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Abstract: In order to cope with the problems of energy shortage and environmental pollution,
carbon emissions need to be reduced and so the structure of the power grid is constantly being
optimized. Traditional centralized power networks are not as capable of controlling and distributing
non-renewable energy as distributed power grids. Therefore, the optimal dispatch of microgrids
faces increasing challenges. This paper proposes a multi-strategy fusion slime mould algorithm
(MFSMA) to tackle the microgrid optimal dispatching problem. Traditional swarm intelligence
algorithms suffer from slow convergence, low efficiency, and the risk of falling into local optima. The
MFSMA employs reverse learning to enlarge the search space and avoid local optima to overcome
these challenges. Furthermore, adaptive parameters ensure a thorough search during the algorithm
iterations. The focus is on exploring the solution space in the early stages of the algorithm, while
convergence is accelerated during the later stages to ensure efficiency and accuracy. The salp swarm
algorithm’s search mode is also incorporated to expedite convergence. MFSMA and other algorithms
are compared on the benchmark functions, and the test showed that the effect of MFSMA is better.
Simulation results demonstrate the superior performance of the MFSMA for function optimization,
particularly in solving the 24 h microgrid optimal scheduling problem. This problem considers
multiple energy sources such as wind turbines, photovoltaics, and energy storage. A microgrid
model based on the MFSMA is established in this paper. Simulation of the proposed algorithm
reveals its ability to enhance energy utilization efficiency, reduce total network costs, and minimize
environmental pollution. The contributions of this paper are as follows: (1) A comprehensive
microgrid dispatch model is proposed. (2) Environmental costs, operation and maintenance costs are
taken into consideration. (3) Two modes of grid-tied operation and island operation are considered.
(4) This paper uses a multi-strategy optimized slime mould algorithm to optimize scheduling, and
the algorithm has excellent results.

Keywords: microgrid; optimize scheduling; renewable energy; slime mould algorithm; swarm intelligence

1. Introduction

Energy shortages become more and more severe with the rapid increase in electricity
usage. Utilizing renewable energy sources and optimizing the scheduling of energy struc-
tures can effectively solve these problems [1]. Traditional power generation methods have
become controversial, such as thermal power plants. Using non-renewable energy sources
like coal exacerbates resource depletion and environmental pollution. In contrast, pure
low energy utilization of thermal power generation and power generation efficiency lead
to high costs [2]. Microgrids offer flexibility, safety, and dispatch ability as a distributed
power generation mode. They can alleviate the pressure on the primary grid, supply power,
and operate in grid-connected and island modes [3]. When used for power generation,
wind, and solar energy are prevalent clean and renewable sources that reduce environ-
mental pollution and resource loss. Microgrids incorporating wind power generation are
distributed systems designed to address these issues, aligning with green development,
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and providing a secure power supply. Optimizing the scheduling of microgrids is an area
of growing interest, as it can minimize power generation costs while meeting regional
load requirements. However, combining wind, solar, and electricity scheduling involves
a high-dimensional 24 h planning problem. Considering various microgrid constraints,
developing an efficient method to solve the scheduling problem presents a significant
challenge [4].

Most scholars used traditional mathematical models to construct this problem. The
short-term optimal scheduling of microgrids can be attributed to 0–1 programming prob-
lems, linear programming problems [5], or dynamic programming problems [6]. Mathe-
matical methods were employed to solve them. Ping L et al. used the Lagrange relaxation
method to solve the distributed state of the AC-DC hybrid microgrid [7], B Knueven et al.
used the mixed integer programming model to control the power generation of the unit [8],
and C Ning et al. used a Bayesian non-parametric approach to solve the data-driven
dispatch problem under uncertainty in wind power generation [9]. Many mathemati-
cal methods solve only the problem but could be more efficient, especially when facing
large-scale, multi-objective, and multi-modal problems. Mathematical methods require
significant time to calculate and cannot guarantee calculation accuracy and efficiency when
dealing with many constraints, such as in microgrids.

