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Abstract: There are a lot of multi-objective optimization problems (MOPs) in the real world, and many
multi-objective evolutionary algorithms (MOEAs) have been presented to solve MOPs. However,
obtaining non-dominated solutions that trade off convergence and diversity remains a major challenge
for a MOEA. To solve this problem, this paper designs an efficient multi-objective sine cosine
algorithm based on a competitive mechanism (CMOSCA). In the CMOSCA, the ranking relies on
non-dominated sorting, and the crowding distance rank is utilized to choose the outstanding agents,
which are employed to guide the evolution of the SCA. Furthermore, a competitive mechanism
stemming from the shift-based density estimation approach is adopted to devise a new position
updating operator for creating offspring agents. In each competition, two agents are randomly
selected from the outstanding agents, and the winner of the competition is integrated into the
position update scheme of the SCA. The performance of our proposed CMOSCA was first verified on
three benchmark suites (i.e., DTLZ, WFG, and ZDT) with diversity characteristics and compared with
several MOEAs. The experimental results indicated that the CMOSCA can obtain a Pareto-optimal
front with better convergence and diversity. Finally, the CMOSCA was applied to deal with several
engineering design problems taken from the literature, and the statistical results demonstrated that
the CMOSCA is an efficient and effective approach for engineering design problems.

Keywords: multi-objective algorithm; sine cosine algorithm (SCA); competitive mechanism;
engineering design problem

1. Introduction

Multi-objective optimization problems (MOPs) arise from engineering applications [1],
community detection problems [2], charging station placement problems [3], the detection
of ice accretion on aircraft [4], etc. MOPs often involve multiple conflicting objectives [5,6],
such as environmental /economic dispatch (EED) problems with the two objectives of
minimizing pollution emissions and generation costs, and there does not exist a solution
that is able to optimize all objectives simultaneously. The mathematical model of the MOP
for minimization is formulated as follows:

min  F(x) = (f1(x), fa(x), .-, fu(x))
st. gi(x)<0 (p=12,...,p) 1)
hi(x) =0 (9=1,2,...,9)

where x = (x1,x2,...,xp) denotes the D-dimensional candidate solution in decision
space; f1(x), fa(x), ..., fm(x) are objective functions; and m is the number of objectives.
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gi(x) and h;(x) are constraint functions. Given two candidate solutions x, and x;, in the
feasible region, x, dominates xy, if and only if Vi, fi(x,) < fi(xy) and Jj, fj(xa) < fj(x),
i,j € {1,2,...,m}. If no other solution can dominate x*, then x* is called the Pareto-optimal
solution. The set of all Pareto-optimal solutions is known as the Pareto-optimal set (PS),
and the set of their corresponding objective values is called the Pareto front (PF).

In the past twenty years, multi-objective evolutionary algorithms (MOEAs) have
achieved great popularity due to their excellent capabilities in dealing with MOPs [7,8].
In 1985, Schaffer introduced the first MOEA, i.e., the vector-evaluated genetic algorithm
(VEGA) [9]. After the VEGA, a large number of MOEAs based on various metaheuristic
algorithms were presented, such as the whale optimization algorithm [10], particle swarm
optimization (PSO) [11], the carnivorous plant algorithm [12], the equilibrium optimizer
slime mould algorithm [1], differential evolution (DE) [13,14], the butterfly optimization
algorithm [15], the remora optimization algorithm [16,17], the crayfish optimization algo-
rithm [18], and the gray wolf optimizer [19]. Based on their evolution schemes, MOEAs
can be roughly partitioned into three types.

The first type is dominance-based MOEAs. These rank solutions according to the
dominance relationship and choose solutions for the next generation based on Pareto and
diversity selection criteria. The most representative and famous example for MOPs is
the fast elite multi-objective GA (NSGA-II), which was introduced by Deb et al. [20]. To
further address Many-objective optimization problems, scholars designed several new
dominance rules, such as 8-dominance [21], grid dominance [22], fuzzy dominance [23],
and e-dominance [24]. Recently, inspired by the idea of a competitive swarm optimizer
(CSO) [25], Zhang et al. developed a multi-objective PSO (CMOPSO) that utilizes a pairwise
competitive mechanism to update the velocity of particles [26]. The comparison results
demonstrated that the CMOPSO performed better than the competing algorithms. To
enhance the performance of the CMOPSO, Han et al. adopted a tripartite competition
mechanism to propose an improved multi-objective PSO, called the TC-MOPSO [27]. Using
the level swarm optimizer and a competition mechanism, Zhang et al. introduced an
MOEA named EMOSO [28].

The second type is decomposition-based MOEAs. This type can be further classified
into two categories, one wherein the MOP is transformed into a series of single-objective
sub-problems [29,30], and the other wherein a complex MOP is transformed into a series
of simple MOPs [31]. A representative example of a decomposition-based MOEA is
the MOEA /D [29]. The same authors introduced a new variant of the MOEA /D with
DE operators, called MOEA /D-DE [32]. What is more, some advanced versions of the
MOEA /D have been proposed to handle more challenging MOPs, such as MOEA /D-
PaS [33] and MOEA /D-AM2M [34]. Using a decomposition strategy, Cheng et al. presented
an MOEA with a set of reference vectors, named the RVEA [35]. Furthermore, Zhao
et al. introduced a surrogate-ensemble assisted MOEA on the basis of the RVEA to deal
with expensive problems [36]. Recently, Yang et al. introduced an MOEA with a dual
decomposition strategy to solve large-scale multi-objective optimization problems [37].

The third type is indicator-based MOEAs, which utilize performance indicators rather
than fitness for evolutionary selection. Beume et al. [38] introduced an s-metric selection-
based MOEA, called the SMS-EMOA, via embedding the hypervolume (HV) with a
non-dominated sorting design. Zitzler et al. developed an indicator-based evolution-
ary algorithm (IBEA), in which the HV and e-indicator are employed in the evolutionary
selection [39]. However, the computational time for the HV rapidly increases as the number
of objectives increases. Hence, Bader et al. developed a hypervolume-based MOEA (Hype),
which adopts Monte Carlo simulations to calculate the HV values [40]. To enhance the
performance of MOEAs for irregular Pareto frontier problems, Tian et al. presented an
indicator-based MOEA (AR-MOEA) whose reference points are adaptive [41].

Additionally, many researchers have combined the above three strategies and pro-
posed some efficient MOEAs. Li et al. developed an MOEA /DD method using both
decomposition and dominance mechanisms [42]. Based on the famous NSGA-II, Deb et al.
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proposed an improved MOEA (NSGA-III) on the basis of a decomposition mechanism
and non-dominated sorting strategy [43]. Wang et al. presented a MOEA (Two-arch2) by
utilizing both the dominance and the performance indicator [44]. Although researchers
have proposed many MOEAs to improve the convergence performance and maintain
diversity and attained better performance, the balance of convergence and diversity is still
a major challenge in multi-objective optimization.

In this paper, to promote the effectiveness of the MOEA in addressing MOPs, an
efficient multi-objective sine cosine algorithm using an SDE-based competitive mechanism
is proposed. The competitive idea utilized in the CSO is an effective mechanism that has
also been employed to enhance the performance of other methods [10,26,45,46]. The sine
cosine algorithm (SCA) is an effective meta-heuristic introduced in 2016 [47]. The SCA
has demonstrated its robustness and effectiveness in terms of accuracy, convergence, and
computational efforts [48]. However, the SCA has not yet been integrated with competitive
mechanisms for handling MOPs. To take advantages of the SCA and the effectiveness
of the competitive mechanism, we develop a multi-objective SCA based on the compet-
itive mechanism, named the CMOSCA. The contributions of this work are summarized
as follows.

* A new position updating operation based on a competitive mechanism with the
shift-based density estimation (SDE) strategy is proposed. In this operation, an agent
with better SDE fitness value is employed to guide the search of evolution. This
operation can make use of the SDE-based competitive mechanism to attain a well
balance between the diversity and convergence.

*  Wealso present two variants of the CMOSCA, which utilize the Euclidean distance-based
competitive mechanism and angle-based competitive mechanism, respectively. The
performance of these two variants with CMOSCA was experimentally compared, and
the experimental results indicate the virtue of the SDE-based competition mechanism.

*  The performance of the CMOSCA is extensively analyzed via comparing CMOSCA
with several representative MOEAs on twenty test functions having various land-
scapes of Pareto fronts. Furthermore, the proposed CMOSCA is also applied to
address several engineering design problems. The comparison results evidence the
competitive performance of our proposed CMOSCA.

