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Abstract: The physics governing the fluid dynamics of bio-inspired flapping wings is effectively
characterized by partial differential equations (PDEs). Nevertheless, the process of discretizing these
equations at spatiotemporal scales is notably time consuming and resource intensive. Traditional
PDE-based computations are constrained in their applicability, which is mainly due to the presence
of numerous shape parameters and intricate flow patterns associated with bionic flapping wings.
Consequently, there is a significant demand for a rapid and accurate solution to nonlinear PDEs,
to facilitate the analysis of bionic flapping structures. Deep learning, especially physics-informed
deep learning (PINN), offers an alternative due to its great nonlinear curve-fitting capability. In the
present work, a hybrid coarse-data-driven physics-informed neural network model (HCDD-PINN)
is proposed to improve the accuracy and reliability of predicting the time evolution of nonlinear
PDEs solutions, by using an order-of-magnitude-coarser grid than traditional computational fluid
dynamics (CFDs) require as internal training data. The architecture is devised to enforce the initial and
boundary conditions, and incorporate the governing equations and the low-resolution spatiotemporal
internal data into the loss function of the neural network, to drive the training. Compared to
the original PINN with no internal data, the training and predicting dynamics of HCDD-PINN
with different resolutions of coarse internal data are analyzed on the problem relevant to the two-
dimensional unsteady flapping wing, which involves unsteady flow features and moving boundaries.
Additionally, a hyper-parametrical study is conducted to obtain an optimal model for the problem
under consideration, which is then utilized for investigating the effects of the snapshot and fraction
of the coarse internal data on the HCDD-PINN’s performances. The results show that the proposed
framework has a sufficient stability and accuracy for solving the considered biomimetic flapping-
wing problem, and its great potential means that it can be considered as an alternative to accelerate or
replace traditional CFD solvers in the future. The interested variables of the flow field at any instant
can be rapidly obtained by the trained HCDD-PINN model, which is superior to the traditional CFD
method that usually needs to be re-run. For the three-dimensional and optimization problems of
flapping wings, the advantages of the proposed method are supposedly even more apparent.

Keywords: bio-inspired flapping wings; physics-informed neural network; data-driven; deep
learning; computational fluid dynamics

1. Introduction

Deep learning (DL) has gained great attention over the last decade owing to its enor-
mous breakthroughs in many fields, such as image processing [1], speech recognition, and
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disease diagnosis [2]. Recently, because of its excellent abilities in handling strong nonlin-
earity and high dimensionality, DL has been widely tested in solving fluid dynamics and
for envisaging, accelerating, or replacing computational fluid dynamic (CFD) simulations
in the future without compromising accuracy. Ling et al. [3] achieved the first combination
of a deep neural network (DNN) and fluid mechanics by constructing the deep-learning
RANS turbulence model. Convolution neural networks (CNNs) can accurately learn the
characteristics of flow around a cylinder [4,5], and can be combined with Multilayer Per-
ceptron (MLP) to efficiently and accurately learn the incompressible laminar steady flow
fields over airfoils [6], while combining them with long short-term memory (LSTM) allows
them to learn the spatial–temporal features of turbulence dynamics [7]. However, these DL
experiments heavily depend on a large amount of training data to ensure learning accuracy,
and they may fail to operate when the data become sparse. Hence, it can be considered as a
black box (purely data-driven and lacking physical interpretation).

Differently to the purely data-driven deep learning method, the application of a
neural network for simulating the fluid physics governed by the partial differential equa-
tions (PDEs) was first tested by Dissanayake and Phan-Thien [8], where they incorpo-
rated the PDEs and boundary conditions into the residual form of the neural network.
Van Milligen et al. [9] applied a similar method in the magnetohydrodynamic plasma equi-
librium problem. Raissi et al. [10] reinvigorated the original approach with modern and
accessible tools, referring to it as physics-informed neural network (PINN) for both forward
and inverse problems. This has sparked considerable interest in improving and expanding
the PINN approach to a wide range of physical situations, such as the vortex-induced vibra-
tions (VIV) problem [11], multiscale problems [12], and the supersonic flows problem [13].
Automatic differentiation and the back-propagation algorithm are currently the dominant
training approaches, choosing their derivatives with respect to the parameters (e.g., weights
and biases) of the PINN model, which is suitable for dealing with derivatives at complex
boundaries and in arbitrary domains. Rao et al. [14] constrained the loss function formu-
lation of PINN through a mixed-variable scheme of Navier–Stokes equations to simulate
the steady and transient laminar flows past a cylinder at low Reynolds numbers, which
has been verified to improve the PINN’s trainability and the accuracy of the solution.
Choi et al. [15] used mini-batch training and a weighted loss function to handle the mem-
ory error and divergence problems which occur when using a PINN model for training a
chemical-reactor-like multi-reference frame system. Wu et al. [16] proposed a generative
adversarial network framework by embedding Navier–Stokes equations into the resid-
ual, to efficiently and precisely generate the flow filed data past a cylinder. Cheng and
Zhang [17] tested the PINN with residual neural network blocks for Burger’s equation and
the Navier–Stokes (N-S) equations, which has been proven to exhibit a stronger predictive
ability in fluid dynamic problems.

The proposal of PINN is an important breakthrough, since it transforms solving
numerical problems to an unconstrained minimization problem. PINN exhibits numer-
ous advantages, such as effectively training with small or no datasets, training in any
region to satisfy the governing equation, and solving the inverse problem of finding un-
known parameters that converge toward the true values. Ideally, the unique solution
should be captured by PINN without any labeled data when the initial and boundary
conditions are well imposed, which represents that the corresponding PDEs problem is
well defined [18]. However, PINNs still encounter great challenges in achieving stable
training and producing accurate predictions, especially when the underlying PDEs solu-
tions contain high-frequencies or multi-scale features [19,20]. Besides being difficult to
converge, the prediction of a PINN may hardly satisfy the ground truth even when the
residual loss has been reduced to a relatively low value. The shortcomings and training
deficiencies of the existing PINN model are extremely notable in the more unsteady and
complex problems, which may result in larger errors for unsteady characteristics as time
proceeds [11]. Raissi et al. [21] developed hidden fluid mechanics (HFMs) by using several
snapshots of extracted concentration fields to quantitatively obtain the flow fields for sev-
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eral physical and biomedical problems. Kochkov et al. [22] introduced an end-to-end deep
learning method to accelerate prediction and improve approximations for two-dimensional
turbulent flows by using an order-of-magnitude-coarser grid than is traditionally required.

The physics of the flow past a flapping wing can be well-simulated by solving the
corresponding PDEs, which involves unsteady features and large body motions. Extending
the PINN approach to other complex fluid dynamic problems, such as the simulation of
a flapping wing, is our main interest in the current work. To the best of our knowledge,
this problem has not been solved using a PINN before. Inspired by micro air vehicles’
(MAVs) potential military and civilian applications [23], research on the aerodynamics of
insect flapping flight have drawn significant attention, including flow visualization wind
experiments of real insects in tethered and free-flying conditions [24,25] or the dynamically
scaled-up models with prescribed kinematics [26,27], and the numerical simulations using
the traditional CFD methods [28,29] or the immersed boundary method (IBM) [30,31]. It
is widely proven that the unsteady aerodynamic mechanisms, including delayed leading-
edge vortex (LEV) [32], wake capture [33], rapid pitch-up [33] and clap-and-fling [34],
collectively contribute to the high-lift generation and energy harvest of flapping wings.
Therefore, to reveal the underlying high-performance mechanism of a flapping wing,
accurate and detailed information about aero-forces and capture and flow structures are of
significant importance [35].