In recent years, meta-heuristic algorithms have rapidly advanced and solved many
practical engineering problems [10]. These algorithms are advantageous in addressing
single-objective, multi-objective, continuous, and discrete problems, ensuring high compu-
tational efficiency and accuracy when tackling complex challenges. They exhibit remark-
able flexibility and applicability, effectively avoiding local optimal solutions compared
to traditional mathematical methods and have been widely applied to various scientific
problems [11]. As an essential branch of meta-heuristic algorithms, swarm intelligence
algorithms are commonly employed in continuous and discrete problems within practical
engineering contexts. Microgrid economic optimal dispatching has increasingly been ad-
dressed using swarm intelligence algorithms, as it is a typical high-dimensional, persistent
optimization problem. Cui Z et al. solve mathematical problems using a hybrid cuckoo
algorithm [12]. Microgrid dispatch considering cogeneration also uses a swarm intelligence
algorithm [13]. The swarm intelligence algorithm to solve this problem has become main-
stream according to the in-depth research on microgrid scheduling. Abhilipsa et al. [14]
solved the problem of randomness in non-renewable energy and proposed a bidding strat-
egy to optimize the profit function, but the constraints in the proposed model cannot be
well integrated with the algorithm. Dai et al. [15] used simulated annealing algorithm and
particle swarm algorithm for fusion, which enriched the diversity of individuals searched.
However, the optimization algorithm proposed was highly random in search and not effi-
cient. Cao et al. [16] studied microgrid dispatching strategies in two modes: grid-connected
operation and networked operation. However, the paper did not intuitively display the
power distribution diagram of each unit. Wang et al. [17] used a joint dispatch to solve the
optimal dispatch problem of microgrids, but joint dispatch in multiple areas sacrifices the
benefits of a single model, and the whale algorithm cannot balance this process well. Zhang
Y et al. use the butterfly algorithm to optimize microgrids [18]. Wu, Zhi et al. [19] used
particle swarm optimization to optimize the CHP microgrid system, which can meet the
scheduling requirements, but the search accuracy of the particle swarm algorithm needs to
be higher, and it cannot guarantee a good solution effect. Marzband, Mousa et al. [20] used
the ant colony algorithm to optimize the scheduling of the microgrid. The experimental
results show that the ant colony algorithm is worse than the particle swarm optimization
algorithm for this problem. However, the performance of the ant colony algorithm could be
better than the discrete problems in solving numerical problems. Yeh, Wei-Chang et al. [21]
proposed a new concept involving the regeneration of a new feasible variable set and used
a new genetic algorithm for optimization without penalty coefficients. The accuracy of the
algorithm still needs to be improved. This paper proposed a novel algorithm to solve this
practical application problem. After the slime mould algorithm was created, it was succes-
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sively used in high-latitude, multi-objective numerical problems. Similarly, the microgrid
model simulated in this paper is a complex numerical problem, and related SMA articles
inspired us. The slime mould algorithm (SMA) is a novel swarm intelligence algorithm
proposed by Li in 2020 [22]. Researchers observed that slime mould colonies stretch or
expand their vein-like tubes during foraging to control the concentration of biomass flow.
The SMA was developed based on this phenomenon. The SMA effectively balances ex-
ploration and exploitation performance compared to other swarm intelligence algorithms.
Although the SMA has demonstrated excellent results in solving continuous problems [23],
it has drawbacks, such as slow convergence speed and susceptibility to local optima. Liu
et al. [24] proposed a decentralized transaction model based on the master-slave game,
using the slime mould algorithm to optimize the model, reducing energy storage pressure
and improving efficiency, but they did not consider the cost of environmental factors. Emad
A. Mohamed et al. [25] used an optimized fractional-order controller based on the slime
mould optimization algorithm (SMA) to establish an improved coordination method and
used it for optimal scheduling of microgrids. However, the optimization of SMA in the
article was more limited to adaptive weights. Other strategies are ignored. Pawan Kumar
Kushwaha et al. [26] proposed a techno-economic environment (TEE) design of off-grid
microgrid (OGM) using SMA to improve rural power reliability. Compared with PSO, SMA
shows better performance, but the article does not study the grid-connected operation.

Considering that although the above research can basically complete the optimal
dispatch of microgrids, there are problems such as low accuracy, simple optimization goals,
and few types of distributed power sources. This paper studies two modes of microgrids,
grid-connected operation and islanded operation, taking into account the environment
costs, operating costs, maintenance costs and other costs needed to fully meet the reliability,
and economic and environmental protection of the microgrid.

This paper introduces an improved SMA to solve the microgrid optimal scheduling
problem: the multi-strategy fusion slime mould algorithm (MFSMA). This paper adds a
variety of strategies to the SMA because the search accuracy is not high. And the search
strategy is also added to the SMA because the follower operator can improve the con-
vergence speed of the solution, which together form the MFSMA. By employing reverse
learning to expand the search space, MFSMA prevents falling into local optima. Further-
more, new adaptive parameters ensure dynamic and adaptive search during iterations. The
search pattern of the salp swarm algorithm is also incorporated to accelerate convergence.
The simulation results show that when solving high-dimensional, multi-objective problems
such as microgrid optimal dispatch, MFSMA has faster convergence speed, higher search
accuracy and stronger robustness than other algorithms, and it achieves a reduction in the
total cost of the microgrid.

The contributions of this paper are as follows: (1) A comprehensive microgrid dispatch
model is proposed, which includes diesel generator (DG), wind turbine (WT), photovoltaic
(PV), fuel cell (FC) and micro turbine (MT) as well as load shedding. (2) Environmental
costs, operation and maintenance costs are taken into consideration, and the economic and
environmental protection of the microgrid are achieved at the same time. (3) Two modes
of grid-tied operation and island operation are considered. (4) This paper uses a multi-
strategy optimized slime mould algorithm to optimize scheduling, and the algorithm has
excellent results.

The paper is structured as follows: Section 2 models the optimal economic dispatch
for the microgrid. Section 3 presents the basic SMA algorithm, details the optimization
improvements of MFSMA for the SMA method, and provides the flowchart for solving
the microgrid optimal dispatching problem. Section 4 benchmarks MFSMA against other
algorithms. Section 5 applies MFSMA to the microgrid optimal dispatching problem and
compares convergence speeds with different algorithms. Finally, Section 6 summarizes and
provides an outlook.
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2. Problem Formulation and Microgrid Model

The optimal scheduling model of the microgrid is divided into multiple parts to supply
power to the microgrid, including the operation of one or more micro turbines (MT), fuel
cells (FC), diesel generators (DG), wind power (WT), photovoltaic (PV), and battery as
shown in Figure 1. The microgrid has two operating modes, grid-connected operation
and islanded operation. Grid-connected operation can purchase power from the main
grid, while islanded operation is a relatively closed operation mode. This paper proposes
a 24 h optimal dispatch model, in which distributed generating units are combined to
generate electricity according to load demand [27]. The power generation process will
generate operating costs and maintenance costs. In addition to wind power generation
and photovoltaic power generation, harmful gases will also be produced which will cause
environmental pollution, so there are also environmental costs. The research content of this
article is to reduce the total cost as much as possible while satisfying the constraints. The
cost formulas for various units are introduced below.
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2.1. Diesel Generator Model

The mathematical model of the diesel generator is similar to the mathematical model
of coal power generation in thermal power plants, and its power consumption curve is a
complex mathematical problem [28]. The unary quadratic function of Formula (1) calculates
the consumption cost of the diesel generator. Among them, where ai, bi, ci are the fuel
cost coefficients which are used to adjust the relationship between fuel consumption and
power, ei and fi are coefficients that are related to valve points of the ith generation unit.
Pi,t represents the average power of unit i at time t. The power is directly proportional to the
cost. CDG represents the energy consumption formula of the diesel generator,n represents
the number of diesel generator.