The remaining article is organized as follows. Section 2 describes the idea of the SCA
and related works on multi-objective SCA. Section 3 provides our proposed CMOSCA in
detail. Experiments on twenty test functions and several engineering design problems
with some discussions are given in Section 4. At last, the conclusions are summarized in
Section 5.

2. Related Work
2.1. Sine Cosine Algorithm (SCA)

The SCA is a population-based meta-heuristic optimization approach, proposed by
Seyedali Mirjalili in 2016, which is inspired by the mathematical characteristics of sine and
cosine functions [47]. It employs the rules of trigonometric sine and cosine functions to
update the positions of agents for the optimal solution. The positions of agents in the SCA
are updated utilizing the Equation (2).

{ it = xt 411 xsin(rp) x [rapt — xt| 14 <05 2
xit = xt 411 x cos(r) x |rapt — xt| 1y > 05

where xf“, xf are the ith (i = 1,2,...,N) agents at (f + 1)th and tth iteration respectively

and p! represents the best agent (destination point) at the tth iteration, and 1,7, 73, and r4
are random control parameters. These parameters are integrated to prevent the algorithm
from getting stuck in local optima and to balance the exploration and exploitation of the
search process.
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The parameter r{ makes a contribution to the exploration in the first half of the iterative
search process and to the exploitation in the second half of the iterative search process. To
balance exploration and exploitation, #; decreases adaptively from a preset constant a to 0
with the following linear equation.

a
rn=a-— tT 3)
where 4 is a constant, f and T represent the current and maximum iteration, respectively.
The r; is a direction parameter, which indicates the movement of the current agent
either toward or outside of the destination. r; is in the range of [0, 2IT]. The r3 is a weight
parameter, which is used to randomly emphasize (3 > 1) or weaken (r3 < 1) the impact of
the destination on other solution agents. The range of r3 is [0, 2]. Finally, r4 is a uniformly
random parameter in the range of [0,1], which performs as a switch to equally select
sine or cosine function in Equation (2). The influence of the sine and cosine functions in
Equation (2) on the next position in the [—2, 2] interval is illustrated in Figure 1.
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Figure 1. The influence of sine and cosine functions in Equation (2) on the next position in the
[—2,2] interval.

-t

Like other optimization approaches, The SCA begins with an initialization step, where
a population of agents (initial solutions) is generated in a stochastic manner. These agents
are updated iteratively via Equation (2) and the iterative process stops when the termination
condition is met. The flowchart of the SCA is illustrated in Figure 2.

2.2. Existing Multi-Objective SCA Algorithms

In recent years, many ideas have been combined with the original SCA to propose
multi-objective SCA (MOSCAs) for solving MOPs. In this part, some recently proposed
multi-objective SCA methods are introduced in brief.

Rizk-Allah et al. [49] introduced a multi-objective SCA, called the MSCO, to deal with
the nonsmooth EELD problem. In the MSCO, random initialization and opposition strategy
are used to maintain the diversity of agents. The Pareto front concepts are employed to find
a group of non-dominated solutions. The MSCO method was verified on 6-unit and 10-unit
test systems, and the results evidenced the effectiveness and robustness of the MSCO.

Tawhid and Savsani presented a multi-objective SCA (MO-SCA) to deal with various
benchmark MOPs and some engineering design problems [50]. In the MO-SCA, the elitist
non-dominated sorting strategy and the crowding distance method are employed to define
the non-dominated ranks and enhanced coverage of the obtained Pareto optimal solutions.
The attained results reveal that the MO-SCA can effectively create the Pareto fronts.

Wan et al. introduced a multi-objective SCA (MOSCA) for band selecting of hyper-
spectral image (HSI) [51]. The effectiveness of the MOSCA was assessed on two real-world
HSI scenes and the obtained experimental results reveal the superior performance of the
MOSCA compared to other competing methods. In 2022, Wan et al. further presented a
multi-objective SCA for spatial-spectral clustering of remote sensing image data (MOSCA-



Biomimetics 2024, 9, 115

50f 26

SSC), which treats the clustering task as a multi-objective optimization problem [52]. In the
MOSCA-SCC, the destination agent is automatically chosen and renewed from the current
Pareto front via utilizing the knee-point-based selection method.

| Initialization |

Evaluate the fitness of the search agents

Update the best agent found so far

Update the position of agents using Equation(2)

MNo

Stop?

Yes

[ Output the global optima ]

Figure 2. Flowchart of the Sine Cosine Algorithm.

Abdel-Basset et al. presented a multi-objective technique to handle the task schedul-
ing in multiprocessor systems (MPS) with the modified SCA (MSCA) to optimize both
the makespan and energy objectives [53]. This algorithm uses the Pareto dominance
strategy and is called energy-aware multi-objective MSCA (EA-M2SCA). Furthermore, the
EA-M2SCA was hybridized with the polynomial mutation mechanism to enhance its perfor-
mance and promote the convergence behavior. This hybrid improved version is called the
EA-MHSCA. Finally, the proposed EA-MHSCA is compared with many well-established
MOEAs, and the EA-MHSCA shows superiority in most test cases.

Wang et al. [54] developed a multi-objective SCA (MOSCA) for wind speed forecasting,
in which a hybrid wavelet neutral network based on the MOSCA is proposed and experi-
mental results show that the proposed algorithm achieved better accuracy and stability.

Selim et al. [55] introduced an efficient multi-objective SCA for the optimal allocation of
distribution static compensators in distribution networks, which employs a grey relational
analysis and a fuzzy loss sensitivity factor. The experimental results reveal the effectiveness
and superiority of the proposed algorithm.

Altay and Alatas [56] proposed DE and SCA based novel hybrid multi-objective
methods for numerical association rule mining. This study proposes three new hybrid
approaches by integrating sine cosine operators into the DE method and using global
exploration capability of the DE and local exploitation capability of the SCA.

Raut et al. [57] introduced Pareto multi-objective SCA for performance improvement
of radial distribution network, where both the self-adapting levy mutation and exponential
variation of the conversion parameter are used to improve its performance.

Narayanan et al. [58] proposed a new Many-objective SCA (MaOSCA), which uses
reference points and information feedback mechanisms, and experimental results show
that the MaOSCA can obtain effective and robust performance.

More related works on the MOSCAs can be found in [48,59-61]. Literature reviews
indicate that no previous work has utilized the competitive mechanism to develop the SCA
for handling multi-objective optimization problems.
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In this paper, we proposed a multi-objective SCA algorithm based on a competition
mechanism, which is different from previous multi-objective algorithms. For example,
compared with paper [56], paper [56] proposed a hybrid multi-objective algorithm based
on DE and SCA for numerical association rule mining. The proposed algorithm uses
the SCA operator instead of the DE operator. Compared with paper [55], paper [55]
proposed an effective multi-objective SCA by using a gray correlation analysis and fuzzy
loss sensitivity factors. Among them, the gray correlation analysis is used to select leader
solutions, while our proposed CMOSCA uses a competition mechanism to select leader
individuals. Compared with the paper [13], which employed a competition mechanism
to develop a multi-objective DE algorithm, our proposed CMOSCA utilizes a competition
mechanism to design a new SCA algorithm. Compared with the paper [53], the paper [53]
developed a multi-objective SCA algorithm to deal with task scheduling problems. The
main innovations of this algorithm include individual initialization, individual encoding
and mutation operations.

3. The Proposed CMOSCA

In this section, the details of our proposed CMOSCA are given. We first describe the
complete framework of the CMOSCA, and then develop the position updated strategy for
the SCA based on the competition mechanism with the SDE strategy. Third, two variants
of our proposed CMOSCA are provided. Finally, we analyze the time complexity of the
CMOSCA algorithm.

3.1. The Framework of the CMOSCA

Similar to the CMOPSO, our proposed CMOSCA has a simple and clear framework as
given in Algorithm 1, where the main loop involves two modules, namely, the competition
mechanism based position updating scheme for search agents and environment selection.
To illustrate more clearly, the main framework of the CMOSCA is presented in Figure 3. It is
worth mentioning that this framework follows the general framework of other evolutionary
algorithms, such as the GA, which uses crossover and mutation operators to produce
offspring, and selects individuals from both parent and descendant populations to form a
new population.

