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Abstract: The current motion interaction model has the problems of insufficient motion fidelity and
lack of self-adaptation to complex environments. To address this problem, this study proposed to
construct a human motion control model based on the muscle force model and stage particle swarm,
and based on this, this study utilized the deep deterministic gradient strategy algorithm to construct
a motion interaction control model based on the muscle force model and the deep reinforcement
strategy. Empirical analysis of the human motion control model proposed in this study revealed
that the joint trajectory correlation and muscle activity correlation of the model were higher than
those of other comparative models, and its joint trajectory correlation was up to 0.90, and its muscle
activity correlation was up to 0.84. In addition, this study validated the effectiveness of the motion
interaction control model using the depth reinforcement strategy and found that in the mixed-obstacle
environment, the model’s desired results were obtained by training 1.1 × 103 times, and the walking
distance was 423 m, which was better than other models. In summary, the proposed motor interaction
control model using the muscle force model and deep reinforcement strategy has higher motion
fidelity and can realize autonomous decision making and adaptive control in the face of complex
environments. It can provide a theoretical reference for improving the effect of motion control and
realizing intelligent motion interaction.

Keywords: muscle force modeling; deep reinforcement; motor interaction; stage particle swarm;
environmental adaption

1. Introduction

With the continuous development of robotics and its increasingly wide range of
applications, motion interaction control shows great potential in the fields of healthcare,
assisted living, and entertainment. However, a high degree of motor interaction control still
faces many challenges [1]. As an important tool for studying human movement, muscle
force modeling can simulate the characteristics of human muscles such as strength, range
of motion, and force distribution [2,3]. Research on motion interaction control based on
muscle force modeling can more accurately control the motion of robots and achieve a
high degree of interaction with humans [4]. However, there are some shortcomings in the
current motion interaction control model. The traditional motion control model is often only
applicable to specific types of motion, unable to cover a variety of different forms of motion,
which limits its application scope [5–7]. Therefore, improving the traditional motion control
model to improve its performance and universality has become an urgent demand today.
The deep reinforcement strategy is a method based on deep learning and reinforcement
learning that has emerged in recent years with strong adaptability and generalization
ability [8]. Research on motor interaction control based on deep reinforcement strategies
can train a robot to interact with the environment so that it can learn the optimal behavioral
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strategies, thus achieving more accurate and efficient motor interaction [9]. Therefore, this
study proposed a motor interaction control model based on a muscle force model and deep
reinforcement strategy and used a staged particle swarm optimization (SPSO) algorithm to
optimize the parameters in the model to improve the training efficiency [10]. This study
aimed to realize autonomous decision making and adaptive interaction control of complex
environments in the face of motion interaction models and provide a theoretical basis for
further advancing the development of the field of motion interaction control. This study
describes the current development of deep reinforcement learning algorithms and motor
interaction control in Section 1 and constructs a motor interaction control model based
on the muscle force model and deep reinforcement strategy in Section 2. In Section 3,
the proposed reinforcement interaction motor control model is empirically analyzed. The
conclusion and outlook of future research directions are presented in Section 4.

2. Literature Review

With the progress of social technology, deep reinforcement learning algorithms have
been widely used in various fields. In order to optimize the energy utilization efficiency
of electric buses and extend the power system life, Huang et al. proposed to construct
an energy management model, validated the effectiveness of the model, and found that
the model effectively extended the life of the battery and improved the efficiency of en-
ergy utilization, which, in turn, reduced the total operating cost, and the model made a
contribution and had practical application value [11–13]. To optimize the computational
performance and resource allocation capacity of a fog computing wireless access network,
Jo et al. proposed to construct a computational task offloading and resource allocation
strategy, validated the effectiveness of the proposed optimization strategy, and found that
this strategy significantly improved the system processing efficiency and resource allocation
compared with the traditional processing methods [14]. In the transportation system, the
logistics path-planning performance is insufficient and there is the problem of long compu-
tation times, so Yu et al. proposed the deep reinforcement learning mechanism to optimize
the logistics path-planning model to verify the model’s effectiveness, and found that the
computation time of the model compared with the traditional model was significantly
shortened, and the phase of the computation time in the path planning was better [15]. To
further improve the precision and accuracy of fluid flow control, Rabault et al. proposed
to apply deep reinforcement learning techniques to the training of the flow control to
construct an active control model of the flow and validated the effectiveness of this model,
which was found to successfully stabilize the vortex channel and reduce the resistance
by approximately 8%, opening the way for the execution of active flow control [16–18].
In order to improve the elasticity of a power system, Sreedhar and others used a deep
reinforcement learning algorithm to build a power system data-driven agent framework,
whereby the validity of the method can achieve accurate system model calculations, over-
come scalability problems, and enhance the deployment of power system elastic shunt
planning [19]. In order to solve the problem of improving the system throughput and
reducing the transmission delay of the multi-beam satellite system, Hu et al. proposed
a black hole lighting plan optimization method based on deep reinforcement learning to
verify the effectiveness of this method and found that the method can reduce transmission
delay and improve the system throughput compared with existing algorithms [20,21].