CDG,t = ai + bi·Pi,t
2 + ci·P3

i,t + |di· sin(ei·(Pi,min − Pi,t))| (1)

2.2. Wind Power Generation Model

The wind turbine (WT) converts the wind’s kinetic energy through the fan’s rotation
into mechanical energy. Then, the wind energy generator starts to work under the fan’s
drive and restores the fan’s mechanical energy into magnetic energy, converting magnetic
energy into electrical energy [29]. The general conclusion concludes that wind speed is
directly proportional to power generation. Then, the output characteristics of wind power
generation are shown in Formula (2) when the wind speed is known.
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PWT =


0, v < vci

Pt(v−vci)
vµ−vci

vci < v < vµ

Pt, vµ < v < vco
0, v > vco

(2)

In the formula, Pt is the rated power, vµ represents the rated wind speed, vci repre-
sents the rated wind speed, vco is the cut-out wind speed, and PWT is the output rated
power. Wind power is clean energy whereby its environmental pollution is negligible.
The proportion of wind power generation should be maximized as much as possible in
the microgrid economic dispatch. The output power of wind turbines can be obtained by
predicting the wind speed at a particular moment [30] simultaneously.

2.3. Solar Power Model

The output characteristics of the power generated by solar cells are related to their volt-
ampere characteristics. The output power of solar cells fluctuates significantly, and many
factors affect the conversion efficiency of solar cells, such as solar radiation, temperature,
weather conditions, battery internal resistance, material characteristic factors, etc. Solar
radiation intensity, temperature, and load characteristics are the most important influencing
factors [31]. The output power of photovoltaic power generation can be calculated by the
following Formula (3).

Ppv = PSTC·
GING
GSTC

·[1 + k·(Tc − Tr)] (3)

In this formula, PSTC represents the maximum output power of the solar generator
set under standard conditions, GSTC represents the solar radiation intensity under the
standard requirements which generally take GSTC = 1000 W/m2, and GING represents
the current actual irradiation intensity, k is a characteristic parameter, and Tc, Tr are the
temperature and reference temperature of the solar cell, respectively. The output power
of PV is proportional to the solar radiation intensity and changes with sunrise and sunset.
The output power of PV is low in the early morning and night, and the output power
of PV is high [32] at noon. At present, there are papers that use machine learning to
predict the uncertainty of photovoltaics to ensure a balance between cost and system
stability [33]. Suchismita Patel et al. used battery storage in renewable energy systems
to reduce power fluctuations caused by the intermittent behaviour of renewable energy
sources and proposed that a controller is applied to a voltage-controlled loop, which is
important for the proposed renewable energy system. Energy stabilization strategies are
proven [34]. This is also our future research direction and research content.

2.4. Storage Battery Model

It is necessary to add batteries to the microgrid unit to cope with the influence of wind
speed, solar radiation, temperature, and other uncertain factors on the stability of the grid
in the microgrid. The use of batteries can improve the safety and stability of the entire
microgrid and play the role of peak shaving and valley filling facing the shortcomings of
the fluctuation and randomness of the output power of the microgrid [35]. The battery is
symbolically attributed to an energy storage unit for research. Its role is to store the excess
electricity generated by the microgrid and quickly provide electricity when the microgrid is
insufficient [36]. This paper mainly studies the mathematical model of the storage devices.
The cost of the storage battery device (CSB) is shown in Equation (4).

CSB,t = α·PSB,t + β· PSB,t + γ·PSB,t (4)

In the formula, PSB represents the power of the energy storage battery. When PSB
is less than zero, it represents charging, and when pSB is greater than zero, it represents
discharging. Excess electrical energy can be stored in an energy storage device so that after
the load demand is met, it can be discharged to meet the load demand when the power
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supply is insufficient. The charging and discharging process will consume costs. α, β, γ
represents the maintenance coefficient, depreciation coefficient and pollution coefficient
of the battery, respectively. This paper will not consider the pollution of wind power
generation, in other words, γ = 0. There are upper and lower power limits for the energy
storage battery. After completing daily scheduling, the energy storage battery is supposed
to return to its original state, otherwise it will be punished accordingly.

2.5. Micro Turbine Model

Micro turbines are power generation equipment that use natural gas as fuel. Their
capacity is generally small. The use of a micro turbine causes little pollution and low
operation and maintenance costs. It can shut down and startup quickly and has easy
installation. It is an ideal choice when it comes to the load of carbon neutrality [37]. This
power generation equipment that coexists with economic and environmental protection.
Its formula is as follows:

CMT = pgas ∑
t

PMT,t

ηMT,t
, ∀t∈T (5)

In the formula, pgas is the price of natural gas, PMT,t is the power of the micro turbine
at time t, and ηt is the efficiency at time t.

2.6. Fuel Cell Model

Fuel cells, also known as electrochemical generators, are the fourth power generation
technology after hydropower, thermal power and atomic power. From the perspective
of energy conservation and ecological environment protection, fuel cells are the most
promising power generation technology [38]. The fuel cell studied in this paper uses
natural gas, and its cost formula is as follows:

CFC = pgas ∑
t

PFC,t

ηFC,t
, ∀t ∈ T (6)

Similar to Equation (5), the cost of fuel cells is closely related to the price of natural
gas, working efficiency, and working power.

2.7. Main Grid

In order to face the impact of power failure or severe weather in the microgrid, this
paper also studies the grid-connected operation of the microgrid. The microgrid can
purchase electricity from the main grid to cope with emergencies or use the price difference
to obtain profits. Generally speaking, the prize of the power grid is not fixed every day but
is divided into multiple intervals according to the amount of electricity consumption, and
is generally divided into valley areas, base areas and peak areas. When the user’s electricity
consumption is high, the electricity price of the main network will increase, and vice versa.

