72 × 1001 1.69 × 1001

Mean 2.23 × 1001 9.22 × 1000 5.86 × 1001 2.46 × 1000 3.63 × 1001 1.62 × 1001

Standard 4.51 × 1000 3.49 × 1000 1.23 × 1001 1.32 × 1000 6.85 × 1000 3.27 × 1000

Contest 2.58 × 10−06 (+) 4.59 × 10−8 (−) 2.92 × 10−11 (+) 2.58 × 10−11 (−) 3.56 × 10−11 (+)

F5(X)

Best 0.00 × 1000 0.00 × 1000 2.61 × 1002 0.00 × 1000 1.14 × 10−13 0.00 × 1000

Worst 0.00 × 1000 0.00 × 1000 1.03 × 1003 0.00 × 1000 5.44 × 10−11 0.00 × 1000

Median 0.00 × 1000 0.00 × 1000 6.72 × 1002 0.00 × 1000 8.95 × 10−02 0.00 × 1000

Mean 0.00 × 1000 0.00 × 1000 6.82 × 1002 0.00 × 1000 7.48 × 10−02 0.00 × 1000

Standard 0.00 × 1000 0.00 × 1000 2.08 × 1002 0.00 × 1000 1.11 × 10−11 0.00 × 1000

Contest N/A (=) N/A (=) 1.40 × 10−11 (+) N/A (=) 1.53 × 10−9 (+)

F6(X)

Best 1.04 × 1000 2.18 × 10−02 9.17 × 1000 2.20 × 10−02 2.18 × 10−11 5.55 × 1001

Worst 2.48 × 1001 2.08 × 1000 4.54 × 1001 1.12 × 1000 1.90 × 1000 2.47 × 1002

Median 6.91 × 1000 1.20 × 10−11 2.19 × 1001 1.25 × 10−11 3.95 × 10−11 1.26 × 1002

Mean 9.11 × 1000 2.13 × 10−11 2.36 × 1001 3.23 × 10−11 6.36 × 10−11 1.30 × 1002

Standard 6.77 × 1000 3.69 × 10−11 8.37 × 1000 3.73 × 10−11 5.27 × 10−11 5.08 × 1001

Contest 3.01 × 10−11 (−) 3.02 × 10−11 (−) 3.02 × 10−11 (−) 3.02 × 10−11 (−) 3.02 × 10−11 (−)

F7(X)

Best 2.51 × 10−02 0.00 × 1000 2.51 × 1001 0.00 × 1000 3.12 × 10−11 2.11 × 1001

Worst 2.10 × 1001 2.10 × 1001 4.48 × 1001 2.10 × 1001 2.25 × 1001 3.00 × 1001

Median 3.86 × 1000 1.80 × 1000 3.36 × 1001 0.00 × 1000 2.11 × 1001 2.66 × 1001

Mean 7.00 × 1000 4.23 × 1000 3.36 × 1001 3.68 × 1000 1.82 × 1001 2.58 × 1001

Standard 7.08 × 1000 6.18 × 1000 5.16 × 1000 7.62 × 1000 6.09 × 1000 2.75 × 1000

Contest 3.01 × 10−11 (−) 3.00 × 10−11 (−) 2.39 × 10−8 (−) 1.78 × 10−11 (−) 8.89 × 10−10 (−)

F8(X)

Best 1.41 × 1001 2.69 × 10−11 2.08 × 1001 5.64 × 10−05 1.61 × 1001 1.90 × 1001

Worst 2.09 × 1001 2.07 × 1001 2.33 × 1001 2.04 × 1001 2.29 × 1001 2.91 × 1001

Median 2.04 × 1001 2.02 × 1001 2.18 × 1001 1.06 × 10−11 2.21 × 1001 2.40 × 1001

Mean 2.01 × 1001 1.77 × 1001 2.19 × 1001 1.69 × 1000 2.20 × 1001 2.46 × 1001

Standard 1.44 × 1000 6.14 × 1000 6.63 × 10−11 5.16 × 1000 1.16 × 1000 2.60 × 1000

Contest 4.61 × 10−10 (−) 3.16 × 10−10 (−) 3.83 × 10−06 (−) 3.69 × 10−11 (−) 1.02 × 10−05 (−)

F9(X)