In the current work, we propose a hybrid coarse-data-driven physics-informed neural
network model (HCDD-PINN), aiming to improve the PINN model to solve the CFD prob-
lem by utilizing sparse data obtained from the corresponding experimental and numerical
studies. The verification case considered in the current study involves large body motions
and unsteady features, like the flow past flapping wings. The variables of interest, such as
the velocity and pressure fields, are predicted by the trained HCDD-PINN model, which is
obtained by minimizing the loss of the neural network with the physics-constrained enforce-
ment and the supplementary coarse internal data. One challenge of using HCDD-PINN
is dealing with the presence of the flapping wing, which is solved by adding boundary
collocation points with prescribed velocities and filtering the inner collocation points out of
the domain. The vicinity of the flapping wing has sufficient collocation points to ensure pre-
diction accuracy. The remainder of this study is structured as follows. Section 2 presents the
details of the methodology for the proposed HCDD-PINN model. In Section 3, the training
and predicting dynamics of the HCDD-PINN with different coarse internal data sources
are analyzed in detail, and we discuss the results of the simulations. Subsequently, the
effects of the snapshot and fraction of the coarse internal data are investigated in Section 4,
based on the HCDD-PINN model with the optimal hyper-parameters, in order to test the
stability of the HCDD-PINN and obtain the minimum amount of coarse data required to
achieve sufficient accuracy. Finally, the main conclusions are summarized in Section 5.

2. Methodology
2.1. Governing Equations and CFD Solver Setup

The unsteady two-dimensional flow past a flapping wing is governed by the following
incompressible Navier–Stokes equations:

∇·u = 0 (1)

∂u
∂t

+ u·∇u = −1
ρ
∇p +

µ

ρ
∇2u (2)

where ∇, u, and p are the gradient operator, velocity vector, and pressure, respectively.
An immersed boundary method (IBM), staggered Cartesian grid, Navier–Stokes solver,

which has been validated with sufficient accuracy against several problems with large body
motions [30], is adopted to obtain a solution for the flapping wing problem. The wing
model is a symmetrical NACA0012 airfoil, and the wing’s kinematics are prescribed by
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two motions: (i) translating along y axis (plunge) described by h, and (ii) rotating about the
wing center (pitch) described by α, given by the following:

h(t) = hm cos(2π f t) (3)

α(t) = αm sin(2π f t) (4)

where hm and αm represent the plunge amplitude and pitch amplitude, respectively. f is
the flapping frequency. A schematic of the wing kinematics can be found in Figure 1. The
computational domain and the boundary conditions are also illustrated in the figure, which
are described below.
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Figure 1. Illustration of the computational domain, boundary conditions, and kinematics of the
flapping wing.

The governing Equations (1) and (5) are solved by the IBM solver with the fractional
step method, in which the presence of the solid flapping wing is represented by a force
term fc, as illustrated by the following:

∂u
∂t

+ u·∇u = −1
ρ
∇p +

µ

ρ
∇2u + f c. (5)

All spatial derivatives are discretized using the second-order central difference scheme
in a staggered grid, and the Courant–Friedrichs–Lewy (CFL) number is used for determin-
ing the timestep. The domain size is 15c × 10c, and the grid near the wing is uniform. Here,
c is the chord length of the wing. The center of the flapping wing is placed at (0.5c, 0). The
inlet boundary (u = 1, v = 0, and dp/dx = 0) is set 5c from the leading edge of the wing, while
the outlet boundary (∂ui/∂t + vc∂ui/∂x = 0, and p = 0) is set 9c from the trailing edge of
the wing. Here, vc is space-averaged streamwise velocity at the domain exit. The distances
of the top/bottom to the wing is set to 5c, and the boundary condition of top/bottom is
du/dy = 0, v = 0, and dp/dy = 0. More details of the IBM solver can be found in [30,36].

2.2. Hybrid Coarse Data-Driven with Physics-Informed Neural Network (HCDD-PINN)

The structure of the neural network consists of Nl fully connected layers, which is
shown in Figure 2. The input layer X n = (x, y, t) includes a set of independent space and
time variables, while the output layer Yn = (u, v, p,σ) comprises velocity and pressure
variables, and shear stress vector. The physical parameters of interest, for flow field
comparisons later, consist of u, v, and p. All of them are evaluated because they are
constrained through Navier–Stokes equations and boundary conditions simultaneously,
which is different from the traditional CFD method. The hidden layers are used to solve
the complex nonlinearity relations between the inputs and outputs, which construct a map

Biomimetics 2024, 9, x FOR PEER REVIEW 5 of 25 
 

 

2.2. Hybrid Coarse Data-Driven with Physics-Informed Neural Network (HCDD-PINN)  
The structure of the neural network consists of Nl fully connected layers, which is 

shown in Figure 2. The input layer 𝓧 = (𝑥, 𝑦, 𝑡) includes a set of independent space and 
time variables, while the output layer 𝓨 = (𝑢, 𝑣, 𝑝, 𝝈) comprises velocity and pressure 
variables, and shear stress vector. The physical parameters of interest, for flow field com-
parisons later, consist of u, v, and p. All of them are evaluated because they are constrained 
through Navier–Stokes equations and boundary conditions simultaneously, which is dif-
ferent from the traditional CFD method. The hidden layers are used to solve the complex 
nonlinearity relations between the inputs and outputs, which construct a map 𝓛 to non-
linearly relate the inputs 𝓧  to the outputs 𝓨  as: 𝓨 = 𝓛(𝓧 ) = 𝓵(𝓧 , 𝜽). (6)

Here, 𝓵(⋅, 𝜽) ∈ ℝ ⟶ ℝ   represents the nonlinear compositional function para-
metrized by 𝜽(𝑾, 𝒃) (weight W; bias b), which can be expanded as below: 𝓵(𝝃; 𝜽) = 𝓗 (⋅; 𝜣 ) ∘ 𝓗 (⋅; 𝜣 ) ∘⋅⋅⋅∘ 𝓗 (𝝃; 𝜣 ) (7)

where the symbol ∘ is the composition operation. The output vector at the ith layer (i = 1, 
2 … Nl) is calculated by the feed-forward algorithm, given by 𝓗 (𝝃; 𝜣 ) = 𝓱 (𝜣 𝝃 , 𝟏] ) = 𝓱 (∑ 𝑊 𝜉 + 𝑏 )  (8)

where 𝓗 (⋅; 𝜣 ) ∈ ℝ ⟶ ℝ  and 𝓱 (⋅) ∈ ℝ ⟶ ℝ. Here, li is the size of the output at the 
ith layer and 𝜣 ∈ ℝ ∗  comprises the weights and biases corresponding to the layer 
i. The 𝜽 ≡ (𝜣 ,⋅⋅⋅, 𝜣 ,⋅⋅⋅ 𝜣 ) vectors are evaluated by training the neural network. The in-
itial weights and biases are determined by the Xavier method to accelerate the conver-
gence of the neural network. 𝓱 (⋅) denotes the activation function, and the tanh function 
is adopted here due to its infinitely differentiable capability. 