2.8. Objective

This paper adds multiple cost functions and constraints to the model to ensure the
validity of the simulation. The cost of generating electricity from the generator units in
the microgrid, the cost of purchasing electricity from the grid, the environmental cost and
penalty cost caused by pollutants are considered. The cost of the model studied in this
article will be divided into five parts, as detailed below:

(1) Controllable energy cost:

The energy that can be regulated in this paper include micro turbines, fuel cells, diesel
generators, and energy storage batteries. Their power in each time period can be scheduled
by algorithms. When the generators are running, they generally generate operating costs
based on power. The formula is as follows:

C1 =
T

∑
t
(CMT,t + CSB,t + CFC,t + CDG,t) (7)
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In the formula, t represents the period of a day. This formula means to accumulate
operating cost in all time periods. If it is a day’s cost, T = 24. Controllable energy is the
main decision variable in this paper, and their size greatly affects the final cost [39–41].

(2) Uncontrollable energy cost:

The uncontrollable energy sources in this article are generally wind power generation
and photovoltaic power generation. The output power of the wind turbine calculated
based on wind speed, light intensity, temperature and other parameters will not change,
but operating costs will also be incurred based on the power during operation. Wind
and solar power generation does not produce polluting gases. Therefore, the proportion
of uncontrollable energy power generation should be increased in the optimal dispatch
of microgrids.

C2 = CWT + CPV (8)

CWT =
T

∑
t

PWT,t·KWT (9)

CPV =
T

∑
t

PPV,t·KPV (10)

KWT and KPV in the formula is the cost coefficient of wind power and photovoltaics. It
is generally a fixed value and is used to comprehensively measure the maintenance costs,
depreciation costs and other costs incurred by wind and photovoltaic units during operation.

(3) Power purchase cost:

If the microgrid is connected to the main grid, it can purchase electricity from the grid.
The cost of purchasing electricity is directly proportional to the price of electricity. The price
of electricity in different periods of the day is different; it is generally divided into peaks,
flat peaks, and troughs. The following formula reflects the cost of purchasing electricity
from the grid for the microgrid.

C3 =
T

∑
t

(
Cgrid,t, Pgrid,t

)
, Cgrid,t =


CValley
CBase
CPeak

∝ t (11)

Pgrid,t is the power transferred from the grid at time t. Cgrid,t represents the real-time
electricity price.

(4) Environmental cost:

C4 =
T

∑
t

(
M

∑
k

Ck

(
N

∑
i

rikPi(t) + rgrid·CGP(t)

))
(12)

The environmental cost in the microgrid economic dispatch model generally refers to
the cost of ecological governance after the microgrid emits pollutants. Microgrids result in
the need to spend expenses to clean up the environment or pay fines. In general, polluting
gases released by microgrids include but are not limited to carbon dioxide, sulfur dioxide,
nitrogen oxides, and carbon monoxide [42]. The above formula expresses this cost, where
rik represents the penalty fee rate of a certain pollutant, Ck represents the cost per kg
of gas treatment, and the detailed penalty table will be given in front of the simulation.
rgrid represents the electricity purchased from the power grid, and CGP(t) represents the
charging standards for environmental governance of the power grid in different time
periods. In this paper N represents N types of power generation methods, and only
controllable energy units will produce polluting gases. The first summation represents the
sum of all the pollutants produced by all types of power generation in the t period. The
second summation means that the costs of different pollutants will be calculated separately
and summed, and M represents the number of pollutants, then the third summation means
adding up the pollution costs for all time periods.
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(5) Startup and shut down cost:

If the power supply is not tight, micro turbines and fuel cells can be shut down, but
when it is started again, there will be corresponding ramp-up costs:

C5 =
T

∑
t

CMT
′·max(0, UMT,t − UMT,t−1) + CFC

′·max(0, UFC,t − UFC,t−1) (13)

Generally speaking, if the status of the generator is running at time t, it is regarded
as 1; if the status of the generator is stopped, it is recorded as 0. In the formula, CMT

′ and
CFC

′ are the start-stop cost coefficients of MT and FC, respectively.
From the above analysis, we can see that the objective function of our microgrid

economic dispatch model is as follows:

F = w1·(C1 + C2 + C3 + C5) + w2·C4 (14)

Among them, w1 and w2 are adjustment coefficients, which are used to adjust the
operating cost and environmental benefits of the microgrid. Changing the two weights can
change the microgrid’s operation strategy. In this paper, both parameters are taken as 0.5.
F is the total cost, The fitness value in simulate is the minimum value of F.

2.9. Restrictions

(1) Power balance constraints

Pd,t =
N

∑
i=1

PG,t + a·Pgird,t , a =

{
1, grid − tied

0, island
(15)

In the formula, Pd,t represents the system load power at time t, PG,t represents the
active power delivered by the microgrid system during t period, and Pgird,t represents
the microgrid system during t period active power purchased from the grid. N repre-
sents all power generation methods, which summed up as the total power generation of
the microgrid.

(2) Output power constraints of each generator set

Pmin
i < Pi < Pmax

i (16)

Pmin
i and Pmax

i in Formula (10) represent the minimum power and maximum power
of unit i, respectively, which means that all units must work within reasonable upper and
lower limit power.

(3) Exchange power constraints of microgrid and main grid

Pmin
grid < Pgrid < Pmax

grid (17)

Formula (11) indicates that the power exchange between the microgrid and the main
grid also has an upper and lower limit, and the system must operate within this range.

(4) Constraints of storage battery units

Pmin
f ,t < Pf ,t < Pmax

f ,t (18)

Uinitial
SB = Uend

SB (19)

Equation (12) represents the maximum power of charging and discharging the energy
storage device. USB represents the capacity of the energy storage battery. In the simulation
of this paper, after completing one day’s dispatch, the energy storage battery should return
to its original state.

To sum up, these constraints must be strictly obeyed in the economic optimal dispatch-
ing model of the microgrid. If these conditions are violated, the microgrid model will be
meaningless [43]. The objective function we set up considers the microgrid’s operating
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cost and environmental benefits simultaneously and makes the two mutually restrictive to
solve the most reasonable microgrid operation strategy.