In recent years, motion interaction control has been widely applied in various fields,
and the research on motion interaction control has also become a popular research direction.
Golparvar et al. used graphene-embedded eye drive receptors as the basis for construct-
ing a human–computer interaction model based on electrooculography and verified the
validity of the model and found that the model completed more than 85% of automatic
eye movement detection, which was applied to practical application scenarios, and this
research helped to advance the development of wearable electronic devices [22]. To explore
the integration mechanism between the sensory system and the motor system during
finger movement, Wasaka et al. proposed to use somatosensory-evoked potentials and
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magnetic fields to record the data when the tasker performed the hand movement, and this
experiment found primary somatosensory cortex activity distinctly characterized, which
may be the basis of the neural mechanism related to finger dexterity [23]. To ensure the
rehabilitation robot’s safety, Mancisidor proposed to train the rehabilitation robot for safety
using an assistive, corrective, and resistance framework and validated the effectiveness
of the trained rehabilitation robot, which was found to operate well in terms of adapt-
ability, robustness, and safety in terms of force control [24]. To improve the human–robot
interaction movement stability, Zhuang proposed to construct a musculoskeletal model
based on electromyography, and the model validity was verified, and it was found that
the auxiliary moment, tracking error, and sharpness value of the model were lower. It
improved the stability of movement and was applied to the auxiliary support of patient re-
habilitation [25]. To study the functional neural matrix of reward processing and inhibitory
control in patients with impulse control disorder, Paz-Alonso et al. proposed a controlled
brain–behavior correlation experiment, and the results found that PD patients with impulse
control disorder showed excessive activation of the right regional network, including the
subthalamic nucleus, which is closely related to the severity of impulse control disorder [26].
In order to improve the quality of life of patients with limb loss, Dantas et al. proposed a
decoder based on four kinds of competing muscular intention decoding methods, and upon
evaluating the performance of the four decoding methods, found that the performance
of the decoder based on a layer perceptron and convolution neural network was optimal,
whereby it enabled more accurate and more natural control of a prosthetic hand [27].

In summary, deep reinforcement learning algorithms currently have great application
prospects in a variety of fields. To improve the motion fidelity of the motion control
model and realize its adaptive function in environmental interactions, this study used
a deep reinforcement learning algorithm to improve the model to realize its function of
self-adaptation to complex environments.

3. Construction of Motor Interaction Control Model Based on Muscle Force Model and
Deep Reinforcement Strategy

To improve the motion realism of the motion control model, this study proposed to
construct a human motion control model based on the muscle force model and the stage
particle swarm algorithm. In addition, based on the human body control model, this
research also constructed an environment-oriented intensive interactive motion control
model to realize the environmental adaptation and autonomous decision-making function
of the motion control model.

3.1. Human Motion Control Model Based on Muscle Force and Stage Particle Swarm Optimization

To realistically simulate and control the forces and moments of human motion, this
study combined biomechanics with optimization algorithms to construct a human motion
control strategy based on muscle force and phase particle swarm optimization. The real-
ization of human motion cannot be achieved without bones and muscles. Therefore, this
study first constructed a human muscle force model based on the physiological anatomy.
The model considers the human body as a skeleton-connected multi-rigid-body system
and simulates real human body movements by modeling the limb structure and skeletal
muscle mechanics of the real human body. Skeletal muscles in the human body drive bone
and joint movements through muscle contraction and relaxation, and the composition of
skeletal muscles is shown in Figure 1 [28,29].
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body cannot be directly measured, so this study utilized the Hill muscle force three-ele-
ment model to simulate the muscle contraction force. In the Hill muscle force model, mus-
cles and tendons are regarded as contractile elements, series elastic units, and parallel 
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Figure 1. The composition of human skeletal muscle.