The physics-informed neural network is constructed to calculate the fluid flow field 
through automatic differentiation (AD), which can be directly utilized in deep-learning-
framework Tensorflow. To reduce the order of the derivative in Equation (2), the Cauchy 
stress tensor 𝜎 is introduced into Equation (2) as follows: 

𝒖 + 𝒖 ∙ ∇𝒖 = ∇ ∙ 𝜎  (9)

𝜎 = −𝑝𝐈 + 𝜇(∇𝒖 + ∇𝒖 )  (10)

which is added to the output vector of DNN. It is proved that such continuum-mechanics-
based formulation benefits improve the trainability of DNN [14]. As shown in Figure 2, 
AD is adopted to calculate the identity operator I and the differential opera-
tors ∂ ,  ∂ , 𝑎𝑛𝑑 ∂ , to obtain the partial derivatives in Equations (1), (9), and (10) for em-
bedding the physical regularities into the loss function [37]. 

The loss function 𝜀  consists of two terms: (i) the physics-constrained term, which 
includes the governing partial differential equations’ loss 𝜀  (Equations (1), (9), and (10)) 
and the boundary condition loss 𝜀 ; and (ii) the data correction term, representing the 
mean squared errors between the exact and predicted values, consists of the initial condi-
tion loss 𝜀  and the coarse internal loss 𝜀 , which are derived as follows: 

to nonlinearly relate the inputs X n to the outputs Yn as:

Yn =

Biomimetics 2024, 9, x FOR PEER REVIEW 5 of 25 
 

 

2.2. Hybrid Coarse Data-Driven with Physics-Informed Neural Network (HCDD-PINN)  
The structure of the neural network consists of Nl fully connected layers, which is 

shown in Figure 2. The input layer 𝓧 = (𝑥, 𝑦, 𝑡) includes a set of independent space and 
time variables, while the output layer 𝓨 = (𝑢, 𝑣, 𝑝, 𝝈) comprises velocity and pressure 
variables, and shear stress vector. The physical parameters of interest, for flow field com-
parisons later, consist of u, v, and p. All of them are evaluated because they are constrained 
through Navier–Stokes equations and boundary conditions simultaneously, which is dif-
ferent from the traditional CFD method. The hidden layers are used to solve the complex 
nonlinearity relations between the inputs and outputs, which construct a map 𝓛 to non-
linearly relate the inputs 𝓧  to the outputs 𝓨  as: 𝓨 = 𝓛(𝓧 ) = 𝓵(𝓧 , 𝜽). (6)

Here, 𝓵(⋅, 𝜽) ∈ ℝ ⟶ ℝ   represents the nonlinear compositional function para-
metrized by 𝜽(𝑾, 𝒃) (weight W; bias b), which can be expanded as below: 𝓵(𝝃; 𝜽) = 𝓗 (⋅; 𝜣 ) ∘ 𝓗 (⋅; 𝜣 ) ∘⋅⋅⋅∘ 𝓗 (𝝃; 𝜣 ) (7)

where the symbol ∘ is the composition operation. The output vector at the ith layer (i = 1, 
2 … Nl) is calculated by the feed-forward algorithm, given by 𝓗 (𝝃; 𝜣 ) = 𝓱 (𝜣 𝝃 , 𝟏] ) = 𝓱 (∑ 𝑊 𝜉 + 𝑏 )  (8)

where 𝓗 (⋅; 𝜣 ) ∈ ℝ ⟶ ℝ  and 𝓱 (⋅) ∈ ℝ ⟶ ℝ. Here, li is the size of the output at the 
ith layer and 𝜣 ∈ ℝ ∗  comprises the weights and biases corresponding to the layer 
i. The 𝜽 ≡ (𝜣 ,⋅⋅⋅, 𝜣 ,⋅⋅⋅ 𝜣 ) vectors are evaluated by training the neural network. The in-
itial weights and biases are determined by the Xavier method to accelerate the conver-
gence of the neural network. 𝓱 (⋅) denotes the activation function, and the tanh function 
is adopted here due to its infinitely differentiable capability. 

The physics-informed neural network is constructed to calculate the fluid flow field 
through automatic differentiation (AD), which can be directly utilized in deep-learning-
framework Tensorflow. To reduce the order of the derivative in Equation (2), the Cauchy 
stress tensor 𝜎 is introduced into Equation (2) as follows: 

𝒖 + 𝒖 ∙ ∇𝒖 = ∇ ∙ 𝜎  (9)

𝜎 = −𝑝𝐈 + 𝜇(∇𝒖 + ∇𝒖 )  (10)

which is added to the output vector of DNN. It is proved that such continuum-mechanics-
based formulation benefits improve the trainability of DNN [14]. As shown in Figure 2, 
AD is adopted to calculate the identity operator I and the differential opera-
tors ∂ ,  ∂ , 𝑎𝑛𝑑 ∂ , to obtain the partial derivatives in Equations (1), (9), and (10) for em-
bedding the physical regularities into the loss function [37]. 

The loss function 𝜀  consists of two terms: (i) the physics-constrained term, which 
includes the governing partial differential equations’ loss 𝜀  (Equations (1), (9), and (10)) 
and the boundary condition loss 𝜀 ; and (ii) the data correction term, representing the 
mean squared errors between the exact and predicted values, consists of the initial condi-
tion loss 𝜀  and the coarse internal loss 𝜀 , which are derived as follows: 

(X n) =

Biomimetics 2024, 9, x FOR PEER REVIEW 5 of 25 
 

 

2.2. Hybrid Coarse Data-Driven with Physics-Informed Neural Network (HCDD-PINN)  
The structure of the neural network consists of Nl fully connected layers, which is 

shown in Figure 2. The input layer 𝓧 = (𝑥, 𝑦, 𝑡) includes a set of independent space and 
time variables, while the output layer 𝓨 = (𝑢, 𝑣, 𝑝, 𝝈) comprises velocity and pressure 
variables, and shear stress vector. The physical parameters of interest, for flow field com-
parisons later, consist of u, v, and p. All of them are evaluated because they are constrained 
through Navier–Stokes equations and boundary conditions simultaneously, which is dif-
ferent from the traditional CFD method. The hidden layers are used to solve the complex 
nonlinearity relations between the inputs and outputs, which construct a map 𝓛 to non-
linearly relate the inputs 𝓧  to the outputs 𝓨  as: 𝓨 = 𝓛(𝓧 ) = 𝓵(𝓧 , 𝜽). (6)

Here, 𝓵(⋅, 𝜽) ∈ ℝ ⟶ ℝ   represents the nonlinear compositional function para-
metrized by 𝜽(𝑾, 𝒃) (weight W; bias b), which can be expanded as below: 𝓵(𝝃; 𝜽) = 𝓗 (⋅; 𝜣 ) ∘ 𝓗 (⋅; 𝜣 ) ∘⋅⋅⋅∘ 𝓗 (𝝃; 𝜣 ) (7)

where the symbol ∘ is the composition operation. The output vector at the ith layer (i = 1, 
2 … Nl) is calculated by the feed-forward algorithm, given by 𝓗 (𝝃; 𝜣 ) = 𝓱 (𝜣 𝝃 , 𝟏] ) = 𝓱 (∑ 𝑊 𝜉 + 𝑏 )  (8)

where 𝓗 (⋅; 𝜣 ) ∈ ℝ ⟶ ℝ  and 𝓱 (⋅) ∈ ℝ ⟶ ℝ. Here, li is the size of the output at the 
ith layer and 𝜣 ∈ ℝ ∗  comprises the weights and biases corresponding to the layer 
i. The 𝜽 ≡ (𝜣 ,⋅⋅⋅, 𝜣 ,⋅⋅⋅ 𝜣 ) vectors are evaluated by training the neural network. The in-
itial weights and biases are determined by the Xavier method to accelerate the conver-
gence of the neural network. 𝓱 (⋅) denotes the activation function, and the tanh function 
is adopted here due to its infinitely differentiable capability. 