3. Algorithms Improvement
3.1. Standard SMA Algorithm

The unique physiological characteristics of slime moulds cause them to produce an
oscillating wave during the foraging phase. Moreover, the oscillating wave in the vein
forms positive feedback from the biological oscillator in the slime moulds. The oscillating
wave produced by the biological oscillator was stronger as the food concentration increased.
It causes the slime mould’s venous pipeline to widen and the cytoplasmic flow in the cell to
increase. Specifically, slime moulds will use the restricted area search method [44] and focus
the search on the food source that has been searched when the food quality is high. If the
concentration of the initially found food source is low, the slime moulds will leave this food
source in search of a better food source [45]. It demonstrates the adaptive characteristics of
the slime mould network in the foraging stage. Taking advantage of this feature, we can
use the slime mould algorithm to solve the maximum value of the function. The unique
characteristics of the slime mould community can not only make full use of the solution
space, but also quickly find the extreme value, so this paper mainly studies the slime mould
algorithm. Mathematical modelling of the slime mould system is carried out below:

X(t + 1) =
{

Xb(t) + vb·(W·XA(t)− XB(t)), r < p
vc·X(t), r ≥ p

(20)

In the formula, t represents the current iteration number, m represents the number of
slime moulds, Xb(t) represents the optimal solution under the current iteration number,
XA(t) and XB(t) are the two random solutions under the current iteration number, and X(t)
represents the current solution. r ∈ rand[0, 1]. W, vb, vc, p are four important parameters
explained below.

p = tanh|S(i)− DF| (21)

a = tanh−1
(
−
(

t
T
+ 1
))

, vb ∈ [−a, a] (22)

W(SI(i)) =

1 + r· log
(

bF−S(i)
bF−w f + 1

)
, i < m

2

1 − r· log
(

bF−s(i)
bF−w f + 1

)
, i ≥ m

2

(23)

SI(i) = sort(S) (24)

where, vc is a function that oscillates between [−1, 1] and eventually approaches 0 with
increasing iterations. W represents the width of the venous pipeline, S(i) represents the
adaptive value of the current individual solution, T represents the maximum number of
iterations, DF, bF, w f respectively represent the optimal adaptive value in the current entire
iteration process [46], the optimal adaptive value under the current iteration number and
the worst adaptive value in the current iteration process. SI(i) represents the adaptive
ranking of the slime mould population after an iteration. This part mainly simulated the
thickening or thinning of the veins of myxomycetes according to the concentration of food.
However, the myxomycetes would not move to the high concentration of food, and several
individuals in the myxomycetes population would always be separated to find other food
sources [47]. In summary, the location update formula of the myxomycetes population is
as follows:

X(t + 1) =


Xb(t) + vb·(W·XA(t)− XB(t)), r < p

vc·X(t), r ≥ p
rand·(UB − LB) + LB, rand < z

(25)

where UB, LB represents the upper and lower bounds of the solution space, once the
random number is less than z, the individual will search for food in random locations.
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3.2. Standard Salp Swarm Algorithm

The SSA is a swarm intelligence algorithm proposed by Mirjalili et al. in 2017 [48]. The
algorithm simulates the social behaviour of salps as they forage for food. Salp populations
are generally divided into two groups of functionally distinct roles, leaders, and followers.
In the end-to-end chain structure of salps, the leader is used to trace the food source, and
the followers closely follow the individual salps in front of them. This paper used the
follower search operator of SSA:

xi
j =

1
2

(
xi

j + xi−1
j

)
(26)

where i ≥ 2 and xi
j shows the position of ith follower salp in jth dimension, this formula

describes the process by which each follower approaches the previous individual in a salp
population [49].

3.3. Multi-Strategy Fused Slime Mould Optimization Algorithm (MFSMA)

MFSMA has both the search characteristics of the SMA which can effectively use the
search space and has the advantages of the SSA which can provide a fast search process.
They have similar search subgroups. And the search modes can be mutually optimized
through coding, thus integrating the advantages of each algorithm. In this subsection,
we will propose a multi-strategy fusion slime mould algorithm (MFSMA) for solving the
microgrid optimal dispatching problem model. Aiming at the shortcoming of the SMA,
some improvement schemes are proposed.

3.3.1. Refracted Opposition-Based Learning

Opposition-Based learning is a strategy for optimizing swarm intelligence algorithms.
The idea of this strategy is to generate a reverse solution through the current solution,
compare the fitness values of the two, and select the best one for use. The Refraction
Opposition-Based Learning strategy (ROBL) is an optimization strategy combined with
the principle of light refraction [50]. ROBL can provide more choices for the algorithm and
prevent inefficiency.

Usually, in a refraction situation, we can find the refractive index:

x∗i,j =
aj + bj

2
+

aj + bj

2δ
−

xi,j

δ
(27)

xi,j is the position of the ith slime mould in the jth dimension, x∗i,j is the refraction
reverse solution of xi,j. aj, bj are the upper and lower limits of the search space; the refraction
solution can be generated by changing δ and n, and can never jump out of the local optimal
solution and approach the global optimum.

3.3.2. New Adaptive Parameter

In the original SMA, vc does not have effective adaptability [51]. In the SMA author’s
article, vc oscillates between [−1, 1]. We set a new parameter b, its formula is as follows:

b =

(
e

T−t
T−1 · 1

e − 1

)2
(28)

The original vc cannot guarantee sufficient ability for exploration and jumping out
of the local optimum. Although there is also an adaptive balancing process, the overall
smaller value of vc does have the problem of premature convergence. Our new adaptive
parameters b and vc can guarantee the solution accuracy and convergence of the algorithm.

3.3.3. Follower Strategy

Aiming at the shortcoming of SMA’s convergence speed, the follower’s movement
strategy in SSA is added to SMA. First, after one iteration, we sort the slime mould group
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according to the fitness value from large to small, and select a part of the population,
generally selecting the individuals at the back of the population, and use Equation (26) to
optimize the group. The foraging strategy of the followers in the salp group can make up
for the shortcomings of the slime mould algorithm and improve the convergence speed
and solution accuracy.