Algorithm 1 The framework of CMOSCA

Input: Number of search agents N, Dimension of the problem D, Maximum number of
function evaluations MaxFES, Current number of function evaluations FES.
Output: All non-dominant search agents in P.
: Initialize the search agents of P
while (FES < MaxFES) do
P’ + CompetitionBasedSCAPositionUpdate(P);
P < EnvironmentalSelection(P,P’);
end while
: Return P

SANRSUNN R e

The process of implementing the CMOSCA is provided as follows. Firstly, the pop-
ulation of search agents is initialized in a random manner. Then the search agents in
the population P are renewed by the proposed SCA position update scheme to generate
descendants P’. At last, we adopt the environment selection to choose N agents from the
parent population P and descendant population P’. Note that the CMOSCA utilizes the
same environmental selection approach as the paper [62] in the iterative process. The above
process (namely, SCA position updating and environmental selection) terminates when the
stopping condition is met.
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Figure 3. The framework of CMOSCA. 1. Elite agent set is used to guide the search of the population.

2. Pairwise competition is employed to select a winner to participate in the position update of the
agent. 3. Environmental selection is adopted to choose N agents from the parent population and
descendant population.

3.2. The SCA Position Update Scheme Based on a Competition Mechanism

There are four components in the SCA position update scheme with an SDE-based
competition mechanism, i.e., creating the elite agent set E, fitness value calculation, pairwise
competition, and the SCA position update. The pseudo-code of the SCA position update
scheme with an SDE-based competition mechanism is presented in Algorithm 2.

First, the elite agent set is generated (line 2 of Algorithm 2). The elite agent set plays
a major role in the proposed SCA position update scheme because it provides candidate
agents employed in pairwise competition to lead the search of the population. Similar to the
CMOPSO, the elite agent set utilizes the approach proposed in the NSGA-II [20] to select
elite agents, i.e., a non-dominated sorting and crowding distance based ranking approach
which can maintain better diversity and convergence. Specifically, the non-dominated
sorting is first conducted on the population P to get the Pareto fronts Fy, F, ..., Fp, where p
represents the maximum index of fronts. Then, the minimum number g is found such that
|Fi UKL U---UF| > B, where B denotes the number of elite agents to be chosen. Finally,
all agents belonging to first 4 — 1 fronts are chosen as the elite agents and the remaining
agents are chosen from F; based on the crowding distance of each agent in F;. It is worth
mentioning that the search agents in the elite agent set are chosen directly from the current
population, so the CMOSCA does not require an external archive to record non-dominated
solutions. Additionally, the elite agent size B has a crucial impact on the effectiveness of
the CMOSCA, and we will provide a detailed discussion on § in the experimental section.
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Algorithm 2 CompetitionBasedSCAPositionUpdate(P)

Input: current population P, the size of elite agent set 8.
Output: descendant population P’
1. P @;
/*Choosing the outstanding agents to form the elite agent set*/;
2: E < Choose 8 agents from P relied on the front index and crowding distance.
3: Fitness <— Evaluate the fitness value of each agent in E by Equation (4);
4: for each agent x; in P do

5 {a,b} < Randomly choose two agents from E
6:  if Fitness(a) < Fitness(b) then
7 x; = a; / /loser in the pairwise competition
8: Xy = b; //winner in the pairwise competition
9: else
10: X] = b,‘
11: Xy = 4,
122 endif

13:  Update rq, ro, and 74, randomly;
14:  Generate new x/ by Equation (5);
15 P+ P U{x}};

16: end for

17: Return P’

Then, we utilize the shift-based density estimation (SDE) method [63] to evaluate the
fitness value of each agent in the elite agent set E (line 3 of Algorithm 2). To be Specifical,
the minimum SDE-based distance Equation (4) [46] is adopted to evaluate the fitness value
of an agent x.

Fitness(x) = min /Y (max{0,fiy) ~ fi(x)))" @
where m represents the number of objectives and f;(x) indicates the ith objective value
of x. The SDE method has been utilized in several MOEAs [27,28,46] as it can assess
the quality of a candidate solution (search agent) taking into account both diversity and
convergence. Thus, CMOSCA employs the SDE-based distance to measure both diversity
and convergence of each search agent in the population.

Afterward, two agents a,b are randomly picked up from the elite agent set E and
compared in pairs (lines 5-12 of Algorithm 2). The one having a higher fitness value is
represented as the winner x;,, and the other is represented as the loser x;. Then the winner
is adopted to participate in the position update scheme of the agent (line 14 of Algorithm 2).
The position update scheme is defined as follows.

1
Xj = xj+ 11 X cos(rp) X |r3xy; — xi| r4 > 0.5 ©)

{ xb = x; + 1 xsin(r2) X |r3xy,; — x;| r4 < 0.5
In the proposed position update scheme, the winner x;, is used to replace the best agent
(destination point) in the original position update scheme Equation (2) as the best agent
does not exist in the MOPs. On the other hand, the winner is close to the Pareto front and
has low density since the winner in the elite agent set is chosen by the approach introduced
in the NSGA-II. Therefore, the proposed position update scheme with the winner to guide
the search of evolution has better convergence and diversity. Note that the 73 in Equation (5)
is set to 1 to maintain the relationship with the Pareto front.

Finally, the generated new position x/ is put into the descendant population P’. After
creating N new positions, the process will go back to Algorithm 1 to execute the MOEA
environmental selection.
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3.3. Two Variants of the Proposed CMOSCA

There are two other approaches that can be adopted to measure the quality of candidate
agents (solutions) [26,35], i.e., the angle between two agents (solutions) and the Euclidean
distance between the origin and the agent. According to these two approaches, we introduce
two variants of the proposed CMOSCA, which are denoted as the CMOSCAA and the
CMOSCAD, respectively. Algorithms 3 and 4 provide the position update pseudo codes of
these two variants. Generally, the angle approach is utilized to evaluate the diversity of the
agents, and the distance approach is employed to evaluate the convergence of the agents.
However, the SDE approach can measure both diversity and convergence of the agents.
Hence, the proposed CMOSCA outperforms the other two variants and the experimental
results will confirm this conclusion.

Algorithm 3 CompetitionBasedSCAPositionUpdate_Angle(P)

Input: current population P, the size of elite agent set 3.
Output: descendant population P’.
1: P« @
/*Choosing the outstanding agents to form the elite agent set*/;
2: E < Select § agents from P relied on the front index and crowding distance.
3: for each agent x; in P do

4. {a,b} < Randomly choose two agents from E
5. compute the angle ¢; between a and x;, ¢ between b and x;
6: if ¢p < ¢ then
7: x; = a; / /loser in the pairwise competition
8: Xy = b; //winner in the pairwise competition
9: else
10: x;=0b;
11: Xy = 4,
122 end if

13:  Update rq, ro, and r4, randomly;
14:  Generate new x; by Equation (5);
15 P P U{x}};

16: end for

17: Return P’

Algorithm 4 CompetitionBasedSCAPositionUpdate_Distance(P)

Input: current population P, the size of leader set .
Output: descendant population P’.
1: P @
/*Choosing the outstanding agents to form the elite agent set*/;
2: E < Select B agents from P relied on the front index and crowding distance.
3: Distance < Calculate the Euclidean distance for each agent in E;
4: for each agent x; in P do

5 {a,b} < Randomly select two agents from E
6:  if Distance(b) < Distance(a) then
7 x; = a; / /loser in the pairwise competition
8: Xy = b; //winner in the pairwise competition
9: else
10: X] = b,‘
11: Xy = 4,
12 end if

13:  Update rq, ro, and 74, randomly;
14:  Generate new x/ by Equation (5);
15 P+ P U{x}};

16: end for

17: Return P’
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3.4. Computational Complexity of the CMOSCA

The time complexity of the CMOSCA is mainly determined by the operations of
agent updating strategy and environmental selection. The agent updating strategy mainly
composed of creating elite agent set, fitness calculation, and the SCA position update.
For a population size N and a m-objective problem, the elite agents are chosen by non-
dominated sorting and crowding distance sorting. The computational complexity of
nondominated sorting is O(m(2N)?) in the worst case, crowding distance assignment
is O(m(2N)log(2N)), and the time complexity of sort on crowded-comparison operator
is O(2Nlog(2N)), hence, the overall computational complexity of creating elite agent
setis O(m(2N)? + m(2N)log(2N) + 2N1og(2N)) ~ O(mN?) in the worst case. The time
complexity of calculating the fitness of each agent in elite agent set is O(BN?), where f is the
size of elite agent set. The time complexity of the SCA position update is O(N). So the total
computational complexity of the agent updating strategy is O(mN? + BN? + N) ~ O(mN?).
The time complexity of environmental selection is O(2mNIog(2N)) in the worst case [62].
In summary, the overall computational complexity of one generation in the CMOSCA
is O(mN?) in the worst case. In the experimental section, we will compare the average
runtimes of CMOSCA with that of other six competing MOEAs for MOPs.