The physics-informed neural network is constructed to calculate the fluid flow field 
through automatic differentiation (AD), which can be directly utilized in deep-learning-
framework Tensorflow. To reduce the order of the derivative in Equation (2), the Cauchy 
stress tensor 𝜎 is introduced into Equation (2) as follows: 

𝒖 + 𝒖 ∙ ∇𝒖 = ∇ ∙ 𝜎  (9)

𝜎 = −𝑝𝐈 + 𝜇(∇𝒖 + ∇𝒖 )  (10)

which is added to the output vector of DNN. It is proved that such continuum-mechanics-
based formulation benefits improve the trainability of DNN [14]. As shown in Figure 2, 
AD is adopted to calculate the identity operator I and the differential opera-
tors ∂ ,  ∂ , 𝑎𝑛𝑑 ∂ , to obtain the partial derivatives in Equations (1), (9), and (10) for em-
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1(ξ; Θ1) (7)

where the symbol ◦ is the composition operation. The output vector at the ith layer (i = 1,
2 . . . Nl) is calculated by the feed-forward algorithm, given by
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i(·) ∈ R→ R . Here, li is the size of the output at
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convergence of the neural network.
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i(·) denotes the activation function, and the tanh
function is adopted here due to its infinitely differentiable capability.

The physics-informed neural network is constructed to calculate the fluid flow field
through automatic differentiation (AD), which can be directly utilized in deep-learning-
framework Tensorflow. To reduce the order of the derivative in Equation (2), the Cauchy
stress tensor σ is introduced into Equation (2) as follows:

∂u
∂t

+ u·∇u =
1
ρ
∇·σ (9)

σ = −pI + µ
(
∇u +∇uT

)
(10)

which is added to the output vector of DNN. It is proved that such continuum-mechanics-
based formulation benefits improve the trainability of DNN [14]. As shown in Figure 2, AD
is adopted to calculate the identity operator I and the differential operators ∂t, ∂x, and ∂y,
to obtain the partial derivatives in Equations (1), (9), and (10) for embedding the physical
regularities into the loss function [37].

The loss function ε loss consists of two terms: (i) the physics-constrained term, which
includes the governing partial differential equations’ loss εg (Equations (1), (9), and (10))
and the boundary condition loss εbc; and (ii) the data correction term, representing the mean
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squared errors between the exact and predicted values, consists of the initial condition
loss ε I and the coarse internal loss εint, which are derived as follows:

ε loss = εg + λbc/I(∑ εbc,j + ε I) + λintεint (11)

εg =
1

Ng
∑Ng

i=1 y∗
(

xi
g

)2
(12)

εbc,j =
1

Nbc,j
∑

Nbc,j
i=1 (y∗bc,j

(
xi

bc

)
− ybc,j)

2
(13)

ε I =
1

NI
∑NI

i=1

(
y∗
(

xi
I

)
− yI

)2
(14)

εint =
1

Nint
∑Nint

i=1

(
y∗
(

xi
int

)
− yint

)2
. (15)

Here, λbc/I and λint are adopted as the weighting coefficients for the initial and
boundary conditions losses and the coarse internal data loss, respectively, in order to
balance the weights of each part of the total loss. y∗bc,j is the boundary condition function,
in which * denotes DNN’s predicted values. N(.) denotes the number of collocation points
(subscripts g for governing equation, I for initial condition, bc for boundary condition, and

int for coarse internal training data).
(

xi
(.)

)N(.)

i=1
and y(.) are the input and output variables

for all the collocation points of the physics-informed neural network, respectively.
The total loss, as derived in Equation (11), is minimized by the ADAM and L-BFGS-B

optimizers [38], which can constantly adjust the learning rates and possess good conver-
gence speed. Theoretically, the solution for the N-S equations can be achieved, when the
loss function is reduced to zero.

For the flapping wing problem considered in the current work, the domain and
boundary setups utilized in the PINN are the same as in IBM simulation, as depicted
in Figure 1. The presence of the flapping wing is achieved by some specific collocation
points: (i) points at the moving boundary are added with prescribed velocities (vx

i, vy
i), as

described in Equations (16) and (17); and (ii) points located within the flapping wing are all
filtered out of the fluid computational space. That is,

vx
i = 2π f αm cos(2π f t)·rinx

i (16)

vy
i = 2π f αm cos(2π f t)·riny

i − 2π f hm sin(2π f t) (17)

where ri represents the length between the rotation center and the ith point at the moving
boundary. (nx

i, ny
i) is the outward normal on the flapping wing the ith point.

The entire spatial–temporal space is filled with all the collocation points, and each
point has certain spatial–temporal coordinates. These collocation points are generated and
inputted into the DNN for training and to match the corresponding output variables. Simi-
lar to traditional CFD simulation, the training process requires a certain minimum number
of collocation points to ensure the accuracy of PINN. The total collocation points Ncollo
used for PINN can be calculated with Equation (18), which are shown in Figure 3 as a
representation. That is,

Ncollo = NLHS + timestep·NLins (18)

where NLHS and NLins represent global and local collocation points, respectively. NLHS are
obtained by taking a random sample using the Latin hypercube sampling (LHS) method.
They are distributed in the entire spatial–temporal space, and are refined in the region of
7c × 5c (adjacent to the flapping wing) to better capture the details of the flow. NLins are
generated by the linspace method [14] within a cycle shape embracing the flapping wing.
They only distributed in the local spatial space at a certain instant, to precisely illustrate
the shape and the movements of the flapping wing. For the whole stroke cycle, they are
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sampled with uniform interval time, i.e., NLins is generated for all the timestep. It is claimed
that such a method for collocation-points generation can effectively improve the accuracy of
PINN prediction for the current problem with a large body motion and unsteady features,
which will be discussed later.
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Figure 3. Illustration of the collocation points distribution adopted by the HCDD-PINN model. NLHS

represents the collocation points for the entire spatial–temporal space. NLins represents the instant
collocation points around the flapping wing within a cycle shape.

A flow chat for the whole method can be viewed in Figure 4. The steps of the NN
training process can be described as follows:

Step1: establish the physical model of flapping wing, including the governing equations,
and boundary conditions, and prepare the training data for the coarser CFD results, includ-
ing the initial condition and coarse internal data;
Step2: design the suitable deep neural network, including the NN structure, function,
learning rate, iteration, and so on; and create the corresponding loss function according to
the physical model;
Step3: train the DNN using the coarser internal data, and establish the map relationship
between the input and output layers; use Adam and L-BFGS-B optimizers to update the
weight and bias of DNN and reduce the error of the loss function; end training when the
converged conditions are satisfied;
Step4: save the trained model, residual histories, and predicted flow field information.

Biomimetics 2024, 9, x FOR PEER REVIEW 8 of 25 
 

 

A flow chat for the whole method can be viewed in Figure 4. The steps of the NN 
training process can be described as follows: 
Step1: establish the physical model of flapping wing, including the governing equations, 
and boundary conditions, and prepare the training data for the coarser CFD results, in-
cluding the initial condition and coarse internal data; 
Step2: design the suitable deep neural network, including the NN structure, function, 
learning rate, iteration, and so on; and create the corresponding loss function according 
to the physical model; 
Step3: train the DNN using the coarser internal data, and establish the map relationship 
between the input and output layers; use Adam and L-BFGS-B optimizers to update the 
weight and bias of DNN and reduce the error of the loss function; end training when the 
converged conditions are satisfied; 
Step4: save the trained model, residual histories, and predicted flow field information. 