Best 1.81 × 1002 1.65 × 1002 1.81 × 1002 2.29 × 1002 1.81 × 1002 1.82 × 1002

Worst 1.81 × 1002 1.65 × 1002 1.81 × 1002 2.29 × 1002 1.81 × 1002 1.85 × 1002

Median 1.81 × 1002 1.65 × 1002 1.81 × 1002 2.29 × 1002 1.81 × 1002 1.84 × 1002

Mean 1.81 × 1002 1.65 × 1002 1.81 × 1002 2.29 × 1002 1.81 × 1002 1.84 × 1002

Standard 8.67 × 10−14 0.00 × 1000 1.18 × 10−07 0.00 × 1000 8.67 × 10−14 7.37 × 10−11

Contest 1.21 × 10−12 (−) 1.21 × 10−12 (−) 3.02 × 10−11 (−) 1.21 × 10−12 (+) 1.21 × 10−12 (−)

F10(X)

Best 1.00 × 1002 1.00 × 1002 1.00 × 1002 1.00 × 1002 1.00 × 1002 1.00 × 1002

Worst 1.00 × 1002 2.24 × 1002 1.01 × 1002 2.00 × 1002 1.00 × 1002 1.01 × 1002

Median 1.00 × 1002 1.00 × 1002 1.01 × 1002 1.00 × 1002 1.00 × 1002 1.00 × 1002

Mean 1.00 × 1002 1.08 × 1002 1.01 × 1002 1.03 × 1002 1.00 × 1002 1.00 × 1002

Standard 3.76 × 10−02 3.06 × 1001 7.66 × 10−02 1.82 × 1001 2.85 × 10−02 8.67 × 10−02

Contest 9.21 × 10−05 (−) 1.01 × 10−8 (−) 6.53 × 10−8 (+) 5.57 × 10−10 (−) 8.99 × 10−11 (−)

F11(X)

Best 0.00 × 1000 3.00 × 1002 3.35 × 10−04 0.00 × 1000 3.00 × 1002 0.00 × 1000

Worst 3.00 × 1002 4.00 × 1002 3.22 × 1002 1.50 × 1002 4.00 × 1002 3.00 × 1002

Median 3.00 × 1002 3.00 × 1002 3.00 × 1002 0.00 × 1000 4.00 × 1002 3.00 × 1002

Mean 2.50 × 1002 3.23 × 1002 2.81 × 1002 5.01 × 1000 3.87 × 1002 2.80 × 1002

Standard 1.14 × 1002 4.30 × 1001 7.64 × 1001 2.75 × 1001 3.46 × 1001 7.61 × 1001

Contest 1.08 × 10−11 (=) 2.18 × 10−02 (+) 1.28 × 10−9 (+) 6.71 × 10−13 (−) 8.54 × 10−12 (+)

F12(X)

Best 2.31 × 1002 1.89 × 1002 2.40 × 1002 1.60 × 1002 2.31 × 1002 2.53 × 1002

Worst 2.37 × 1002 2.00 × 1002 2.67 × 1002 1.65 × 1002 2.39 × 1002 2.70 × 1002

Median 2.33 × 1002 2.00 × 1002 2.53 × 1002 1.64 × 1002 2.34 × 1002 2.62 × 1002

Mean 2.34 × 1002 2.00 × 1002 2.53 × 1002 1.63 × 1002 2.34 × 1002 2.62 × 1002

Standard 1.52 × 1000 2.05 × 1000 7.63 × 1000 1.51 × 1000 2.07 × 1000 3.94 × 1000

Contest 3.02 × 10−11 (−) 3.02 × 10−11 (−) 7.74 × 10−06 (−) 2.89 × 10−11 (−) 2.97 × 10−11 (−)
+/=/− 2001/3/8 2001/2/9 2004/2/6 2001/2/9 2003/1/8
Rank 3.21 2.33 4.54 2.42 4.00 4.50

Examining Table 4, when comparing the RPSO algorithm with the top algorithms in
20 dimensions, it can be observed that RPSO does not always achieve the best results across
the 12 functions when compared with these algorithms. However, RPSO exhibits better
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performance compared to the 10-dimensional case. The optimization standard deviation
is the lowest in F(1), F(5), and F(7), indicating strong search stability. Additionally, RPSO
outperforms the APGSK-IMODE algorithm on the F(1), F(5), and F(11) functions; the
EA4eig algorithm on the F(11) function; and the IMODE algorithm on the F(3), F(4), F(5),
F(7), F(8), F(10), and F(11) functions in terms of the optimal value. RPSO also outperforms
the AGSK algorithm on the F(4), F(5), and F(11) functions. In terms of the worst value,
RPSO outperforms the APGSK-IMODE algorithm on the F(1) and F(4) functions; the EA4eig
algorithm on the F(10) and F(11) functions; and the IMODE algorithm on the F(4), F(5), F(7),
F(10), and F(11) functions. RPSO also outperforms the PVADE algorithm on the F(9) and
F(10) functions; and the AGSK algorithm on the F(1), F(4), F(5), and F(11) functions.