4. Experimental Studies

In this part, to investigate the effectiveness of our proposed algorithm CMOSCA, we
compare it with six typical MOEAs, including EMOSO [28], CMOPSO [26], MOEA /D [29],
NSGA-II [20], MOEA /D-DE [32], MMOPSO [64]. These competing methods are chosen
because they have shown good performance on MOPs with various types of PF. Where the
EMOSO and the CMOPSO are recently proposed methods that also use the competitive
mechanism, the MOEA /D and the NSGA-II are two famous algorithms with the GA
operators, the MOEA /D-DE is a variant of the MOEA /D with DE operators, and the
MMOPSO is an improved version of multi-objective PSO using multiple search strategies.
These six MOEAs are programmed with Matlab and embedded into the PlatEMO [65].

We choose 20 test problems, including DTLZ1-DTLZ7 [66], WFG1-WEFGY [67], and
ZDT1-ZDT4 [68]. These test problems were designed taking into account diversity char-
acteristics, covering a good representation of various real-world scenarios, such as being
disconnected, convex, concave, degenerate, multimodal, and with an irregular Pareto
front shape, which can evaluate the efficiency and reliability of the MOEAs. On the other
hand, these test problems were widely adopted to validate the performance of the other
MOEAs [26-28]. Detailed information about these test problems is listed in Table 1. Prob-
lems DTLZ and WFG are variable objective functions, and problems ZDT are bi-objective
functions. The number of decision variables for problems DTLZ are setton =k +m — 1,
where m and n are the number of objectives and decision variables, respectively. According
to the paper [69], k is set to 5 for DTLZ1, to 10 for DTLZ2-DTLZ6 and to 20 for DTLZ?7. For
problems WFG, the number of decision variables is set to n = k + [ as recommended in the
paper [70], where k and [ are set to m — 1 and 10. For problems ZDT, the number of decision
variables 1 is set to 30 for ZDT1-ZDT3 and 10 for ZDT4 as suggested in the paper [26].

Inverted generational distance (IGD) [71] and hypervolume (HV) [72] are employed as
performance metrics to compare the CMOSCA with other competing MOEAs. To calculate
the IGD values, approximately 10,000 reference points are chosen on the real Pareto front
of each test problem. Smaller IGD values are better. To calculate the values of the HV,
reference points are set to (1,1,...,1) and all objective values are normalized as suggested
in the paper [65]. Higher HV values are better.

For the sake of fair comparison, all parameters of the competing methods are set
to the values suggested by the original papers. The related parameters employed in the
experiments for each method are listed in Table 2. The parameter f of the proposed
CMOSCA is set to 5 and it will be analysed in the following section. The population size is
set to N = 100 for all competing MOEAs. All competing MOEAs utilize maximum number
of function evaluations (FES) as the termination criteria. The maximum FES is set to 30,000
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for all two- and three-objective problems. All competing MOEAs are independently run
30 times on each test instance, and the mean and the standard deviation of the performance
metrics values are reported. In addition, for a comprehensive evaluation, Wilcoxon Signed
Rank Test at a significance level of 0.05 was further utilized to test the performance of
all competing MOEAs, where the symbols “+”, “=" and “-” indicate that the results of
competing MOEAs are statistically superior, similar, and inferior to results obtained by
CMOSCA, respectively. All the experiments are performed on a computer with Intel Core
i5 @ 3.3 GHz dual-core CPU and Windows 7 operating system with MATLAB 2020b.

Table 1. Characteristics of test problems.

Test Problems Objective Numbers Properties of PF

DTLZ1 2,3 Linear

DTLZ2 2,3 Concave, Uni-modal
DTLZ3 2,3 Multimodal

DTLZ4 2,3 Concave, Biased, Uni-modal
DTLZ5 2,3 Concave, Degenerated
DTLZ6 2,3 Concave, Degenerated, Biased
DTLZ7 2,3 Mixed, Disconnected, Scaled
WFG1 2,3 Sharp tails

WEFG2 2,3 Disconnected

WEG3 2,3 Mostly degenerated
WFG4-9 2,3 Concave

ZDT1 2 Convex

ZDT2 2 Concave

ZDT3 2 Disconnected, Multimodal

ZDT4 2 Convex, Multimodal

Table 2. Parameters Settings of all competing MOEAs.

Method Parameters Settings
EMOSO NL =4,¢1,¢0 € [0,1],71,72,73,74,75,16 € [0,1], py =1/D, 1y =20, =5
CMOPSO w,r €[0,1], pm =1/D, 5, = 20,7 =10
MOEA/D pe=1,pm=1/D,5jc = }n =20,T =015 N
NSGA-II pe=1pu=1/D,5c = }m =20
MOEA /D-DE CR=1,F=050=09nr =21, =20,T=01%N
MMOPSO w €1[0.1,0.5],c1,cp € [1.5,2.5],11,1m2 € [0,1],

Pc = O~9/pm = 1/D/776 =m = 20
CMOSCA r1 €10,2],r2 €[0,27],r3=1,r4, € [0,1],B=5

4.1. Comparisons CMOSCA with Other Competing MOEAs

Table 3 gives the IGD results of the seven competing MOEAs on DTLZ1-DTLZ7,
WEFG1-WEFGY, and ZDT1-ZDT4 test problems. It is obvious that the proposed CMOSCA
outperforms the other six competing MOEAs. Specifically, the proposed CMOSCA obtains
the best mean IGD results on 15 out of the 36 test problems, the EMOSO on 2 test problems,
the CMOPSO on 5 test problems, the MOEA /D on 4 test problems, the NSGA-II on 6 test
problems, the MOEA /D-DE on 2 test problems, and the NSGA-II on 2 test problems. The
proposed CMOSCA attains better (similar) performances in comparison with the EMOSO
on 25 (5) out of the 36 problems. Both CMOSCA and EMOSO adopt the outstanding solu-
tions to guide the search, but they utilize different evolutionary operators. The proposed
CMOSCA has better (similar) performances in comparison with the CMOPSO on 19 (6)
out of the 36 problems. These two MOEAs have equivalent frameworks, but they employ
different competition mechanisms and evolutionary operators, so they perform differently.
The proposed CMOSCA has better performances in comparison with the MOEA /D, NSGA-
II, MOEA /D-DE, and MMOPSO on 19, 20, 20, and 20 out of the 36 problems, respectively.
The CMOSCA obtains better performance mainly owing to the fact that it employs the
SDE-based competition mechanism and the SCA evolution operators.

HYV results of the seven competing MOEAs are recorded in Table 4. From Table 4, we
can clearly observe that our proposed CMOSCA obtains better HV results than the other six
competing MOEAs on most of test problems. CMOSCA obtains the best mean HV results
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on 13 out of 36 problems. The EMOSO, CMOPSO, MOEA /D, NSGA-II, MOEA /D-DE,
and MMOPSO obtain the best mean HV results on 5,1, 5, 7, 2, and 3 out of 36 problems,
respectively. It can also be observed from Table 4 that several HV results are zero, which
represents that the corresponding MOEA cannot obtain any candidate solution to dominate
the reference point on corresponding test problems. For example, our proposed CMOSCA
obtains zero HV results on two- and three-objective DTLZ3. This means that the CMOSCA
is unable to effectively solve the highly multi-model DTLZ3. EMOSO gets zero HV results
on two- and three-objective DTLZ1, two- and three-objective DTLZ3. CMOPSO obtains
zero HV results on three-objective DTLZ1, two- and three-objective DTLZ3. The HV result
of MMOPSO is zero on two-objective DTLZ3. These experimental results also reflect the
limitations of the EMOSO, CMOPSO and MMOPSO.

Table 3. IGD values achieved by CMOSCA and six competing MOEAs.