Skeletal muscle consists of muscle fibers, as shown in Figure 1. When the nervous
system sends a signal, the muscle fibers contract, causing the bones to move. This contrac-
tion is produced by the interaction of actin with myosin in myogenic fibers, and the higher
the activity value of myogenic fibers, the stronger their contraction force. The human
body contains 639 muscles. Due to space limitations, this study took human lower limb
movement as the object of movement simulation and constructed a muscle force model
of lower limb walking movement. The muscle force in the physiological anatomy of the
human body cannot be directly measured, so this study utilized the Hill muscle force
three-element model to simulate the muscle contraction force. In the Hill muscle force
model, muscles and tendons are regarded as contractile elements, series elastic units, and
parallel elastic units [30]. The tandem elastic unit can attach elasticity to the contractile
element, while the combination of the contractile element and the tandem elastic unit can
act as an actively elastic–contractile element. The expression for calculating the force of a
tendon actively performing a contraction is shown in Equation (1):

FT =
(

FCE + FPE
)

cos ϑ (1)

In Equation (1), FT represents the active contraction force of the tendon. FCE represents
the contraction force of the contractile element. FPE represents the contraction force of the
parallel elastic unit. ϑ represents the angle between the muscle fibers and the direction
of the muscle fibers, which is also known as the pinnation angle. The pinnation angle is
affected by the length of the muscle fibers, and its calculation is shown in Equation (2):

ϑ(t) = arcsin
(

LM0 sin ϑ0

LM

)
(2)

In Equation (2), ϑ(t) denotes the pinnation angle after the contraction of the t moment.
LM0 denotes the optimal isometric contraction length of the muscle fiber. ϑ0 denotes the
angle between the fiber and the fiber direction when the fiber is relaxing. LM denotes the
length of the muscle fiber when it is t. However, the Hill model is only a simplified version
of the muscle force simulation model. To improve the accuracy of muscle force movement
simulation, this study also considered the human nerve reflex movement based on Hill’s
muscle force model to construct a motor control model. The basic architecture of the model
is shown in Figure 2.
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Figure 2. Motor control model based on neural reflexes.

In Figure 2, this study divides the motor control model into a strategy control layer, a
spinal reflex layer, and a muscle-driven layer. The strategic control layer is located in the
highest layer of motor control and is mainly responsible for decision making and planning
the overall strategy of the movement. The spinal reflex layer is located in the middle layer of
the motor control model, which is mainly responsible for realizing fast muscle contraction
and posture adjustment by processing sensory information and its mapping onto muscle
excitation signals. The muscle actuation layer is located at the lowest level of motor control
and is responsible for performing specific muscle contraction actions. Although this motor
control model analyzes motor control strategies at multiple levels, the complexity of the
neural reflexes has led to a substantial increase in the parameters involved. Therefore, the
study utilized SPSO to optimize the parameters of this motor control model. The SPSO
algorithm combines the idea of group intelligence and phased optimization to effectively
search the parameter space and find the optimal solution by optimizing the parameters of
the strategy control layer, the spinal reflex layer, and the muscle-driven layer. The improved
motion control model based on the SPSO algorithm proposed in this study is shown in
Figure 3.
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In Figure 3, this study divides the objectives of the motion control model into three
stages, which are minimizing the energy consumption during the action, optimizing the
realism during the action, and keeping the gait speed and step length stable. In the
first stage, this study takes the walking distance as the target parameter, and its energy
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consumption is calculated for the specified walking distance, and the energy consumption
calculation is shown in Equation (3):

F′ = d − αE (3)

In Equation (3), F′ denotes the active force produced by the muscles in the walking
state. d denotes the walking distance. E denotes the energy consumption. α denotes the
energy consumption weight. In the second stage, the study takes the similarity between
the simulated gait and the real gait as the target parameter, which is calculated as shown in
Equation (4): 

Cang = ωc
hipcorrhip + ωc

knecorrkne + ωc
ankcorrank

Cpoi =
1
N

N
∑

n=1
|pn − p̂n|

F′ = d − αE + βCang − γCpoi

(4)