3.3.4. MFSMA for Solving Microgrid Optimal Dispatching Problem

In Algorithm 1, we introduce the process of MFSMA to solve the microgrid optimal
dispatching problem. First, the power of the load needs to be input, that is, the power
demanded by the user, followed by the power of wind power generation and photovoltaic
power generation, and finally the upper and lower limits of the power generated by each
unit in each period, and the corresponding characteristic coefficient and electricity price.
In this paper, all the input data are divided into 24 h to optimize the scheduling of the
microgrid. First, in the early stage of the algorithm, a multi-dimensional array is formed in
each slime mould individual. These arrays are used to store the power information of each
unit. This process is called the initialization of the slime mould community. Then, multiple
strategies of the slime mould algorithm are used to iteratively update the community
information, and a feasible solution is generated under the premise that the constraints are
met. The optimal solution is updated until the maximum number of iterations is reached.
This is the entire search process of MFSMA. Figure 2 is the flow chart of MFSMA.

Algorithm 1

Input:
N: Number of the units (dimension of the model)
Pmin, Pmax, P: The upper and lower limits of the output power of each unit, Load power, wind
power generation and photovoltaic power generation by time period
k: The characteristic coefficient of each unit
Output: Minimum total cost of microgrid power generation
1: Initialization parameter popsize, Max _iteraition;
2: Initialization the position of slime mould Xi,j(i = 1, 2, 3, . . . , popsize)(j = 1, 2);
3: Set the iteration counter it = 0
4: While it < Max _iteraition, then
5: Calculate the fitness of all slime mould by Equation (14);
6: Update bestFitness, Xb
7: Calculate the W by Equation (23);
8: For each search portion
9: Update p, vb, vc;
10: Update positions by Equation (20);
11: Generate refraction population by Equation (27);
12: if the fitness of x∗i,j > the fitness of xi,j

13: xi,j = x∗i,j;
14: end if
15: End for
16: Sort X;
17: For i = 1: popsize
18: if i ≥ sortindex/2
19: xi,j Updates position by Equation (26);
20: end if
21: end for
22: it = it + 1;
23: End while
24: Return bestFitness, Xb;
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4. Comparison

In this section, we will use other functions to compare with MFSMA. For the numerical
algorithm, we use many benchmark functions for comparison. The computer environment
is as follows: the operating system is Windows 11, the CPU is Inter i7-13700H, memory is
16 GB. The algorithms for comparison were coded by MATLAB R2021a.

4.1. MFSMA Qualitative Analysis

Figure 3 shows the qualitative analysis results of MFSMA in the processing of uni-
modal and multimodal functions (Sphere, Griewank, Rastrigin, Ackley, Rosenbrock), and
visualizes the changes in the position and fitness value of the optimized slime mould during
the foraging process. This graph consists of three indicators: search history, slime mould
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average fitness value, and iteration convergence curve. In this part, we set the maximum
number of iterations of MFSMA to 200 and the population size to 50.
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Figure 3. MFSMA qualitative analysis.

The slime mould has carried out a cross-search pattern near the optimal solution
by observing the history graph which ensures the accuracy of the search solution. More
slime moulds are gathered in the area where the gradient drops faster, which proves
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that our algorithm has a faster convergence speed. In the multimodal function, a small
number of slime moulds are concentrated in the local optimal area, which reflects the
choice of the algorithm for the global optimal and local optimal solutions. By observing the
population average curve, the algorithm oscillates quickly in the early stage and smaller
in the later stage, and the oscillation frequency is inversely proportional to the number
of iterations. This reflects the high adaptability of the slime mould in different functions
and the rationality of the search, which balances the search space and convergence speed
well, and has strong robustness. Finally, it can be seen from the convergence curve that the
algorithm converges at a very fast convergence speed, which ensures the efficiency of the
algorithm when solving functions.

4.2. MFSMA Compared with Other Algorithms

This section uses several other algorithms to compare with MFSMA, and many func-
tions are used for comparison. Other algorithms include slime mould algorithm (SMA),
whale optimization algorithm (WOA), grey wolf optimizer (GWO), dung beetle optimizer
(DBO) [52], particle swarm optimization (PSO), salp swarm algorithm (SSA), and Jaya
algorithm [53]. We set the population size of all algorithms to 30, the maximum number of
iterations to 200, and the results of 20 times were averaged to ensure fairness. This paper
evaluated the results using standard deviation (STD) and mean (AVG). Table 1 is functions;
Table 2 is results. Figure 4 shows the convergence curve of nine algorithms.

Table 1. Functions.

Name Function Dim Range Fmin

F5 n−1
∑
i

[
100
(
xi−1 − x2

i
)2

+ (xi − 1)2
]

30 [−30, 30] 0

F7
n
∑

i=1
ix4

i + random[0, 1) 30 [−1.28, 1.28] 0

F11 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1 30 [−600, 600] 0

F12

π
n {10 sin(πy1)

+
n−1
∑
1
(y1 − 1)2[1 + 10 sin2(πyi+1)

]
+(yn − 1)2}

+
n
∑
1

u(xi , 10, 100, 4)

yi = 1 + xi+1
4

u(xi , a, k, m) =

 k(xi − a)m, xi > a
0 − a < xi < a

k(−xi − a)m, xi < a

30 [−50, 50] 0

F13

0.1{sin (3πx1)
2

+
n−1
∑

i=1
(xi − 1)2

[
1 + sin (3πxi+1)

2
]

+(xn − 1)
[
1 + sin (2πxn)

2
]
}

+
n
∑

i=1
u(xi , 5, 100, 4)

30 [−50, 50] 0

F15 11
∑

i=1
[ai −

xi(b2
i +bi x2)

b2
i +bi x3+x4

]
2

4 [−5, 5] 0.0003

F21 −
5
∑

i=1

[
(X − ai)(X − ai)

T + ci

]−1 4 [0, 10] −10.2

F22 −
7
∑

i=1

[
(X − ai)(X − ai)

T + ci

]−1 4 [0, 10] −10.4

F23 −
10
∑

i=1

[
(X − ai)(X − ai)

T + ci

]−1 4 [0, 10] −10.5

This paper uses a variety of unimodal, multimodal, and fixed-dimensional functions
to compare the performance of the algorithms. It can be seen from the data in Table 2 that
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when solving these benchmark functions, MFSMA can basically find the optimal solution.
At the same time, the algorithm proposed in this paper has a smaller standard deviation,
which shows that MFSMA has higher solution accuracy and robustness.