Problem M D EMOSO CMOPSO MOEAD CMOSCA
DTLZL 2 6 1.7772 x 10" (2.97x10°) = 8.0014x10~! (1.15x10°) + 2.6325x1073 (7.36x107%) + 1.8233 x 10! (6.02x10%)
3 7 1.6639 x 10! (2.89x10°) - 8.2647x10° (4.52x10°) + 2.1353x1072 (1.59x1073) + 1.1081 x 10! (4.81x10%)
DTLZ2 2 11 4.3749%1073 (6.68x1077) - 4.3891x1073 (6.81x107%) - 3.9697x107% (1.32x107%) + 4.1149%x1073 (3.78x1075)
3 12 5.8551x1072 (9.79x107%) - 5.7573x1072 (9.46x107%) - 5.4467x1072 (1.71x1076) - 5.3243x 1072 (4.56x10~%)
DTLZ3 2 11 1.8287x10% (1.26 x10) - 3.2331 x10' (1.91 x10') + 9.9329%1072 (2.00x1071) + 1.5902% 102 (1.94 x10%)
3 12 1.8301x10% (1.44 x10) - 8.9128 x10' (4.24 x10') + 7.5061x10~! (8.10x1071) + 1.6203% 102 (1.60 x10%)
DTLZ4 2 11 1.7657x1071 (3.17x1071) - 1.7657x1071 (3.17x1071) - 2.5001x107! (3.54x107 1) - 4.1119x1072 (3.26x1075)
3 12 9.8710x1072 (9.90x1073) - 1.2015%107! (2.24x1071) - 3.9264x1071 (3.35x1071) = 5.9577x 1072 (1.47x10~%)
DTLZS 2 11 4.4092x1073 (6.13x1079) - 4.3778x1073 (5.31x1079) - 3.9714x1072 (1.59x107°) + 4.1107x1073 (2.65x1075)
3 12 767991073 (9.41x107%) - 6.5749x1073 (6.23x107%) - 3.3783x1072 (5.81x107%) - 4.3665x107° (1.69x107%)
DTLZ6 2 11 4.1288x1073 (3.15x107%) = 4.1243x1073 (3.07x107%) = 3.9659x1073 (7.10x1077) + 4.1140x1073 (3.03x1075)
3 12 4.1934x1073 (4.70x107%) = 4.2017x1073 (5.73x107%) = 3.3854x1072 (9.78x1075) - 4.1788x 107 (5.83x1075)
DTLZ7 2 21 3.3686x1072 (1.11x107 1) - 3.3711x1072 (1.11x107 1) = 1.2727x1071 (1.96x1071) - 4.5057x107% (5.13x1075)
3 22 6.4654x1072 (1.67x1073) - 1.3352x107! (1.95%x1071) - 1.9754x1071 (1.64x1071) - 5.8941x 1072 (6.68x 10~%)
WFGL 2 11 1.4596%10° (3.48x1072) - 6.6972x1071 (1.00x107 1) - 1.6275%1071 (2.19x1072) + 3.8033x107! (1.19x107 1)
3 12 1.8478x10° (4.27x1072) - 1.4486x10° (5.24x1072) - 3.2387x107! (3.54x1072) + 8.5394x1071 (1.43x1071)
WFG2 2 11 1.2332x1072 (4.29%107%) = 1.1911x1072 (3.63x107%) = 6.9447x1072 (4.10x1072) - 3.5635x1072 (5.38x1072)
3 12 1.8572x1071 (6.77x1073) + 1.7966x 107! (4.66x1073) = 2.5232x1071 (1.07x1072) - 1.9064x10~! (3.08x1072)
WEG3 2 11 1.3828x1072 (3.72x107%) + 1.3974x1072 (3.74x107%) + 2.2398%1072 (3.39x1073) + 2.9280x1072 (5.16x1072)
3 12 2.0509%107! (1.10x1072) - 1.5467x107! (1.40x1072) - 1.7054x1071 (1.83x1072) - 1.3883x 107! (6.04x1072)
WEG4 2 11 6.9249% 1072 (4.63x1073%) - 45178 %1072 (1.29x1072) - 3.1383x1072 (4.21x1073) - 2.0532x1072 (4.51x1073)
3 12 2.6565x1071 (5.11x1073) - 2.6055x1071 (5.32x1073) - 2.6299%x1071 (6.02x1073) - 2.4095x 107" (8.39x107%)
WEG5 2 11 6.6847x1072 (1.72x1073) - 6.7869x1072 (2.04x1073) - 7.1356x 1072 (1.40x1073) - 6.3608x 1072 (1.83x107%)
3 12 2.4004x107" (4.84x1073) - 247961071 (6.45x1073) - 2.5268x1071 (3.45x1073) - 2.2262x107" (3.68x107%)
WEG6 2 11 1.9095x 1072 (8.98x1073) + 1.8875x1072 (5.49x1073%) + 9.9941 %1072 (2.20x1072) + 2.2547 %1071 (1.68x1075)
3 12 2.3183x107! (5.23x107%) + 2.4133x1071 (7.05x1073) + 2.9133x107! (1.67x1072) + 3.3555x 1071 (1.77x1073)
WEG? 2 11 1.4701x1072 (3.70x107%) - 1.4495%1072 (3.87x107%) - 2.9914x1072 (3.85x1073) - 1.2639x 1072 (1.05x 10~%)
3 12 2.2766x1071 (3.31x1073) - 2.3370x107! (4.57x1073) - 3.4056x 1071 (4.60x1072) - 2.1066x 10" (1.88x107%)
WEGS 2 11 1.2258x107! (3.57x1073) - 1.1731x107! (3.10x107%) = 1.2890%x 107! (1.08x1072) - 1.1660x 107! (3.17x1073)
3 12 3.4539x1071 (7.05x1073) - 3.3864x1071 (7.18x1073) - 3.2357x1071 (1.07x1072) - 3.1606x 10! (9.77x107%)
WEGY 2 11 2.8963x1072 (2.07x107%) + 2.6831x1072 (1.65x1073%) + 7.5073x1072 (6.03x1072) + 2.2676x107! (2.47x1073%)
3 12 2.3940x107" (4.84x1072) + 2.2124x107" (4.13x107%) + 298891071 (3.10x1072) + 3.4464x1071 (3.88x1073)
ZDT1 2 30 4.0907x1073 (6.75x1079) - 4.1992x1073 (1.03x107%) - 1.3219%x1072 (1.17x1072) - 3.8994x 1073 (4.98x1075)
ZDT2 2 30 4.0207x1073 (6.83x107°) - 4.1095x1072 (7.72x107°) - 2.9084x1072 (3.89x1072) - 3.8933x 1072 (3.48x107°)
ZDT3 2 30 4.6658x1073 (8.52x107%) = 4.6397x1072 (6.51x1075) + 3.1477x1072 (2.11x1072) - 4.6982x1073 (7.19%1075)
ZDT4 2 10 1.7673 x 10" (4.62x10°) - 3.0164x107! (3.89x107 1) + 2.3644x1072 (1.66x1072) + 1.7501 x 10" (1.63 x10')
+/-/= 6/25/5 11/19/6 15/20/1
Problem M D NSGAII MOEADDE MMOPSO CMOSCA
DTLZ1 2 6 2.4598x1073 (3.99x107%) + 2.3927x107% (1.30x107%) + 9.1228x1073 (3.15x1072) + 1.8233 x 10! (6.02x10°)
3 7 3.7968x1072 (4.95x1072) + 7.2322x1072 (9.75x1072) + 3.5135x107! (2.76x1071) + 1.1081 x 10" (4.81x10°)
DTLZ2 2 11 5.0930x1073 (1.71x107%) - 3.9778x1073 (5.04x1076) + 5.3158x1073 (5.06x107%) - 4.1149%x1073 (3.78x1075)
3 12 7.2640%x1072 (2.81x1073) - 7.6176x1072 (1.11x1073) - 7.1806x1072 (3.05x1073) - 5.3243x 1072 (4.56x10~%)
DTLZ3 2 11 6.4469x 1072 (1.99x1071) + 1.0659 x 10! (1.22 x10') + 9.3097x10° (7.97x10°) + 1.5902%10? (1.94 x10%)
3 12 2.3057x107" (3.63x107") + 4.5983%10° (7.79x10°) + 1.3998 x 10! (9.70%x10°) + 1.6203% 102 (1.60 x10%)
DTLZ4 2 11 1.0339%1071 (2.55%1071) - 4.1241x1073 (9.48x107%) = 1.2797x107! (2.79%x1071) - 4.1119x1072 (3.26x1075)
3 12 9.9949%1072 (1.60x1071) - 1.2732x1071 (6.97x1072) - 7.0944%1072 (2.98x1073) - 5.9577x 1072 (1.47x10~%)
DTLZS 2 11 5.0880x1073 (2.22x107%) - 3.9799x1073 (9.64x1076) + 5.2739%x1073 (2.28x107%) - 4.1107x1073 (2.65x1075)
3 12 6.3135x 1073 (3.30x107%) - 1.4368%1072 (9.98x107°) - 6.2533%x 1073 (4.41x107%) - 4.3665x 1072 (1.69x10~%)
DTLZ6 2 11 5.6922x1073 (3.31x107%) - 3.9664x1073 (7.16x1078) + 5.6898x1073 (4.63x107%) - 4.1140x1073 (3.03x1075)
3 12 6.4813x1073 (3.20x107%) - 1.4503%1072 (5.27x107°) - 6.8147x1073 (8.01x107%) - 4.1788x 1072 (5.83x1075)
DTLZ7 2 21 5.2692x1073 (1.42x107%) - 9.4450x1072 (1.78x1071) - 1.8044x107! (2.18x1071) - 4.5057x107% (5.13x1075)
3 22 7.8673x1072 (3.90x1073) - 2.5102x107! (1.37x1071) - 1.5383%107! (1.57x1071) - 5.8941x 1072 (6.68x 10~%)
WEG1 2 1 8.3736x 1072 (3.38x1072) + 3.9448x1071 (9.68x1072) = 1.1203%1071 (5.09%x1072) + 3.8033x1071 (1.19x1071)
3 12 2.3801x 107" (1.60x1072) + 1.1987x10° (1.32x1071) - 3.8707x107" (4.84x1072) + 8.5394x1071 (1.43x107 1)
WFG2 2 11 1.2893%1072 (5.50x107%) + 2.2462x1072 (7.29x107%) + 1.2785%1072 (5.11x107%) + 3.5635x1072 (5.38x1072)
3 12 2.3473x1071 (1.62x1072) - 3.4041x1071 (1.91x1072) - 2.2874x1071 (1.07x1072) - 1.9064x107! (3.08x1072)
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Table 3. Cont.