 

Figure 4. Flow chart for the HCDD-PINN training process. 

3. Problem Setup and Numerical Results 
3.1. Problem Description 

In the current study, the flapping kinematics, hm, αm, and f in Equations (3) and (4), 
are fixed at 0.2c, π/4, and 0.25, respectively. c is the chord length of the wing, and the 
Reynolds number Re is based on the chord of the flapping wing; a free-stream velocity 
and a fluid viscosity of 100 are adopted.  

A grid convergence study is performed by decreasing the minimum grid interval Δs 
by a factor of 2, to ensure the CFD solution accuracy and prepare the PINN training data 
to validate the corresponding prediction performance of the proposed HCDD-PINN 
model. The corresponding lift and drag forces’ histories under different resolutions are 
compared in Figure 5. It can be seen that all the cases attain periodical state within three 
flapping cycles. Therefore, the CFD results from the fourth cycle are selected to be the data 
training and for comparison. For our PINN simulation, the fourth flapping cycle is trained 
and predicted. The reference field information at the beginning of the fourth cycle is used 
as the initial condition data (t = 0) to help with the PINN training, which introduces the 

Figure 4. Flow chart for the HCDD-PINN training process.



Biomimetics 2024, 9, 72 8 of 24

3. Problem Setup and Numerical Results
3.1. Problem Description

In the current study, the flapping kinematics, hm, αm, and f in Equations (3) and (4), are
fixed at 0.2c, π/4, and 0.25, respectively. c is the chord length of the wing, and the Reynolds
number Re is based on the chord of the flapping wing; a free-stream velocity and a fluid
viscosity of 100 are adopted.

A grid convergence study is performed by decreasing the minimum grid interval
∆s by a factor of 2, to ensure the CFD solution accuracy and prepare the PINN training
data to validate the corresponding prediction performance of the proposed HCDD-PINN
model. The corresponding lift and drag forces’ histories under different resolutions are
compared in Figure 5. It can be seen that all the cases attain periodical state within three
flapping cycles. Therefore, the CFD results from the fourth cycle are selected to be the
data training and for comparison. For our PINN simulation, the fourth flapping cycle
is trained and predicted. The reference field information at the beginning of the fourth
cycle is used as the initial condition data (t = 0) to help with the PINN training, which
introduces the initial condition loss ε I to the total loss. The high-resolution simulation
(950 × 1024) is used as the ground truth and as a reference, and the three coarser-resolution
simulations, i.e., 149 × 128, 269 × 256, and 502 × 512, are adopted as the coarse internal
data, to improve the PINN’s capability and prediction accuracy, which introduces the
coarse internal loss εint to the total loss. The coarse internal data are scattered randomly at
various spatial–temporal locations, which can be easily utilized in the DNN framework.
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3.2. Prediction Results

In this section, the effects of HCDD-PINN with different-resolution internal data
are investigated, by comparing it with a PINN with no internal data. The three CFD
results ((149 × 128), (269 × 256), and (502 × 512)) that are used as the coarse internal
data are 51×, 14×, and 4× coarser resolution than the reference case (950 × 1024), and
indicate ~259-fold, ~70-fold, and ~9-fold computational speedup, respectively. Three scalar
state variables, i.e., velocity u, v, and pressure p, are saved in 25 field snapshots, and the
number of snapshots used as internal data for PINN training is 25 for the three coarser
cases. The fraction per snapshot is 0.0364, 0.01, and 0.00268, respectively, to ensure the
same internal data are used for PINN. A case without internal data is also performed for
comparison. To demonstrate the robustness of HCDD-PINN, the architecture and hyper-
parameters are selected in a consistent fashion for all four of the cases. The architecture
of the DNN used here is composed of eight hidden layers with 50 neurons per layer,
to broadly balance the trade-off between the expressivity and trainability of the neural
network. The weighting coefficients λbc/I and λint are set as one for both the initial and
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boundary conditions loss and the coarse internal loss. The total collocation point Ncollo is
set to 3.1 × 105 (N LHS= 1.6 × 105, NLins= 1.5 × 103, and timestep = 100). The learning
rate and max batch size of Adam optimizer are set as 5 × 10−4 and 5 × 103, respectively.
The network construction, training, and prediction are all performed in Tensorflow. All of
the training and predictions are performed on a high-performance computer cluster with
80 GB memory, twenty CPUs, and one NVIDIA Tesla V100 GPU. Note that a comprehensive
parameter study and an analysis of the optimization of the DNN’s architecture will be
conducted in the next section.

The training and predicting performances on these four cases are summarized in
Table 1, where the training loss is defined by Equation (11). The relative l2 error rl2e _y of
the output variables is defined as:

rl2e_y =

√
∑N

i=1 ‖yi
PINN − yi

CFD‖
2√

∑N
i=1 ‖yi

CFD‖
2

(19)

where y is the physical quantity of interest, including u, v, and p; N is the total number of the
reference point. The predicting error is obtained by calculating the cycle-averaged relative l2
error rl2e _y ( rl2e _y = 1/T ∑ rl2e _y) to evaluate the prediction performance. It can be seen
from Table 1 that the PINN model without internal data inaccurately predicted the flow field
past the flapping wing, despite the fact that the training loss had been minimized to less
than 0.003. With the help of the limited coarse internal data, nearly 700 points per snapshot,
the predicting error is largely reduced for all three of the other cases, at the cost of the
increment in training cost and training loss. This is mainly caused by the introduction of εint.
The reference CFD simulation takes 1967 s to complete four stroke cycles under the same
CPU cores as the PINN. The PINN training time increases ~5.8-fold (no internal), ~15.6-fold
(149 × 128), ~9.4-fold (269 × 256), and ~6.8-fold (502 × 512), respectively. However, once
the training process of HCDD-PINN model is finished, the flow information at arbitrary
spatial–temporal coordinates can be rapidly predicted with reasonable accuracy. This
will be suitable for wing-shape optimization, stroke-trajectory kinematics optimization,
and aero-forces optimization. The advantages of HCDD-PINN will be more apparent
when the situation is extended to the corresponding three-dimensional problems, which
needs an excellent mesh quality to ensure the accuracy of the traditional CFD solvers. The
3D CFD simulations usually need to solve billions of degrees of freedom in the relevant
spatial–temporal flow fields, leading to unfavorable trade-offs between accuracy and
computational cost.

Table 1. Training and predicting performance for HCDD-PINN with different coarse internal data.