Table 2. Specific comparison.

Function Metric MFSMA SMA JAYA PSO SSA WOA GWO DBO

F5 AVE
STD

0
0.028

72.769
121.883

4.856 × 10−5

2.280 × 10−5
9.391 × 10−3

7.540 × 10−3
6.616 × 10−6

6.280 × 10−6
28.640
0.180

27.638
0.872

27.025
0.5787

F7 AVE
STD

2.036 × 10−4

1.728 × 10−4
0.062
0.037

0.791
0.397

0.709
0.287

4.519
2.0492

0.007
0.007

0.007
0.004

0.002
0.002

F11 AVE
STD

0
0

0.944
0.544

12.1465
3.609

79.203
11.058

67.745
26.541

0.013
0.057

0.018
0.023

3.771 × 10−11

1.686 × 10−10

F12 AVE
STD

4.004 × 10−5

4.391 × 10−5
0.069
0.132

8.541 × 10−4

2.013 × 10−5
4.860
2.245

9.064 × 10−6

1.119 × 10−7
0.093
0.100

0.079
0.047

0.003
0.003

F13 AVE
STD

1.981 × 10−5

0.0038
0.720
1.412

5.166 × 10−5

4.656 × 10−5
35.670
34.638

2.698 × 10−7

4.050 × 10−7
0.935
0.417

1.072
9.707 × 10−4

1.294
0.584

F15 AVE
STD

3.934 × 10−4

2.023 × 10−6
0.002
0.001

6.463 × 10−4

2.104 × 10−4
0.002
0.005

0.007
0.007

0.001
8.009 × 10−4

0.004
0.007

8.6686 × 10−4

4.529 × 10−4

F21 AVE
STD

−10.152
5.605 × 10−4

−9.859
0.405

−5.483
2.174

−8.769
2.509

−4.934
2.563

−7.289
2.892

−8.622
2.377

−7.219
2.743

F22 AVE
STD

−10.396
7.164 × 10−4

−9.872
0.748

−7.234
3.039

−8.278
3.367

−5.724
3.365

−6.576
2.738

−10.390
0.008

−6.662
3.276

F23 AVE
STD

−10.531
5.655 × 10−4

−10.026
0.908

−6.658
2.813

−7.743
3.908

−5.2683
3.365

−5.510
3.415

−10.523
0.009

−7.852
3.467
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Figure 4 shows the convergence curves of nine algorithms when facing these bench-
mark functions. It can be seen from the figure that MFSMA has searched the area near
the optimal solution very early, which shows that MFSMA has the highest convergence
speed. In each iteration after completion, MFSMA is located at the bottom of all the
curves, indicating that the algorithm has the highest accuracy. The comprehensive test
results of the benchmark function indicate that the algorithm proposed in this article is
relatively excellent.

5. Simulation

This paper simulates two aspects of the grid-connected operation and island operation,
and studies two power supply modes in two regions. The load and output power of
different networks are different, but their pollutant penalty standards are roughly the same.

5.1. Grid-Connected Operation

In this section, we will conduct a specific application research, that is, the study of
the economic optimal dispatching problem of microgrids. This microgrid contains diesel
generators, wind power and photovoltaics, and is able to connect to the grid. First, we
used MFSMA to solve this problem, and then compared MFSMA with SMA, SSA, and
slime mould algorithm with adaptive differential evolution algorithm (SMA-ADGE) [54],
slime mould algorithm- seagull optimization algorithm (SMA-SOA) [55] and other swarm
intelligence algorithms to compare the problem-solving effect. The specific parameters are
given in the chart below. Tables 3 and 4 are the cost technology of the diesel generator [56].
Pmin and Pmax represents the upper and lower limits of the installed capacity of each unit.

Table 3. Coal consumption characteristic parameters.

ai ($/h) bi ($/mW·h) ci

(
$/mW2h

)
di ($/h) ei (rad/mW) Pmin (kW/h) Pmax (kW/h)

DG1 0.26 −0.3975 0.002176 0.02697 −3.975 15 45.5

DG2 −95.14 0.4846 0.00001176 −0.05914 4.864 20 50

DG3 −53.99 0.4462 0.0001498 −0.05399 4.462 19 49

DG4 −61.13 0.5084 0.0000416 −0.06113 5.084 20 49

In Table 4 we give the microgrid pollution control costs and fine rate.

Table 4. Microgrid pollution control costs.

Pollutant Cost ($/kg) WT(PV) (g/kW·h) MT (g/kW·h) DG (g/kW·h) FC (g/kW·h) Grid (g/kW·h)

CO2 0.03 0 724 1488 489 889

SO2 2.1468 0 0.0036 0.01388 0.003 1.8

NOx 9.1074 0 0.2 0.3155 0.014 1.6

Typical 24 h loads and real-time electricity prices ($/kW·h) are given in Figure 4 [57,58]: we
plotted the wind power generation power and photovoltaic power generation power for
24 h on a certain day.