Problem M D EMOSO CMOPSO MOEAD CMOSCA
WFG3 2 11 1.5434x1072 (7.48x107%) + 1.5965%1072 (7.23x107%) + 1.4776x1072 (6.86x107%) + 2.9280%1072 (5.16x1072)
3 12 1.0219%1071 (1.42x1072) + 1.7134x107! (2.62x1072) - 9.9848 %1072 (2.37x1072) + 1.3883x 107! (6.04x1072)
WEG4 2 11 1.5646x 1072 (6.48x107%) + 5.1517x1072 (8.41x1073) - 1.7160x1072 (1.10x1073) + 2.0532x1072 (4.51x1073)
3 12 2.8260x107! (8.38x1073) - 3.8857x1071 (8.12x1073) - 3.0067x1071 (1.15%1072) - 2.4095x10~" (8.39x1073)
WFGS 2 11 6.5711x1072 (1.52x1073) - 6.8569x1072 (1.90x1073) - 6.6765x1072 (2.47x1073) - 6.3608x1072 (1.83x10~%)
3 12 2.8644x1071 (9.22x1073) - 3.3799x107! (5.88x1073) - 2.8841x1071 (1.13x1072) - 2.2262x107" (3.68x1073)
WEG6 2 11 7.7548x1072 (1.95x1072) + 6.4813x1072 (7.48x1072) + 6.0904x1072 (6.81x1072) + 225471071 (1.68x1075)
3 12 3.1640x107" (1.97x1072) + 3.9947x107! (3.51x1072) - 3.3096x107! (5.51x1072) + 3.3555x 1071 (1.77x1073)
WEG? 2 1 1.7271x1072 (7.33x107%) - 1.4203%1072 (3.44x107%) - 1.6735%x1072 (1.51x1073) - 1.2639x1072 (1.05x10~%)
3 12 2.9255%1071 (1.31x1072) - 3.5950x10~1 (5.15%1073) - 2.8503x1071 (1.25x1072) - 2.1066x 10" (1.88x1073)
WEFGS 2 11 1.1129%1071 (1.44x1073%) + 1.0641x107" (4.83x1073) + 1.1043x1071 (2.34x1073) + 1.1660x 107! (3.17x10~%)
3 12 3.7766x1071 (1.28x1072) - 4.2707x1071 (1.17x1072) - 3.6982x107! (1.18x1072) - 3.1606x 107" (9.77x1073)
WFG9 2 11 2.7899%1072 (3.79x1072) + 2.8731x1072 (2.89x1073) + 2.3062x1072 (2.93x107%) + 2.2676x1071 (2.47x1073)
3 12 3.0118x107! (3.33x1072) + 3.3531x107! (4.42x1073) + 2.8868x1071 (2.06x1072) + 3.4464x1071 (3.88x1073)
ZDT1 2 30 4.7757x1073 (1.65x107%) - 1.2678%1072 (3.54x107%) - 4.8826x1073 (2.46x107%) - 3.8994x 1073 (4.98x107°)
ZDT2 2 30 4.8999%x1073 (1.74x107%) - 8.5343x1073 (1.84x1073) - 5.1728x1073 (2.42x107%) - 3.8933x107° (3.48x107°)
ZDT3 2 30 6.4385x1073 (5.32x1073) - 1.7481x1072 (6.53x1073) - 5.5287x1073 (2.89x107%) - 4.6982x1073 (7.19x1075)
ZDT4 2 10 5.3574x 1073 (7.20x107%) + 1.9761x107! (1.30x1071) + 2.1125%1072 (4.84x1072) + 1.7501 x 10" (1.63 x10%)
+/-/= 16/20/0 14/20/2 16/20/0
“+”,”=""and “-” indicate that the results of competing MOEAs are statistically superior, similar, and inferior to
results obtained by the CMOSCA, respectively. The best result of each test problem is displayed in bold.
Table 4. HV values achieved by CMOSCA and six competing MOEAs.
Problem M D EMOSO CMOPSO MOEAD CMOSCA
DTLZ1 2 6 0.0000x10° (0.00x10°) = 1.5837x1071 (2.39x1071) + 5.7877x1071 (2.40x1073) + 0.0000%10° (0.00x 10°)
3 7 0.0000x10° (0.00x10°) = 0.0000x10° (0.00x10°) = 8.3698x 107! (5.86x107%) + 0.0000%10° (0.00x10°)
DTLZ2 2 11 3.4650x 1071 (1.66x107%) - 3.4644x1071 (1.89x107%) - 3.4720x1071 (5.03x1076) - 3.4743x107" (5.68x107°)
3 12 5.4144x1071 (3.16x1073) - 5.4220x1071 (2.65x1073) - 5.5947x 10! (3.80x107°) + 552781071 (1.94x1073)
DTLZ3 2 11 0.0000x10° (0.00x10°) = 0.0000x10° (0.00x10°) = 2.5915x1071 (6.32x1072) + 0.0000x 10° (0.00x 10°)
3 12 0.0000x10° (0.00x10°) = 0.0000x10° (0.00x10°) = 2.0017x1071 (2.09x1071) + 0.0000%10° (0.00x10°)
DTLZ4 2 11 2.8682x1071 (1.10x1071) - 2.8669x1071 (1.10x107 1) - 2.6177x1071 (1.23x1071) - 3.4733x1071 (7.32x1075)
3 12 5.3362x107! (3.36x1073) - 5.0357x1071 (1.12x107 1) - 3.9433x1071 (1.71x1071) = 5.3966x10~! (3.31x107%)
DTLZ5 2 11 3.4643x1071 (1.26x107%) - 3.4643x1071 (1.22x107%) - 3.4720x1071 (4.70x1076) - 3.4744x107" (6.74x107°)
3 12 1.9630x 1071 (9.65x1074) - 1.9766x107! (4.40x107%) - 1.8191x107! (2.68x1075) - 1.9972x10~! (1.87x10~%)
DTLZ6 2 11 3.4755x 107" (3.67x107°) = 347551071 (5.26x1075) = 3.4721x1071 (1.01x107%) - 3.4753x 1071 (4.45x1075)
3 12 2.0018x 107" (4.09x107%) = 2.0017x107! (4.09x1075) = 1.8187x1071 (1.12x1074) - 2.0017x1071 (3.98x1075)
DTLZ7 2 21 2.3843x1071 (1.70x1072) - 2.3839x1071 (1.69x1072) - 2.2259%x1071 (2.88x1072) - 2.4294x10~" (1.03x107°)
3 22 2.7138x107! (1.60x1073) - 2.6245x1071 (1.85x1072) - 2.5032x1071 (1.32x1072) - 2.7871x107! (5.17x107%)
WFGL 2 11 5.5400x 1073 (8.56x1073) - 3.3397x107! (4.65x1072) - 6.2054x1071 (1.24x1072) + 5.0330x 107! (5.46x1072)
3 12 1.0248x1071 (2.21x1072) - 3.1667x 1071 (1.98x1072) - 8.4128x107! (3.92x1072) + 5.6834x1071 (5.89x1072)
WFG2 2 11 6.3175x107! (3.41x107%) = 6.3196x1071 (3.95x107%) = 6.1218x107! (8.57x107?) - 6.1720x1071 (3.33x1072)
3 12 9.2764x 107! (1.28x107%) + 9.2689%107! (2.04x1073) + 8.9243x1071 (1.45x1072) - 9.1668x 1071 (3.63x1072)
WFG3 2 11 5.7980x 1071 (3.01x107%) + 5.7966x1071 (3.02x107%) + 5.7376x1071 (2.14x1073) + 5.7214x1071 (2.70x1072)
3 12 3.2577x1071 (6.90x1073) - 3.5440x 1071 (7.68x1073) - 3.5180x107! (1.12x1072) - 3.6348x1071 (3.13x1072)
WEG4 2 11 3.1782x107! (1.16x1073) - 3.2833x1071 (6.54x1073) - 3.3684x1071 (1.71x1073) - 3.3972x1071 (3.23x1073)
3 12 4.8848x107! (3.95x1073) - 4.9065%x107! (3.94x1073) - 5.2865x10~" (4.09%x1073) + 5.0911x10! (8.68x1073)
WEGS 2 11 3.1084 %107 (1.58x1073) - 3.1021x10~! (2.03%x1073) - 3.0645x107! (6.45x107%) - 3.1363x 107! (1.39x107%)
3 12 4.8677 %1071 (5.07x1073) - 4.8050%10! (5.54x1073) - 4.9739x107! (3.17x1073) - 5.0496 x10~! (3.75x1073%)
WEG6 2 11 3.4199x 107" (6.34x107%) + 3.4151x107! (4.22x1073) + 2.9466x1071 (1.19x1072) + 226971071 (5.36x1075)
3 12 5.2590x 107! (5.49x107%) + 5.1572x1071 (8.77x1073) + 4.7715%1071 (1.76x1072) + 416281071 (8.87x107%)
WEGT 2 11 345281071 (2.57x107%) - 345251071 (2.83x107%) - 3.3629%x 1071 (1.67x1073) - 3.4719x1071 (1.15x 107
3 12 5.3049x107! (3.25x1073) - 5.2333x10~! (3.58x1073) - 5.0286x10~! (2.07x1072) - 5.5302x10~! (2.17x1073%)
WEGS 2 11 2.8272x107! (1.61x1073) - 2.8459x1071 (1.61x1073) - 2.7964x1071 (4.85x1073) - 2.8525x1071 (1.69x1073)
3 12 4.2466x1071 (5.19x1073) - 4.2870x107! (5.08x1073) - 4.5009%10" (6.01x1073) + 440871071 (6.67x1073)
WFG9 2 11 3.3360x107! (1.95x1073) + 3.3452x1071 (1.99x1073) + 3.0765x1071 (3.14x1072) + 2.2643x1071 (1.04x1073)
3 12 4.9830x1071 (4.16x1072) + 5.1324x 107! (4.38x107%) + 4.6505x1071 (2.97x1072) + 4.0623x1071 (2.68x1073)
ZDT1 2 30 7.1962x1071 (1.51x10°%) - 7.1928x1071 (2.26x107%) - 7.0904x1071 (9.57x1073) - 7.2049x 107! (5.25x10~%)
ZDT2 2 30 4.4442%1071 (1.64x107%) - 4.4401x1071 (2.07x107%) - 4.0696x1071 (4.05x1072) - 4.4510x 1071 (4.02x1075)
ZDT3 2 30 5.9952x107! (9.36x107%) - 5.9965x1071 (1.10x107%) - 6.2106x10~" (5.00x1072) = 5.9979x1071 (2.39x1075)
ZDT4 2 10 0.0000x10° (0.00x10°) = 4.4020%x107! (2.14x1071) + 6.9311x10~" (1.65x1072) + 0.0000x10° (0.00x10°)
+/-/= 6/22/8 8/22/6 15/19/2
Problem M D NSGAII MOEADDE MMOPSO CMOSCA
DILZ1 2 6 5.7995x10! (1.60x1073) + 5.8013x10~! (4.16x1073%) + 5.6631x10! (6.57x1072) + 0.0000x10° (0.00x10°)
3 7 7.9637x10~! (1.21x107") + 6.9729x10~! (2.31x1071) + 2.7383x107! (3.22x10°1) + 0.0000x10° (0.00x10°)
DTLZ2 2 1 3.4656x1071 (2.11x107%) - 3.4702x1071 (3.78x107) - 3.4668x1071 (2.19x107%) - 3.4743x107! (5.68x1075)
3 12 5.2873x1071 (4.91x1073) - 5.2691x1071 (1.65x1073) - 5.3071x107! (4.40x1073) - 552781071 (1.94x1073)
DTLZ3 2 11 3.0575x10! (8.42x1072) + 5.6429x1072 (1.19x1071) + 0.0000x10° (0.00x10°) = 0.0000x10° (0.00x10°)
3 12 3.8921x107! (1.62x1071) + 1.8937x1071 (2.22x1071) + 1.5222x1072 (8.34x1072) = 0.0000x 10° (0.00x 10°)
DTLZ4 2 11 3.1245x 107" (8.84x1072) - 3.4683x10~! (6.56x107%) - 3.0403x10~! (9.70x1072) - 3.4733x107! (7.32x107°)
3 12 5.1573x 107! (8.03x1072) - 5.1937x1071 (2.29x1072) - 5.3269%x 1071 (4.90x1073) - 5.3966x10~! (3.31x107%)