4.4. Ablation Experiments

In order to further confirm the effectiveness of strategy fusion, this subsection conducts
ablation experiments one by one on the mechanisms proposed in this paper. The PSO that
only incorporates random exchange learning is set as PSO-1, the PSO algorithm that only
incorporates QI is set as PSO-2, and the PSO algorithm that fuses the two mechanisms
and does not use the selection mechanism is named PSO-3. It is worth mentioning that
the parameter settings of RPSO are derived from previous research by other scholars, and
thus are not included in the scope of validation. The other experimental parameters are
consistent with those described, and the specific optimization results are shown in Table 5.

Table 5. Data from ablation experiments.

F Index Best Worst Median Mean Standard

F1(x)

PSO−1 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000

PSO−2 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000

PSO−3 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000

RPSO 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000

F2(x)

PSO−1 0.00 × 1000 1.08 × 1001 3.99 × 1000 5.15 × 1000 4.29 × 1000

PSO−2 0.00 × 1000 1.31 × 1001 6.33 × 1000 5.97 × 1000 4.09 × 1000

PSO−3 0.00 × 1000 1.04 × 1001 3.99 × 1000 3.46 × 1000 3.53 × 1000

RPSO 1.71 × 10−07 7.32 × 10−02 5.91 × 10−04 9.12 × 10−03 1.80 × 10−02

F3(x)

PSO−1 0.00 × 1000 2.31 × 10−02 1.26 × 10−04 2.80 × 10−03 6.28 × 10−03

PSO−2 1.06E−10 7.47 × 10−02 6.67 × 10−04 9.25 × 10−03 1.89 × 10−02

PSO−3 0.00 × 1000 1.91 × 10−02 9.10 × 10−05 3.05 × 10−03 5.55 × 10−03

RPSO 0.00 × 1000 8.79 × 10−05 1.42 × 10−06 7.62 × 10−06 1.90 × 10−05

F4(X)

PSO−1 2.98 × 1000 2.09 × 1001 6.96 × 1000 8.76 × 1000 4.74 × 1000

PSO−2 9.95 × 10−01 1.49 × 1001 5.97 × 1000 7.23 × 1000 3.74 × 1000

PSO−3 9.95 × 10−01 1.69 × 1001 7.46 × 1000 8.13 × 1000 4.27 × 1000

RPSO 2.98 × 1000 9.95 × 1000 8.46 × 1000 7.63 × 1000 2.08 × 1000

F5(X)

PSO−1 0.00 × 1000 4.54 × 10−01 0.00 × 1000 2.11 × 10−02 8.49 × 10−02

PSO−2 0.00 × 1000 8.95 × 10−02 0.00 × 1000 2.98 × 10−03 1.63 × 10−02

PSO−3 0.00 × 1000 1.79 × 10−01 0.00 × 1000 2.09 × 10−02 4.51 × 10−02

RPSO 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000

F6(X)

PSO−1 2.95 × 1000 1.72 × 10−03 4.73 × 1001 2.26 × 1002 4.03 × 1002

PSO−2 1.28 × 1000 2.55 × 10−03 3.93 × 1001 2.10 × 1002 4.89 × 1002

PSO−3 1.52 × 1000 1.45 × 10−03 4.53 × 1001 1.90 × 1002 3.35 × 1002

RPSO 2.70 × 1000 1.96 × 1002 6.32 × 1001 7.83 × 1001 6.02 × 1001

F7(X)

PSO−1 2.69 × 10−08 2.55 × 1001 1.28 × 1001 1.20 × 1001 9.76 × 1000

PSO−2 6.61 × 10−05 2.30 × 1001 5.23 × 1000 1.05 × 1001 9.26 × 1000

PSO−3 8.44E−09 2.56 × 1001 1.28 × 1001 1.19 × 1001 1.02 × 1001

RPSO 1.96 × 10−01 2.26 × 1001 5.20 × 1000 9.88 × 1000 9.20 × 1000

F8(X)