This paper simulated the optimal dispatch of different types of DGs in the micro-grid,
using the four models given in Table 3, DG1-4 correspond to a-d in the figure respectively.
It can be seen from Figure 5 that both wind power generation and photovoltaic power
generation are unstable. The output power of wind power generation is mainly affected by
the real-time wind speed, while photovoltaic power generation is greatly affected by solar
radiation and temperature. Photovoltaic generators produce little electricity during periods
of low solar radiation. We use MFSMA to optimize the dispatch of the economic model of
the microgrid. This paper uses a variety of electrical constraints to meet the load of 24 h a
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day. By controlling the active power output of the DGs that can control the operating cost
and environmental governance cost of the microgrid, we reduce the total cost and complete
the economy of the microgrid.
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From Figure 6, MFSMA can be used to optimize the scheduling of the microgrid
to meet the demand of the load. We concluded that the general rule is that when the
active power output of PV is less, the microgrid is more dependent on the use of wind
power generation that is less related to temperature and solar radiation for power output.
Secondly, the power output of the turbine unit results in changes in the output power
which can effectively reduce production costs. Once the power supply is insufficient, the
microgrid will choose to purchase electricity from the grid or use the battery for charging.
If the output power is greater than the load, the microgrid will charge the battery for
emergency use, demand, or sell to the grid. It can be clearly seen from the figure that our
algorithm constantly adjusts the active output power of the gas turbine unit according to
different objective conditions. This dynamic adjustment can effectively avoid the peak
period of electricity consumption and rationally utilize the trough period. Through this
optimizing scheduling, it can keep the total cost of microgrid operation at a low level.

In Figure 7, we use MFSMA, SMA, SSA, SMA-ADGE, and SMA with SOA to apply the
economic optimal dispatch model of the microgrid, and compare the total costs obtained
by them. DG1-4 in Table 3 correspond to a-d in the figure respectively. All iterations were
performed 1000 times and an average of 30 times was taken.

The MFSMA has the fastest convergence speed and the highest solution accuracy
compared with other SMA-derived algorithms and the salp swarm algorithm. From the
initial stage of the iteration from Figure 7, the number of iterations to reach the optimal
solution of MFSMA is 25.17–75.54% for other algorithms, and the quality of MFSMA’s opti-
mal solution is 7.08–28.5% higher than other algorithms. The MFSMA began to accelerate
the convergence and maintain the fastest convergence speed, thanks to the expansion of the
search space by ROBL, so that the MFSMA can traverse more possible optimal solutions
in a short period of time. In the middle and later stages of the algorithm, the MFSMA has
a higher convergence speed and solution accuracy, and due to the salp swarm follower
operator, the fast cluster search mode can grab better solutions and jump out of local
optimal solutions. It is worth mentioning that the adaptive optimization coefficient controls
the process from beginning to end, which ensures the overall stability of the algorithm and
improves the robustness of the algorithm. When solving the multi-objective optimization
microgrid model of multiple units, the number of dimensions to be solved is high, so the
requirements for the algorithm are correspondingly increased.
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5.2. Island Operation

This section studies the situation of island operation. Micro turbines, fuel cells, energy
storage batteries and wind and solar power generation are considered in the microgrid.
This paper used MFSMA and SMA, WOA, GWO, and DBO for comparison.

The situation of wind power generation and photovoltaic power generation is shown
in Figure 8. Other electricity charges, pollutant charges and grid-connected operation are
the same. The parameters of micro turbine, fuel cell and energy storage battery are shown
in Table 5.
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Table 5. Power upper and lower limits.

WT (kW) FC (kW) SB (kW) Removable Load (kW)

Pmin 0 0 −20 0

Pmax 65 50 20 20

It can be seen from Figure 9 that this paper uses a variety of units and performs
island operation to simulate the microgrid dispatch process. At the same time, Figure 10
shows the convergence curves of multiple algorithm comparisons. Similar to the situation
of grid-connected operation, MFSMA has faster convergence speed and more accurate
solutions when facing mainstream swarm intelligence algorithms and can obtain smaller
costs. Compared with DBO, which is closest to MFSMA, the solution accuracy of MFSMA
can be improved by 8.02–12.57% at the maximum number of iterations.
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6. Conclusions

In this paper, we improved the SMA and created a multi-strategy fusion slime mould
algorithm (MFSMA), which is used to solve the economic optimal dispatching problem
of the microgrid, that is, to reasonably arrange the active power output of the microgrid
within 24 h a day. The total cost of the microgrid operation is at its lowest, and the pollution
to the environment is reduced. For the scheduling model of this microgrid, we first add
reverse learning to the algorithm to expand the search range of the population. We add a
modified adaptive coefficient to ensure that the algorithm can jump out in the early stage
to allocate the algorithm search mode more reasonably. The local optimal solution can
speed up the convergence speed in the later stage. We also added the search operator of
the followers in the salp group to the algorithm, which accelerated the convergence speed
of the algorithm and improved the solution accuracy. MFSMA performs better than other
swarm intelligence algorithms in benchmark function testing and specific applications.
In the benchmark function test, MFSMA can almost achieve the optimal solution. In the
grid-connected operation, our algorithm can be 7–29% more accurate than other algorithms,
and in the island operation this value can reach 8–13%. MFSMA has fast convergence speed,
high solution accuracy, strong robustness, and strong positive feedback compared with
other algorithms. Our contribution is mainly to adopt two operating modes and perform
bad sector analysis on multiple target units. At the same time, MFSMA has significant
advantages in solving microgrid optimization problems. However, our research may be
limited to one microgrid unit; large scale is always the future research direction. At the
same time, our articles have less research on the uncertainty of renewable energy, and so
how to get closer to this reality is one of the future directions. At the same time, in the face
of the latest algorithms, MFSMA must also be constantly updated, and more novel search
modes may bring better results. In future research, better search operators can be added
to the algorithm, and more renewable energy can be added to the microgrid scheduling
model, such as hydroelectric power generation units, to further reduce the environmental
pollution of the units at the same time. Research on multi-region joint scheduling for the
power supply will also make the model more complex and have higher requirements for
the algorithm.
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