Biomimetics 2024, 9, 115

14 of 26

Table 4. Cont.

Problem M D EMOSO CMOPSO MOEAD CMOSCA

DTLZS 2 11 3.4650x 1071 (2.07x1074) - 3.4701x1071 (3.21x1075) - 3.4664x1071 (1.78x1074) - 3.4744x101 (6.74x1075)
3 12 1.9874x107! (2.30x1074) - 1.9438x107! (7.71x1075) - 1.9916x107! (1.77x1074) - 1.9972x 1071 (1.87x 1074
DTLZ6 2 11 3.4638x1071 (2.33x1074) - 3.4721x1071 (7.87x1078) - 3.4663x1071 (2.18x1074) - 3.4753x1071 (4.45x1075)
3 12 1.9912x 107! (1.80x1074) - 1.9477x107 (2.22x1075) - 1.9922x107! (1.59x1074) - 2.0017x107! (3.98x1075)
DTLZ7 2 21 2.4272x107! (4.13x1075) - 2.2855% 1071 (2.69x1072) - 2.1603x107! (3.32x1072) - 2.4294x101 (1.03%x1075)
3 22 2.6689x1071 (2.12x1073) - 2.0996x1071 (1.76x1072) - 2.5880x 101 (1.52x1072) - 2.7871x101 (5.17x10~%)
WEG1 2 11 6.6884x107! (1.32x1072) + 4.9843x107! (4.87x1072) = 6.5123x107! (2.76x1072) + 5.0330x 107! (5.46x1072)
3 12 9.2184x107! (5.97x107%) + 4.0981x10! (5.21x1072) - 8.1347x107! (2.81x1072) + 5.6834x 107! (5.89x1072)
WEG2 2 11 6.3234x1071 (4.78x1074) + 6.2802x1071 (9.83x1074) + 6.3307x 1071 (1.90x10%) + 6.1720x 1071 (3.33x1072)
3 12 9.1559x 10! (3.51x1073) - 8.7644x1071 (6.11x1073) - 9.1401x 107! (3.42x1073) - 9.1668x 107! (3.63x1072)
WEG3 2 11 5.7929x 1071 (6.66x1074) + 5.7806x 1071 (6.61x1074) + 5.8024x 1071 (4.29%10%) + 5.7214x1071 (2.70x1072)
3 12 3.9521x107! (3.69x107%) + 3.4249x1071 (1.55x1072) - 3.9426x1071 (5.41x1073) + 3.6348x1071 (3.13x1072)
WEGA 2 11 3.4575x107! (2.63x107%) + 3.2351x1071 (3.49x1073) - 3.4422x1071 (6.90x1074) + 3.3972x1071 (3.23x1073)
3 12 5.1694x 1071 (6.01x1073) + 4.6432x101 (7.04x1073) - 4.9689x107! (6.50x1073) - 5.0911x 107! (8.68x1073)
WEGS 2 11 3.1238x 1071 (1.39x1073) - 3.0803x1071 (1.69x1073) - 3.1289x 1071 (1.73x1074) - 3.1363x 101 (1.39%x10~%)
3 12 4.8840x 1071 (5.07x1073) - 45556101 (3.66x1073) - 4.8551x1071 (7.37x1073) - 5.0496x 1071 (3.75x1073)
WEG6 2 11 3.0608x 1071 (1.10x1072) + 3.1454x 1071 (4.13x1072) + 3.1757x1071 (3.76x1072) + 2.2697x1071 (5.36x1075)
3 12 4.7001x107! (1.56x1072) + 4.2788x107! (4.57x1072) + 4.6580x 1071 (4.83x1072) + 4.1628x1071 (8.87x1074)
WEGT 2 11 3.4503x1071 (3.59x1074) - 3.4474x1071 (2.90x1074) - 3.4583x1071 (2.75x1074) - 3.4719x 101 (1.15%x10~%)
3 12 5.1679x 10! (4.32x1073) - 4.9114x10! (5.76x1073) - 5.2276x107! (5.08x1073) - 5.5302x 1071 (2.17x1073)
WEGS 2 11 2.8775x1071 (6.89x1074) + 2.8973x107! (2.51x1073) + 2.8842x1071 (1.33x1073) + 2.8525x 1071 (1.69x1073)
3 12 4.3610x 107! (4.36x1073) - 3.9117x1071 (9.68x1073) - 4.3457x1071 (5.02x1073) - 4.4087x107! (6.67x1073)
WEG9 2 11 3.3651x1071 (2.11x1072) + 3.3126x1071 (2.28x1073) + 3.3914x 101 (2.07x1073) + 2.2643x1071 (1.04x1073)
3 12 4.8142x1071 (3.13x1072) + 4.7633x1071 (5.60x1073) + 4.9105x1071 (2.08x1072) + 4.0623x1071 (2.68x1073)
ZDT1 2 30 7.1910x107! (2.07x1074) - 7.0598x 1071 (4.70x1073) - 7.1932x107! (2.26x1074) - 7.2049x 1071 (5.25x1077)
ZDT2 2 30 4.4383x1071 (2.18x107%) - 4.3332x10! (3.65x1073) - 4.4400x 1071 (2.21x107%) - 4.4510x 101 (4.02x1075)
ZDT3 2 30 6.0228x107! (1.62x1072) + 5.9542x1071 (6.91x1073) - 5.9942x 1071 (9.92x1075) - 5.9979x 1071 (2.39x1075)