No Internal

Coarse Internal Data Obtained from
Different Resolution

149× 128 269× 256 502× 512

Training cost 11,412 s 30,643 s 18,465 s 13,427 s
Prediction cost 298 s 314 s 345 s 311 s

Training loss ε loss 2.64 × 10−3 5.08 × 10−3 4.59 × 10−3 4.90 × 10−3

Predicting error rl2e_u 1.01 × 10−1 3.63 × 10−2 1.56 × 10−2 1.61 × 10−2

Predicting error rl2e_v 7.25 × 10−1 2.92 × 10−1 1.43 × 10−1 1.44 × 10−1

Predicting error rl2e_p 2.59 3.32 × 10−1 2.75 × 10−1 3.12 × 10−1

The weighted total residual for all cases is less than 0.0051. As expected, the coarser-
resolution the internal data are, the more time and iterations the HCDD-PINN model needs
to train. It is worth mentioning that the HCDD-PINN with 269 × 256 resolution internal
data shows the best predicting performance compared to the other internal data resolutions,
which results from the longer training time of the relatively accurate data with relatively
few points. It can reconstruct the velocity field and the pressure field with relative accuracy.
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More details about the residual loss convergence histories, including the total loss ε loss, the
governing equations loss εg, the boundary condition loss εbc, the initial condition loss ε I ,
and the coarse internal loss εint, can be found in Figure 6. It requires nearly 60,000~90,000
iterations to reach a properly trained HCDD-PINN model that is deemed ready to be used
for predictions. The sudden drop in the loss histories is caused by switching from the
ADAM optimizer to the L-BFGS-B optimizer.
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Figure 6. Required iterations during optimization of the total loss and other loss components in the
training process of HCDD-PINN with different coarse internal data.

After training is complete, the predictions of the velocity and pressure fields can be
obtained almost instantaneously. Nearly one hundred thousand points scattered in space
are used for prediction at a certain instant, and 51 time snapshots are saved for the entire
flapping cycle, including the initial and final time instants. The corresponding prediction
cost for the four cases can be found in Table 1. The relative l2 errors of velocity and pressure
fields, between the predictions of the HCDD-PINN model with different coarse internal
data resolutions and the exact values of the corresponding CFD reference, are calculated for
one cycle, as illustrated in Figure 7. The results of the PINN model with no internal data are
given for comparison. It is clear that the proposed framework is capable of constructing the
entire velocity and pressure fields, and has significantly improved the predicting accuracy
compared to the original PINN model. The HCDD-PINN with very coarse internal data
(149 × 128) still has a good prediction, which validates that the proposed method possesses
a high degree of robustness.
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velocities (a) u, (b) v, and pressure (c) p fields. The results of the PINN model with no internal data
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For a more in-depth investigation, cloud pictures for the predicted velocity (u, v) and
pressure (p) fields of the HCDD-PINN model with different resolutions of coarse internal
data are drawn at t/T = 0.18 and t/T = 0.78035, as shown in Figures 8 and 9, respectively.
They are compared with cases of no internal data and the ground truth reference. It can
be seen that, compared to the PINN with no internal case, the flow fields predicted by
the HCDD-PINN closely follow the governing partial differential equations laws and the
enforced initial and boundary conditions at any instant, and the flows in the areas adjacent
to the flapping wing and the wake can be precisely captured by the proposed framework.
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Figure 8. Cloud pictures for the predicted velocity (u-left column, v-middle column) and pressure (p-
right column) fields of the HCDD-PINN model, with respect to different resolutions of coarse internal
data at t/T = 0.18: (a–c) CFD reference with 950 × 1024; (d–f) PINN with no internal; (g–i) HCDD-
PINN with 149 × 128; (j–l) HCDD-PINN with 269 × 256; (m–o) HCDD-PINN with 502 × 512.
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Figure 9. Cloud pictures for the predicted velocity (u-left column, v-middle column) and pressure
(p-right column) fields of the HCDD-PINN model, with respect to different resolutions of coarse
internal data at t/T = 0.78035: (a–c) CFD reference with 950 × 1024; (d–f) PINN with no inter-
nal; (g–i) HCDD-PINN with 149 × 128; (j–l) HCDD-PINN with 269 × 256; (m–o) HCDD-PINN
with 502 × 512.

To distinguish the differences of flow fields between the prediction and the ground
truth, we define the absolute error as ydi f f = yPINN − yCFD. The corresponding absolute
error cloud pictures for the u, v velocities and p pressure fields are drawn at t/T = 0.18
and t/T = 0.78035, as shown in Figures 10 and 11, respectively. The positive absolute error,
illustrated by the red color, means that the predicted values are larger than the extracted
ones, while the blue negative error represents that the predicted values are smaller than
the extracted ones. The corresponding relative l2 errors of u_diff, v_diff, and p_diff, defined
by Equation (20), are given in the upper left corner of the respective picture for the whole
domain. It can be seen that the HCDD-PINN models with different resolutions of coarse
internal data are able to produce a good prediction performance compared to the original
PINN model with no data to help. The relatively large absolute error occurs near the
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flapping wing and some specific areas, while the field information for the most parts of
the domain is predicted with sufficient accuracy. The prediction of the velocity field is
more accurate than that for the pressure field for all cases. The relatively large difference
in magnitude between the exact and the predicted pressure fields may be attributed to
the very nature of incompressible Navier–Stokes equations, since the pressure field is only
identifiable up to a constant.
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Figure 10. Absolute error cloud pictures for the velocity (u_diff -left column, v_diff -middle column)
and pressure (p_diff -right column) flow fields between the CFD and HCDD-PINN, with respect to
different coarse internal data at t/T = 0.18: (a–c) PINN with no internal; (d–f) HCDD-PINN with
149 × 128; (g–i) HCDD-PINN with 269 × 256; (j–l) HCDD-PINN with 502 × 512.

Comparisons of the distribution pressure coefficient Cp in the flapping wing, between
the CFD reference values (black line) and PINN predicted values with no internal data (grey
line), 149 × 128 (red line), 269 × 256 (green line), and 502 × 512 (blue line) coarse internal
data, at t/T = 0.18 and t/T = 0.78035, are illustrated in Figure 12a and 12b, respectively. The
pressure coefficient Cp is obtained by dividing 0.5ρU2

re f c by the pressure force. Despite the
relatively large difference between the predicted and exact pressure fields, the distribution
of the pressure coefficient Cp for the flapping wing appears to be accurately predicted by
the proposed HCDD-PINN with limited coarse scattered data.
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Figure 11. Absolute error cloud pictures for the velocity (u_diff -left column, v_diff -middle column)
and pressure (p_diff -right column) flow fields between the CFD and HCDD-PINN, with respect to
different coarse internal data at t/T = 0.78035: (a–c) PINN with no internal; (d–f) HCDD-PINN with
149 × 128; (g–i) HCDD-PINN with 269 × 256; (j–l) HCDD-PINN with 502 × 512.
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distribution of the pressure coefficient Cp for the flapping wing appears to be accurately 
predicted by the proposed HCDD-PINN with limited coarse scattered data. 

 

Figure 12. The distribution of the pressure coefficient Cp for the flapping wing predicted by the
HCDD-PINN with respect to different coarse internal data at (a) t/T = 0.18 and (b) t/T = 0.78035.
The results of the model with no internal data are given for comparison.

4. Discussions

Firstly, in this section, an optimal parameter-search study is conducted to find the best
DNN parameters for the flapping wing problem. Secondly, the effects of coarse internal
data on the training and prediction performances, with respect to different snapshots
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and fractions of internal data, are investigated by adopting the best combination of these
parameters. Based on the above analysis, the coarse results obtained with the 269 × 256 grid
resolution are selected as the internal data source for the HCDD-PINN model in this section,
as it gives the best predicting performance.

4.1. Optimal Parameters Search

The training and predicting performances of DNNs are significantly affected by the
architecture, hyper-parameters, and the number of collocation points, which are optimized
by a coarse grid search. A summary of the training and predicting performances for all the
test experiments are presented in Table 2. The baseline parameters were selected to be snap-
shot = 25, fraction = 0.01, NLHS= 1.6 × 105, NLins= 1.5 × 103, timestep = 100, layer = 8,
neurons per layer = 50, λbc/I = 1, λint = 1, learning rate = 5 × 10−4, and iteration = 5 × 103.
All these test parameters are varied individually by fixing the other parameters.