In Equation (4), Cang denotes the joint trajectory correlation. Cpoi denotes the joint
point gap. corrhip denotes the hip joint correlation. corrkne denotes the knee joint correlation.
corrank denotes the ankle joint correlation. ωc

hip, ωc
kne, and ωc

ank are the weighting coefficients
of 0.35, 0.35, and 0.3, respectively. N denotes the number of key points. pn denotes the
simulated key points. p̂n denotes the real key points. In the third stage, this study utilizes
the speed and length of the simulated step as the evaluation index of stability, which is
calculated as shown in Equation (5):

Cspd = −|vdes − v|
Cleth = −|sldes − sl|

F = d − αE + βCang + δCspd + εCleth

(5)

In Equation (5), vdes denotes the expected step speed, sldes denotes the expected
step length, and δ and ε denote the weighting coefficients of the step speed and step
length, respectively.

3.2. Enhanced Environment-Oriented Interactive Motion Control Modeling

After completing the construction of the motion control model, this study applied it
specifically in practice. However, the actual environment is complex and changing. Accord-
ing to the changes in the actual environment, the real-time processing of information and
realizing autonomous decision making are also urgent problems to be solved [31,32]. A rein-
forcement learning algorithm, as a kind of adaptive algorithm, can realize the optimization
of an action strategy by learning the reward signal obtained from the environment [33,34].
Therefore, this study proposed to construct an environment-oriented reinforced interactive
motion control model using a reinforcement learning algorithm. The basic framework of
reinforcement learning is shown in Figure 4.

In Figure 4, reinforcement learning and framework components include five elements:
the environment, state, action, reward, and intelligent body. Among them, the intelligent
body is the ontology of reinforcement learning and the core of reinforcement learning to
realize autonomous decision making. It can learn the optimal strategy by maximizing the
accumulated rewards. In motor interaction control, the intelligent body can choose actions
according to the current state of the muscle force model, continuously interact with the
environment through the action, evaluate the value of learning rewards after executing
actions, and continuously try until the intelligent body can gradually master the optimal
strategy. Therefore, this study applied reinforcement learning to the motor control model
and constructed a reinforcement motor control model based on environmental interactions.
Figure 5 shows the model’s basic framework.
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In Figure 5, the enhanced motion control model based on environmental interactions
includes a base strategy module for invariant environments, a stochastic strategy module
for changing environments, and an experience pool module for learning and training. For
the base strategy module, the optimized stage particle swarm update calculation is shown
in Equation (6):{

xi(n + 1) = xi(n) + vi(n + 1)
vi(n + 1) = ω ∗ vi(n) + c1 ∗ (xg − x(n)) ∗ Rand[0 : 1] + c2 ∗ (xp − x(t)) ∗ Rand[0 : 1]

(6)

In Equation (6), xp is the individual optimal position. xg is the global optimal position.
ω represents the inertia weight. c1 represents the social factor. c2 represents the cognitive
factor. At this time, the objective function of particle swarm updating in the process of
basic strategy optimization is shown in Equation (7):

R0 = eEv+Ep+Ee , no f alls down (7)

In Equation (7), Ev denotes the return value of the simulated human movement speed.
Ep denotes the return value of the simulated human position. Ee denotes the return value
of the simulated human movement energy consumption. When the environment changes,
the model adjusts the behavioral strategy of the human body through the deep learning
algorithm actor–critic. The main update expression for the stochastic strategy is shown in
Equation (8):

∇θ J(θ) = Es∼pπ ,a∼πθ
[∇θ log πθ(a|s )Qπ(s, a)] (8)
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In Equation (8), a denotes the behavior, s denotes the state, and Q denotes the strategy
evaluation. The average gradient estimation of the strategies using the empirical pool is
shown in Equation (9): 

∇θU(θ) ≈ 1
m

m
∑

i=1
∇θ log P(τ; θ)R(τ)

R(τ) =
H
∑

t=0
R(st, ut)

(9)