PSO−1 1.76 × 10−01 2.47 × 1001 2.06 × 1001 1.43 × 1001 9.86 × 1000

PSO−2 8.83 × 10−01 2.29 × 1001 2.02 × 1001 1.29 × 1001 9.29 × 1000

PSO−3 2.84 × 10−01 2.42 × 1001 2.10 × 1001 1.36 × 1001 9.57 × 1000

RPSO 2.21 × 10−01 2.10 × 1001 4.36 × 1000 6.25 × 1000 6.40 × 1000
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Table 5. Cont.

F Index Best Worst Median Mean Standard

F9(X)

PSO−1 2.30 × 1002 3.76 × 1002 2.32 × 1002 2.36 × 1002 2.64 × 1001

PSO−2 2.30 × 1002 2.32 × 1002 2.31 × 1002 2.31 × 1002 5.53 × 10−01

PSO−3 2.30 × 1002 2.32 × 1002 2.31 × 1002 2.31 × 1002 4.77 × 10−01

RPSO 2.29 × 1002 2.29 × 1002 2.29 × 1002 2.29 × 1002 0.00 × 1000

F10(X)

PSO−1 1.00 × 1002 1.22 × 1002 1.00 × 1002 1.04 × 1002 6.10 × 1000

PSO−2 1.00 × 1002 2.20 × 1002 1.00 × 1002 1.49 × 1002 5.70 × 1001

PSO−3 1.00 × 1002 2.20 × 1002 1.00 × 1002 1.45 × 1002 5.55 × 1001

RPSO 1.00 × 1002 1.00 × 1002 1.00 × 1002 1.00 × 1002 5.59 × 10−02

F11(X)

PSO−1 0.00 × 1000 3.00 × 1002 0.00 × 1000 4.01 × 1001 8.76 × 1001

PSO−2 0.00 × 1000 4.00 × 1002 0.00 × 1000 8.22 × 1001 1.20 × 1002

PSO−3 0.00 × 1000 4.00 × 1002 0.00 × 1000 4.34 × 1001 9.08 × 1001

RPSO 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000

F12(X)

PSO−1 1.65 × 1002 1.67 × 1002 1.66 × 1002 1.66 × 1002 6.60 × 10−01

PSO−2 1.64 × 1002 1.67 × 1002 1.65 × 1002 1.66 × 1002 7.50 × 10−01

PSO−3 1.65 × 1002 1.68 × 1002 1.65 × 1002 1.66 × 1002 8.05 × 10−01

RPSO 1.65 × 1002 1.68 × 1002 1.66 × 1002 1.66 × 1002 8.15 × 10−01

As can be seen from the Table 5, except for F12, RPSO has optimal values in all other
functions, especially in the functions F1–3, F5, F7–11, where the indexes of RPSO are optimal
in these functions. The other variants are all able to find the theoretical optimal values in the
functions F1–3, F5, and F11. This verifies that the incorporation of the various mechanisms
has a certain degree of rationality. Taken together, RPSO has certain advantages in the
arrangement and combination of integrated mechanisms, verifying the feasibility and
effectiveness of RPSO.

5. Classification Experiments

In this section, we optimize the hyperparameters of a CNN for enhancing the diagnos-
tic rate through RPSO and verify the feasibility of this model using two datasets.

5.1. Means

In this study, the optimization of hyperparameters was performed using RPSO. The
accuracy and convergence of CNNs are heavily determined by hyperparameters [67].
Properly choosing hyperparameters is crucial, as they are determined by the particular use
of the CNN. Some commonly employed hyperparameters for training CNNs include the
learning rate, the number of epochs, the momentum, and the regularization factor. The
learning rate governs the step size of the gradient descent algorithm, dictating how quickly
or slowly the network parameters are updated. An increased learning rate facilitates faster
convergence yet may result in overshooting the optimal solution. On the other hand, a
decreased learning rate may take more iterations to converge, but it can yield more accurate
results. The number of epochs specifies the frequency of updating the network parameters
based on the training dataset. Striking a balance between not training enough epochs and
overtraining, which could lead to underfitting and overfitting, is crucial. Momentum is a
parameter that governs the influence of previous weight updates on the current weight
update. It helps to accelerate convergence and overcome local minima. Regularization is a
technique employed to prevent overfitting in the network. It accomplishes this by adding
a regularization term to the loss function, penalizing complex models and promoting
simpler models that can be generalized to unseen data more effectively. Optimizing
hyperparameters is imperative to achieve the optimal performance of the CNN. Techniques
such as RPSO can be utilized to explore the hyperparameter space and identify the most
suitable values for the specific problem at hand.
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5.2. Training