Table 2. Training and predicting performance of HCDD-PINN for optimal parameters search.

Collocation points Ncollo = NLHS + timestep·NLins

NLHS (×105) 1.6 2.4 3.2 1.6 1.6 1.6 1.6 1.6 1.6
NLinS 1500 1500 1500 0 500 2500 1500 1500 1500

timestep 100 100 100 100 100 100 50 150 200

Training cost (×104 s) 1.847 2.651 3.186 1.798 1.896 2.805 1.018 2.794 3.070
Training loss ε loss

(
×10−3

)
4.592 3.649 3.356 80.24 3.155 4.114 4.077 4.464 5.068

Predicting error rl2e_u (×10−2) 1.564 1.540 1.532 3.256 1.528 1.544 1.507 1.581 1.607
Predicting error rl2e_v (×10−1) 1.433 1.411 1.390 6.326 1.411 1.407 1.412 1.441 1.450
Predicting error rl2e_p (×10−1) 2.753 2.520 2.468 4.821 2.596 2.557 2.657 2.614 2.757

Architecture of DNN

Layer 6 8 10
Neurons (per layer) 50 100 150 50 100 150 50 100 150

Training cost (×104 s) 2.273 2.944 2.944 1.847 2.235 3.403 1.640 2.835 5.082
Training loss ε loss

(
×10−3

)
6.136 2.686 2.720 4.592 3.344 2.997 4.773 3.544 2.677

Predicting error rl2e_u (×10−2) 1.630 1.537 1.511 1.564 1.551 1.546 1.567 1.562 1.551
Predicting error rl2e_v (×10−1) 1.461 1.383 1.385 1.433 1.438 1.437 1.474 1.436 1.415
Predicting error rl2e_p (×10−1) 2.794 2.333 2.377 2.753 2.558 2.511 2.743 2.698 2.571

Loss weighting coefficients

λbc/I 1 2 3 1 1
λint 1 1 1 2 3

Training cost (×104 s) 1.847 1.715 1.747 1.430 1.620
Training loss ε loss

(
×10−3

)
4.592 4.820 4.815 5.600 6.269

εg (×10−3) 2.585 2.781 2.813 3.037 3.228
εbc(×10 −4) 4.466 1.990 1.206 5.602 6.476
ε I (×10−4) 2.075 1.115 0.827 2.197 2.837

ε int (×10−3) 1.353 1.418 1.392 0.891 0.703
Predicting error rl2e_u (×10−2) 1.564 1.606 1.539 1.568 1.592
Predicting error rl2e_v (×10−1) 1.433 1.419 1.427 1.412 1.430
Predicting error rl2e_p (×10−1) 2.753 2.774 2.659 2.420 2.283

Adam optimizer

Learning rate (×10−4) 5 1 0.5 5 5
Iteration (×103) 5 5 5 10 15

Training cost (×104 s) 1.847 1.585 1.693 1.934 2.185
Training loss ε loss

(
×10−3

)
4.592 4.801 4.500 4.167 4.392

Predicting error rl2e_u (×10−2) 1.564 1.562 1.543 1.544 1.590
Predicting error rl2e_v (×10−1) 1.433 1.432 1.424 1.424 1.421
Predicting error rl2e_p (×10−1) 2.753 2.711 2.620 2.610 2.633

It can be seen from Table 2 that, as NLHS increases, the more training time is needed,
but the training loss and the predicting errors are decreased. NLHS of 2.4 × 105 is selected
by weighting the computational cost and the prediction accuracy. It can be seen that the
introduction of NLins can significantly improve the HCDD-PINN’s capability of predicting
the flow past the flapping wing. However, the improvement tends to slow down while
using larger points of NLins. NLins of 500 and timestep of 50 are selected in conformity with
the smallest-collocation-points principle, which contributes to the total Ncollo of 2.65 × 105.
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The empirical findings indicate that deeper and wider networks are usually more
expressive (i.e., they can capture a larger class of functions, but are often costlier to train,
which represents a feed-forward evaluation as the neural network takes more time and
the optimizer requires more iterations to converge). A large number of layers prevents a
model from being generalized, while a small number of layers is insufficient to represent
the system. Therefore, an architecture of DNN with the minimum number of layers and
neurons and the desired performance is preferable. Among all cases considered here, the
best structure of the HCDD-PINN includes six hidden layers with 100 neurons per layer.

With the loss weighting coefficients increasing, the corresponding loss terms decrease.
Considering that the information in the internal data is inaccurate, it is unnecessary to
reduce the internal loss to a very low value. Therefore, the combination of a λbc/I of three
and a λint of two are suitable to balance the weights of different items in the total residual.
Additionally, the learning rate and the max number of iterations in the ADAM optimizer
are 5 × 10−5 and 1 × 104, respectively, resulting in the better prediction performance of our
proposed framework.

In summary, throughout the coarse grid search study, with the snapshot and fraction
of coarse internal data fixed as 25 and 0.01, the best combination of the other parameters for
DNN are NLHS= 2.4 × 105, NLins= 500, timestep = 50, layer = 6, neurons per layer = 100,
λbc/I = 3, λint = 2, learning rate = 5× 10−5, and iteration = 5× 104. These sets of parameters
will be adopted when investigating the effects of the fraction and snapshot of coarse internal
data in the next section.

4.2. Effect of the Fraction of Coarse Internal Data

A train-and-test data split method is used for preparing the coarse internal data of
the HCDD-PINN. The fraction parameter illustrates the percentage of the training data
in the source CFD data, and the test data are ignored in the training process. The effect
of the fraction of coarse internal data on the training and predicting performances of our
proposed HCDD-PINN model is investigated by fixing the snapshot number of the coarse
internal data to 25. The source of the coarse internal data is a 269 × 256 coarse grid CFD
simulation, and five values of the fraction are considered for each snapshot, i.e., 0.1, 0.05,
0.01, 0.005, and 0.001. That is to say, the total internal points at each snapshot are nearly
6900, 3450, 690, 345, and 69, respectively.

The overall training and predicting results of HCDD-PINN, with different fractions of
coarse internal data, are summarized in Table 3. Compared to the case with the old DNN
parameters, the HCDD-PINN with optimal parameters has a better predicting performance
with an increment in the cost of training time. The weighted total residuals throughout
this section are minimized to be less than 0.0025. The overall effect of the fraction is
relatively small. As the fraction increases, the predicting errors of pressure can be effectively
decreased. Except for the pressure field, the training and predicting performances of the
HCDD-PINN hardly benefit from the large fraction of the coarse internal data. On the
contrary, the HCDD-PINN can predict the flow fields of the flapping wing with relative
accuracy with a limited dataset, as long as the internal points at each snapshot are larger
than a hundred. It can also be seen in Figure 13, which exhibits cloud pictures for the
predicted and exact velocity and pressure at t/T = 0.18, with respect to different fractions,
that the proposed HCDD-PINN model is robust for accurately reconstructing the velocity
and pressure flow fields when the fraction of coarse internal data varies.