In Equation (9), τ denotes the behavioral sequence. θ denotes the direction parameter.
τ denotes the trajectory. P(τ; θ) denotes the probability of the trajectory’s occurrence. R(τ)
denotes the trajectory’s return. The gradient strategy can make the trajectory return the
highest evaluator, increase the probability of a high return estimation, and then improve
the training speed. Therefore, in the experience pool module, this study used the deep
deterministic policy gradient (DDPG) algorithm to optimize it. The basic architecture of
the DDPG-based experience pooling module is shown in Figure 6.
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In Equation (9), τ   denotes the behavioral sequence. θ   denotes the direction pa-

rameter. τ  denotes the trajectory. ( ; )P τ θ  denotes the probability of the trajectory’s oc-
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The DDPG algorithm also includes two modules, the actor network and the critic
network, and its training process includes two phases: policy update and value function
update. In the strategy update phase, DDPG calculates the gradient of the strategy based on
the current state and the action output from the strategy function and updates the strategy
parameters based on the gradient. In the value function update phase, the DDPG updates
the parameters of the value function based on the current state, the actions and the rewards
fed back from the environment, and based on the loss. The expression for calculating the
target value of its information update is shown in Equation (10):

η = rt + γQw(st+1, µθ(st+1)) (10)

In Equation (10), η indicates the information update target. µ denotes the policy
network. w and θ denote the parameter values to be updated. The updating expression of
the parameters is shown in Equation (11):

wt+1 = wt + awδt∇wQw(st, αt)

θt+1 = θt + aθ∇θµθ(st)∇αQw(st, αt)
∣∣∣α=µθ(s)

w′ = τθ + (1 − τ)θ′

θ′ = τw + (1 − τ)w′

(11)
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In Equation (11), w′ and θ′ denote the updated parameters. The inputs of the motion
control model need to consider not only the state characteristics but also the strategy
behavior. If the simulated human body falls, its return strategy and function value is 0, and
the return function calculation for walking is shown in Equation (12).

r(s, a, s′) = eEv+Ej (12)

In Equation (12), r denotes the payoff function. Ej denotes the moment sum in the
joint hyperextension state. The training expression of the strategy evaluation network is
shown in Equation (13):{

LQ(θ
Q) = Est ,at ,rt ,st+1∼D[(Q(st, at)− yt)2]

yt = rt + γQ′(st+1, a)|a = µ′(st+1)
(13)

In Equation (13), D denotes the experience pool. The policy network training expres-
sion is shown in Equation (14):

∇θµ J = Est∼D

[
∇aQ(st, a

∣∣∣θQ )
∣∣∣a=µ(st)∇θµ µ(st|θµ )

]
(14)

In the DDPG-optimized experience pool, this study selected components of size 106 as
the buffer tuples. During the accumulation of the experience pool, the tuple is continuously
deposited into the buffer, and when the buffer is full, the old samples in the experience
pool are discarded as a way of realizing the parameter update. This method improves the
efficiency of sample utilization.

4. Empirical Experiments on Motor Interaction Control Model Based on Muscle Force
Model and Depth Reinforcement Strategy

To validate the effectiveness of this research’s proposed motor interaction control
model based on the muscle force model and deep reinforcement strategy, this study first
conducted performance validation on the motion fidelity of the human motion control
model. In addition, to verify the environmental adaptive function of the reinforced interaction
motor control model, this study conducted performance verification experiments on the model
by setting up different obstacle environments for its movement and learning efficiency.

4.1. Validation of the Effectiveness of the Human Motion Control Model

To validate the effectiveness of the proposed motion control model optimized based
on the muscle force model and SPSO algorithm, this study compared the performance
of the proposed motion control model based on PSO and the traditional motion control
model. This study validated the effectiveness of the SPSO motion control model with the
gap between the simulated motion data and the real human body data. The evaluation
indexes were a joint angle, joint moment, muscle activity, joint trajectory correlation, and
muscle activity correlation. Due to the large number of tendon units in the human lower
limbs, due to space limitations, only the gluteus (GLU), the femur (VAS), the hamstring
(HAM), and the soleus (SOL) were selected as the representatives in this study to determine
their muscle activities. The simulation platform used for this study was MATLAB Simulink,
the solver was ode 15 s, and the stopping criterion dlim was set to 25 m. The joint angles
and joint moments in the motion data of each comparative model and the data on the real
human body are shown in Figure 7.
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and human body data.