In this section, two datasets, CT (https://github.com/UCSD-AI4H/COVID-CT, ac-
cessed on 20 March 2023) and XY (https://www.kaggle.com/datasets/paultimothymooney/
chest-xray-pneumonia, accessed on 20 March 2023), were selected to validate the algo-
rithm’s ability to optimize the CNN. Overall, 70% of the data were utilized for training,
while the remaining 30% were allocated for network testing. The proposed architecture
aims to distinguish between normal and abnormal images. The dataset was randomly
divided into training and testing sets. Through data augmentation techniques, all images
were resized to 224 × 224 × 3 and converted into color images. A six convolutional layer
structure was employed for image classification, with Stochastic Gradient Descent (SGD)
training used to adjust parameters and RPSO for hyperparameter optimization during the
training process.

5.3. Testing

Firstly, the proposed network was augmented with data and trained by resizing the
image to 224 × 224 × 3. Then, the test image was fed into the trained CNN that had already
optimized all the parameters of Convolutional Layers (CLs) and Fully Connected Layers
(FCL). The CNN starts by extracting image characteristics and then categorizes them into
appropriate groups through FCL and soft-max classifiers.

5.4. Experiments

To show the diagnostic performance of RPSO, the diagnostic effectiveness of RPSO
was compared with that of PSO, the whale optimization algorithm (WOA) [68], the grey
wolf optimizer (GWO), the hybrid differential evolution algorithm and particle swarm
optimization (DEPSO) [69], and the advanced squirrel search optimization algorithm
(ASSOA) [70]. Each algorithm was run independently for ten epochs; the best value, mean
value, and worst value of every algorithm were recorded; and the confusion matrix of the
optimal value, Accuracy, Precision, Recall, and F1 Score [71] was produced. The specific
results are shown in Table 6 and Figures 9 and 10.
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According to Table 6 and Figures 9 and 10, in the XY data set the algorithm accuracy
is sorted from low to high. The results show that the accuracy rate of the PSO algorithm
in the diagnosis of pneumonia is 98.21%, the number of normal correct diagnoses times
is 85, and the number of correct diagnoses of COVID-19 is 84. The accuracy rate of the
WOA algorithm in the diagnosis of pneumonia is 98.81%, the number of normal and correct
diagnoses times is 81, and the number of times with correct diagnosis of COVID-19 is 85.
The accuracy of the DEPSO algorithm in the diagnosis of pneumonia is 98.81%, the number
of normal correct diagnoses is 81, and the number of correct diagnoses of COVID-19 is 85.
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The accuracy of the ASSOS algorithm in the diagnosis of pneumonia is 98.81%, the number
of normal correct diagnoses is 82, and the number of correct diagnoses of COVID-19 is
84. The accuracy of the GWO algorithm in the diagnosis of pneumonia is 99.40%, and
the number of normal correct diagnoses is 82, while the number of times with the correct
diagnosis of COVID-19 is 85. The accuracy rate of the RPSO algorithm in diagnosing
pneumonia is 100%. The number of correct diagnoses for normal cases is 82, while the
number of correct diagnoses for COVID-19 cases is 86.

Table 6. Classification results for each algorithm.