The differences in u, v velocities, and p pressure fields are compared among the
predictions of the HCDD-PINN with different fractions of coarse internal data and the exact
CFD reference, which are given as t/T = 0.18 in Figure 14. The corresponding relative l2
errors are illustrated below each respective picture. It can be seen that the absolute errors of
u and v rarely change, with respect to the different fractions of the coarse internal data. The
absolute error of p increases to a certain extent as the fraction decreases from 0.1 to 0.001.
Considering that the internal points are reduced by nearly 100 times, such adverse effects
are still deemed to be acceptable by weighting the data-driven amount and predicting
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accuracy. The predicting capability of the proposed HCDD-PINN model is stable enough
only if an appropriate snapshot number of coarse internal data is selected, no matter how
much the fraction changes.
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Table 3. Training and predicting performance of HCDD-PINN with respect to different snapshots
and fraction of the coarse internal data.

Coarse internal data (269 × 256)

Snapshot (fraction = 0.005)

0 3 4 5 7 9 13 25

Training cost (s) 35,694 30,926 28,742 28,495 28,010 27,624 23,496 22,712
Training loss ε loss

(
×10−3

)
0.806 1.405 1.512 1.599 1.658 1.683 1.902 2.079

Predicting error rl2e_u (×10−2) 5.311 2.064 1.751 1.682 1.584 1.569 1.554 1.537
Predicting error rl2e_v (×10−1) 4.193 1.770 1.568 1.464 1.415 1.396 1.380 1.363
Predicting error rl2e_p (×10−1) 1.435 4.857 4.108 2.879 2.749 2.597 2.375 2.325

Fraction (snapshot = 25)

0.001 0.005 0.01 0.05 0.1

Training cost (s) 26,267 22,712 24,717 24,629 33,146
Training loss ε loss

(
×10−3

)
1.676 2.079 2.447 2.406 2.017

Predicting error rl2e_u (×10−2) 1.631 1.537 1.532 1.540 1.534
Predicting error rl2e_v (×10−1) 1.385 1.363 1.354 1.385 1.384
Predicting error rl2e_p (×10−1) 2.852 2.325 2.206 2.103 2.068
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Figure 14. Absolute error cloud pictures for the velocity (u_diff -left column, v_diff -middle column)
and pressure (p_diff -right column) flow fields between the CFD and HCDD-PINN, with respect to
different fraction of coarse internal data at t/T = 0.18: (a–c) fraction = 0.001; (e–g) fraction = 0.005;
(i–k) fraction = 0.01; (m–o) fraction = 0.05; (q–s) fraction = 0.1. The corresponding relative l2 errors
are given below the picture. The internal data used for different fractions are illustrated by red points
at the corresponding position of the last column (d,h,l,p,t).
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4.3. Effect of the Snapshot Number of Coarse Internal Data

To investigate the effects of the snapshot number of coarse internal data, seven values
are considered for the snapshots of coarse internal data, i.e., twenty-fie, thirteen, nine, seven,
five, four, and three. In particular, the snapshot = 0 represents the original PINN model
without internal data. The fraction of coarse internal data is adopted as 0.005 to ensure
the internal data are in the order of hundreds. The source CFD data are saved in 25 field
snapshots, and the timestep per cycle of the HCDD-PINN is 50. Therefore, nearly every
two, four, six, eight, twelve, sixteen, and twenty-four timestep intervals, the corresponding
coarse internal data at a certain instant are introduced into the HCDD-PINN for training,
respectively. The summaries of the training and predicting results of HCDD-PINN with
different snapshots of coarse internal data are given in Table 3. The training loss is observed
to increase, while a decrease is detected for the predicting errors and the training cost,
as the snapshot of the coarse internal data increases. When all 25 of the coarse internal
data snapshots are used for the model training, it would take the shortest training time to
minimize the loss function to the lowest value, and perform best in reconstructing the flow
fields as expected. The flow fields predicted by the original PINN model without internal
data include large errors compared to the ground truth, while the predicting errors of
HCDD-PINN sharply decrease with the inclusion of coarse internal data. When gradually
adding the snapshot of coarse internal data to more than four, the predicting errors are
reduced to an acceptable number, and the predicting performances remain stable as the
snapshot increases.

The cloud pictures for the velocity and pressure fields at t/T = 0.18, predicted by
HCDD-PINN with respect to different snapshots of coarse internal data, are summarized
in Figure 15. It can be seen that the proposed HCDD-PINN model can accurately recon-
struct the velocity and pressure flow fields by utilizing the coarse internal data. The flow
information can be captured with sufficient accuracy, especially near the leading edge of
the flapping wing, as long as the snapshot of coarse internal data is increased up to five. It
can be better distinguished by drawing the corresponding cloud pictures of the differences
between the predicted and exact velocity and pressure fields at this moment, as shown in
Figure 16. It can clearly be concluded that the absolute errors between the HCDD-PINN
and CFD decrease significantly when the snapshot of coarse internal data changes from
0 to 25.
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5. Conclusions

Traditional deep learning requires a large amount of training data to solve the flow
problems, which is usually a very time-consuming process. According to the known partial
differential equations, physics-constrained deep learning has the potential to create faster
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and more accurate solutions for fluid flow over an arbitrary domain of interest. However,
the existing PINN model may generate unreasonable or unrealistic predictions for specific
problems due to the innate lack of understanding in the complexities of neural network. In
the current study, taking the flow past the flapping wing as a specific example, a hybrid
coarse-data-driven physics-informed neural network (HCDD-PINN) model is proposed for
solving such highly unsteady problems with large body motions. The sources of internal
data are coarser in magnitude than is required by the traditional high-resolution CFD.
The training and predicting performances of HCDD-PINN with different resolutions of
internal data are analyzed, by comparing it to the original PINN model without internal
data. Additionally, the effects of the snapshot and fraction of the coarse internal data on the
HCDD-PINN performances are investigated, based on the best-parameters combination of
DNN obtained from an optimal parameter-search study.

By introducing the coarse internal data, the proposed HCDD-PINN model has suf-
ficient accuracy, and performs reasonable and realistic predictions of the flow past the
flapping wing. The results are compared to the ground-truth reference, which is obtained
by an immersed-boundary method-based solver. In general, the velocity and pressure
fields can be precisely predicted by HCDD-PINN with different grid resolutions for the
coarse internal data. The absolute errors of velocity are lower than that of pressure p. The
errors in predicting pressure can be effectively decreased by appropriately increasing the
snapshot and fraction of the coarse internal data. The proposed HCDD-PINN framework
is considered to have sufficient stability and accuracy for solving specific problems with
unsteady features and large body motions. This method offers an alternative way to solve
arbitrarily complex fluid dynamic problems. Its advantages in accuracy, stability, and
efficiency are likely to be even more apparent for the corresponding optimization and
three dimensional researches, since they are notoriously time consuming to solve with the
standard CFD methods; this issue awaits our future work.
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Nomenclature

c chord length, m
CP pressure coefficient
f stroke frequency, s−1

hm plunge amplitude, m
mse_u mean square error of u
mse_v mean square error of v
mse_p mean square error of p
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mse_u cycle-averaged mean square error of u
mse_v cycle-averaged mean square error of v
mse_p cycle-averaged mean square error of p
Ncollo total collocation points
NLHS collocation points for the entire spatial-temporal space
NLins instant collocation points around the flapping wing
Re Reynolds number
T stroke period, s
αm pitch amplitude, ◦

εbc boundary condition loss
εg governing equations loss
εint coarse internal data loss
ε I initial condition loss
ε loss governing equations loss
λbc/I weighting coefficient for initial and boundary condition losses
λint weighting coefficient for coarse internal data loss
σ Cauchy stress tensor
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