Figure 7a,b shows the comparison results of the hip joint angle and moment of each
model. The proposed SPSO motion control model had a better fit with the real hip joint
motion data, and the maximum error of its angle and moment was 8.6 deg and 0.1 Nm,
which better reflected the human motion data. Figure 7c,d shows the comparison results
of the knee joint angles and moments for each comparison model. The proposed motion
control model had a better fit with the real knee joint motion data, and the maximum errors
of its angles and moments were 19.4 deg and 0.4 Nm. Figure 7e,f shows the comparison
results of the ankle joint angles and moments for each comparison model, and the proposed
motion control model could better represent the human motion data. The proposed motion
control model had a better fit with the real ankle joint motion data, and the maximum
errors of its angle and moment were 8.7 deg and 0.5 Nm. In summary, the proposed motion
control model better simulated the real human body’s joint motion trajectory. The results
of the comparison between the data generated by the muscle force model of each motion
control model and the EMG data of the real human body are shown in Figure 8.

Figure 8a–d shows the GLU, VAS, HAM, and SOL muscle activity data generated
by each motion control model, respectively. In Figure 8, the muscle activity generated by
SPSO was closer to the real human motion data muscle activity than the other models. The
maximum error of GLU muscle activity was 12.6, the maximum error of VAS muscle activity
was 9.1, the maximum error of HAM muscle activity was 8.4, and the maximum error of
SOL muscle activity was 26.6. Considering the amount of computation, this study carried
out a certain amount of simplification on the muscle model, which made the simulation
results not 100% fit with the real results. However, summarizing the results, the motion
control optimization model proposed in this study had a better simulation performance
than the other methods while ensuring the computational amount. The comparison results
of the correlation between the joint trajectories and muscle activity of each motion control
model are shown in Figure 9.
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In Figure 9, the correlation between the joint trajectories and muscle activities gener-
ated by the motion control model based on SPSO optimization and the real human body
data is better. The correlation of the joint trajectories of the SPSO motion control model
was up to 0.90, and the correlation of its muscle activities was up to 0.84. Summarizing the
above results, the motion control model using the optimization of SPSO proposed in this
study simulated the real human body motion better and with better motion fidelity.

4.2. Enhanced Environment-Oriented Motion Interaction Control Modeling

After completing the validation of the motion fidelity of the motion control model,
this study also validated the effectiveness of the motion interaction control model using
the deep reinforcement strategy. To investigate the autonomous regulation and control
performance of the motion interaction control model in the face of complex and variable
environments, this study utilized a motion interaction control model based on the classi-
cal deep reinforcement learning method (Deep Q-Network (DQN)), the proximal policy
optimization (PPO) algorithm, and the traditional motion interaction control model to
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conduct performance comparison experiments on the motion interaction control model. In
this study, steps, slopes, and uneven ground were set as the environmental obstacles, the
inertia weight was set to 0.7, and the cognitive factor and social factor were set to 2.1. The
comparison indexes were the average distance traveled before 100 falls and the return value
of the learning process of each model in different obstacle environments. The simulation
platform was MATLAB Simulink. The average walking distance of each model in different
obstacle environments is shown in Table 1.

Table 1. Average walking distance of each model in different obstacle environments.

Optimized Control
Method

Distance Traveled
Footstep Slope Uneven Admixture

Our method 409 472 434 423
DQN 283 247 207 234
PPO 221 204 194 152

Traditional 156 174 143 121

In Table 1, the proposed motor interaction control model based on the deep reinforce-
ment strategy better interacted with the complex environments, and its average walking
distances were 409 m in a step environment, 472 m on a slope, 434 m in uneven terrain, and
423 m in mixed terrain, which are farther than those of the other models. In summary, the
motion interaction control model based on the deep reinforcement learning strategy had
better robustness to complex environments and was better applied to real-world scenarios.
This study also validated the performance of each model explored in the different obstacle
environments, and the change curves of the reward values of each model in learning
different scenes are shown in Figure 10.
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ciency was better. In addition, to further verify the effectiveness of the motion interaction 
control model using the deep learning strategy proposed in this study, this study evalu-
ated the smoothness, accuracy, and robustness of the output motion of the model in all 
aspects of satisfaction through expert scoring. The results of the expert satisfaction scores 
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Figure 10a–d shows the change curves of the learning reward values in the step,
uneven, slope, and hybrid modes, respectively. In Figure 10, the motion control model
based on the deep learning strategy proposed in this study exhibits a higher learning
efficiency. The desired results were obtained by training 9.0 × 103 times in the step obstacle
environment, 8.2 × 103 times in the uneven obstacle environment, 6.9 × 103 times in the
slope environment, and 1.1 × 103 times in the hybrid environment, which are lower values
than those of the other compared models. Summarizing the results, the training times of
the motion control model based on the deep learning strategy were less and its learning
efficiency was better. In addition, to further verify the effectiveness of the motion interaction
control model using the deep learning strategy proposed in this study, this study evaluated
the smoothness, accuracy, and robustness of the output motion of the model in all aspects
of satisfaction through expert scoring. The results of the expert satisfaction scores for each
model are shown in Figure 11.
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In Figure 11, the average score of this research’s proposed motor interaction control
model is 8.4, the average satisfaction score of the PPO-based motor interaction control
model is 7.9, the average satisfaction score of the DQN-based motor interaction control
model is 7.5, and the average satisfaction score of the traditional motor interaction control
model is 7.2. To summarize the results, the proposed motor interaction control model using
the deep reinforcement strategy had the highest expert score, which indicated that the
model had higher smoothness, accuracy, and robustness than the other models and had
practical application value. In addition, to further show the movement interaction control
model and existing motion interaction control model performance contrast effect, this study
also used performance comparison experiments to establish the motion interaction models
and compare them with the motion interaction models in references [16,20,23], with the
comparison indexes of the mixed terrain walking distance, model control accuracy, motion
deviation, and convergence speed. The performance comparison results of each motion
control model are shown in Table 2.