Method Dataset Accuracy Precision Recall F1 Score Best Mean Worst

PSO
XY 98.21% 98.82% 97.67% 98.25% 98.21% 97.86% 97.02%
CT 87.05% 91.30% 80.00% 85.28% 87.05% 84.38% 83.04%

GWO
XY 99.40% 100.00% 98.84% 99.42% 99.40% 98.10% 96.43%
CT 86.16% 84.91% 85.71% 85.31% 86.16% 84.91% 83.93%

WOA
XY 98.81% 98.84% 98.84% 98.84% 98.81% 97.62% 95.83%
CT 86.61% 84.40% 87.62% 85.98% 86.61% 84.91% 83.48%

DEPSO
XY 98.81% 98.84% 98.84% 98.84% 98.81% 98.45% 97.62%
CT 83.93% 84.85% 80.00% 82.35% 83.93% 82.59% 79.91%

ASSOA
XY 98.81% 100.00% 97.67% 98.82% 98.81% 97.86% 96.43%
CT 85.71% 85.44% 83.81% 84.62% 85.71% 84.73% 83.93%

RPSO
XY 100% 100% 100% 100% 100% 98.69% 97.02%
CT 87.05% 88.00% 83.81% 85.85% 87.05% 85.71% 84.82%

In the CT dataset, the algorithm accuracy is ranked from low to high. The results
indicate that the ASSOA algorithm has an accuracy of 85.71% in diagnosing pneumonia,
the number of normal correct diagnoses is 104, and the number of correct diagnoses of
COVID-19 cases is 88. The DEPSO algorithm has an accuracy rate of 83.92% in diagnosing
pneumonia. The number of correct diagnoses for normal cases is 104, and the number of
correct diagnoses for COVID-19 cases is 84. The GWO algorithm has an accuracy of 86.16%
in diagnosing pneumonia. The number of correct diagnoses for normal cases is 103, and
the number of correct diagnoses for COVID-19 cases is 90. The WOA algorithm has an
accuracy of 86.61% in diagnosing pneumonia. The number of correct diagnoses for normal
cases is 102, and the number of correct diagnoses for COVID-19 cases is 92. The accuracy of
the PSO algorithm in diagnosing pneumonia is 87.05%. The number of correct diagnoses
for normal cases is 111, and for COVID-19 cases it is 84. The accuracy rate of the RPSO
algorithm in diagnosing pneumonia is also 87.05%. The number of correct diagnoses for
normal cases is 107, and for COVID-19 cases it is 88.

It can be seen that, compared with other algorithms, the RPSO algorithm has the
highest accuracy in both data sets, surpassing all of the compared algorithms. Although
the accuracy of the PSO algorithm in the CT data set is equal to that of RPSO, with both
ranking first, it has the lowest accuracy in the XY data set and is highly unstable. It is
concluded that RPSO has obvious superiority and good robustness.

6. Conclusions

To further enhance the global optimization ability of the particle swarm algorithm
and its applicability in threshold segmentation problems, this paper proposes an RPSO
based on cosine similarity. This algorithm introduces the RCI mechanism to enhance the
mechanism and the global search capability of the algorithm. Utilizing cosine similarity for
RCI and QI selection, the population information is effectively and dynamically updated,
thereby improving the global and local optimization capabilities of the algorithm. RPSO
is evaluated based on the CEC 2022 test set and compared with other PSO variants and
top algorithms in the CEC community. In comparison with other variants of PSO, RPSO is
ranked top at 7.9167 and 2.5833 in 10 and 20 dimensions, respectively. When compared
with the top algorithms, RPSO achieves optimal values in F(1), F(5), and F(11), performing
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on par with the leading algorithms. The results confirm that RPSO exhibits strong com-
petitive and global optimization capabilities. In the optimization of CNN classification
experiments, RPSO demonstrates the highest classification accuracy of 100% on the XY
dataset, with an average accuracy exceeding 98%. On the CT dataset, the highest accuracy
reached is over 87%, with an average accuracy of above 85%. RPSO demonstrates excellent
diagnostic performance based on two disease datasets compared to other basic algorithms
and algorithm variants, highlighting its practical value.

Despite the promising optimization results achieved by RPSO based on the CEC 2022
test set, some limitations still exist. For instance, in functions F(3) and F(4), RPSO exhibits
some shortcomings in search accuracy, indicating the need to improve its local search
capability while maintaining its global search ability, as RPSO is not capable of making in-
telligent choices based on the optimization-seeking environment. Additionally, optimizing
the hyperparameters of the CNN to significantly enhance the classification accuracy is a
challenging task, as optimization is a major problem that takes an inordinate amount of
time to ensure. Therefore, the next step of this research focuses on three main areas:

• Designing smarter judgment mechanisms for rational global and local searching.
• Incorporating efficient parameter estimation schemes to reduce the time consumption

of the optimization process.
• Optimizing the architecture of the neural network to enable automatic architectural

tuning for different datasets.
• Applying the algorithm to practical scenarios in high demand today, such as 6G base sta-

tion deployment, optimization of new energy systems, and structural design optimization.
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