Table 2. Performance comparison results of each motion control model.

Optimized
Control Method Admixture Control

Accuracy
Action

Deviation
Convergence

Rate

Our method 423 m 92.3% 0.1 Nm 9.0 × 103

[14] 314 m 91.4% 0.2 Nm 9.4 × 103

[16] 284 m 87.7% 0.3 Nm 9.1 × 103

[17] 311 m 90.5% 0.2 Nm 9.5 × 103
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In Table 2, the motion interaction model constructed in this study has a walking
distance of 423 m, a control accuracy of 92.3%, and a movement deviation of 0.1 N, which
are higher than those of the other contrasted models. However, its convergence rate has little
advantage compared with the other contrasted models, being only slightly higher than that
of the motion interaction model shown in reference [32]. From the above results, compared
with the existing motion interaction model, the motion interaction model needed a large
number of samples and time to learn to adapt to the environment, and the optimization
effect of the training time was insufficient. The reason for this may be that the DDPG
optimization strategy was more sensitive to the initial strategy, and when the initial strategy
was not selected correctly, its training speed was greatly affected.

5. Conclusions

To further improve the motion fidelity of the motion interaction model and realize
the self-adaptive function of the motion interaction model to complex environments, this
study proposed to construct a human motion control model based on the muscle force
model and the SPOS algorithm. Based on this, an environment-oriented strengthened
motion interaction control model was constructed by using the deep reinforcement learning
algorithm. The simulation of the proposed muscle force model-based human movement
control strategy model found that the joint trajectory correlation and muscle activity cor-
relation of this model were higher than those of the other comparative models, and its
joint trajectory correlation was up to 0.90, and its muscle activity correlation was up to
0.84. In addition, this study also verified the effectiveness of the environment-oriented
reinforcement movement interaction control model and found that the model achieved the
highest joint trajectory correlation and muscle activity correlation at a walking distance
of 4.5 m in uneven terrain. In addition, the effectiveness of the environment-oriented
reinforced motor interaction control model was also verified, and it was found that the
walking distance of this model in uneven terrain was 434 m, and in mixed terrain, it was
423 m, which was farther than those of the other models. Moreover, the model obtained
the desired results by training 8.2 × 103 times in uneven terrain, while it needed to be
trained 1.1 × 103 times in a mixed-obstacle environment, which was more efficient than
other models. In summary, the proposed motor interaction control model using the muscle
force model and deep reinforcement strategy had higher motion fidelity than the traditional
model, and it realized autonomous decision making and adaptive control in the face of
complex environments. The constructed motion control model can be applied in practice,
such as in medical rehabilitation, robot motion control, and virtual character motion control.
The motion control model constructed in this research can provide help for the treatment
of patients with motor dysfunction and be transplanted into a robot control system to
improve the motion nature of anthropomorphic robots and improve the real-time and
realistic performance of virtual characters. However, there are some limitations to this
study. Considering the amount of computation and the computational cost, the muscle
force model constructed in this study has a simplification step, which limits the simulation
motion performance. The future research direction is to further improve the muscle force
model and enhance the simulation realism based on controlling the computational cost.
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