ZDT4 2 10 7.1724x107! (1.44x107%) + 4.8618x1071 (1.38x101) + 6.9739x107! (6.24x1072) + 0.0000x10° (0.00x 10°)

+/-/= 18/18/0 12/23/1 14/20/2
“+”,”=""and “-” indicate that the results of competing MOEAs are statistically superior, similar, and inferior to

results obtained by the CMOSCA, respectively. The best result of each test problem is displayed in bold.

Figures 4-7 plot the non-dominated solutions obtained by the CMOSCA and other six
competing MOEAs on two-objective DTLZ6 and ZDT3, and three-objective DTLZ7 and
WEGS. It can be observed from Figures 4 and 5 that the non-dominated solutions obtained
by our proposed CMOSCA on two-objective DTLZ6 and ZDT3 problems have a good
distribution and approximate the PF well. This exhibits that the CMOSCA can attain a good
trade-off between the diversity and convergence of non-dominated solutions. We can also
observe from Figures 6 and 7 that the CMOSCA is able to obtain non-dominated solutions
with good diversity and convergence on three-objective problems DTLZ7 and WFG6é.

To investigate the computation cost of the CMOSCA, we record the actual running
time of those competing MOEAs. Figure 8 shows the average runtimes of the seven
competing MOEAs tested on ZDT, DTLZ and WEFG series test problems. From Figure 8§,
we can find that the NSGA-II obtains the best performance in terms of computation cost
because the simple dominance relationship selection strategy has significant advantages in
real-time computation. We can also find that CMOSCA performs better than MOEA /D
and MOEA /D-DE, but weaker than EMOSO, CMOPSO, NSGA-II, and MMOPSO. Hence,
we can conclude that the computation time of our proposed CMOSCA is not significantly
reduced compared to other competing MOEAs, which is caused by evaluating the SDE
fitness values in CMOSCA. However, for MOPs, better performance of the algorithm is
more important than computational cost. Therefore, we believe that the computational
cost of CMOSCA is acceptable since it can provide decision-makers with a better basis for
decision-making.
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(a) EMOSO (b) CMOPSO

(e) MOEA /D-DE (f) MMOPSO (g) CMOSCA (h) True PS

Figure 4. Nondominated solutions obtained by the six competing MOEAs and CMOSCA on two-
objective DTLZ6 problem.

\ \ - \
(a) EMOSO (¢) MOEA/D (d) NSGA-II
\ \ . \
\ \ \
(e) MOEA /D-DE (f) MMOPSO (g) CMOSCA (h) True PS

Figure 5. Nondominated solutions obtained by the six competing MOEAs and CMOSCA on two-
objective ZDT3 problem.

Tre s
© Obisined ps|

(a) EMOSO (b) CMOPSO (d) NSGA-II

True S

<

(e) MOEA /D-DE (fy MMOPSO () CMOSCA (h) True PS

Figure 6. Nondominated solutions obtained by the six competing MOEAs and CMOSCA on three-
objective DTLZ7 problem.
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(a) EMOSO

(¢) MOEA /D-DE (fy MMOPSO () CMOSCA (h) True PS

Figure 7. Nondominated solutions obtained by the six competing MOEAs and CMOSCA on three-
objective WFG6 problem.
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Figure 8. Average runtimes of the all competing methods tested on the all the benchmark problems.

4.2. Parameter Analysis

In the CMOSCA, the parameter 8 defines the size of elite agent set E, which has a
great influence on the performance of our proposed CMOSCA, and the outstanding agents
in the elite set are adopted to lead the search of the population. Experiments are performed
to analyze CMOSCA with different B values (varying from 2 to 30). The other parameter
value settings of the CMOSCA are the same as in the previous section. Table 5 reports the
experiment IGD values of 30 independent running on DTLZ1-DTLZ7, WEG1-WFG9, and
ZDT1-ZDT4 test problems. We can observe from the Table 5 that the CMOSCA using the
parameter B = 5 has relatively superior results. Table 6 lists the experiment HV values of
30 independent running on DTLZ1-DTLZ7, WFG1-WFG9Y, and ZDT1-ZDT4 test problems.
It can be seen from the Table 6 that CMOSCA using the parameter = 2 has relatively
superior results. From these two tables, we can find that the CMOSCA with small 8 values
is better. In this study, we set § to 5 for our proposed CMOSCA to deal with MOPs.
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Table 5. IGD values achieved by CMOSCA using different 8 values.

Problem

CMOSCA B =2

CMOSCA § =10

CMOSCA B =15

CMOSCA B =5

DTLZ1

DTLZ2

DTLZ3

DTLZ4

DTLZ5

DTLZ6

DTLZ7

WFG1

WEG2

WEFG3

WEFG4

WEG5

WEG6

WEG7

WEG8

WEG9

ZDT1
ZDT2
ZDT3
ZDT4

NN WNWOWRNWNWNWNWNWNWNWRNWNWNWNWNWNDWN W g

1.9342x 10! (5.45x10°) =
1.1176 x10" (3.34x10°) =
413211073 (2.54x107%) =
5.3615x1072 (6.60x10~%) -
1.7068 x10? (1.35x10") -
1.5333x10% (1.49x 10') +
4.1405%1073 (4.41x107%) -
5.7988x1072 (1.69x1073) +
4.1298 %1073 (2.95x107%) -
4.5261x1073 (2.47x107%) -
4.1265%1073 (2.99x107%) =
421711073 (8.36x107°%) =
4.5212x1072 (4.63x107°) =
5.8902x1072 (1.13x1073%) =
4.4875x10~" (1.15x107 1) -
7.0762x107! (1.32x107!) +
3.5297x 1072 (4.81x1072) +
1.9292x107! (3.11x1072) =
1.0300x10~! (9.72x1072) -
1.7046x10~! (6.91x1072) -
2.5007x1072 (6.96x1073) -
2.4046x107! (1.03x1072) =
6.3656x1072 (3.17x 107 %) =
2.2368x10°! (3.67x1073%) =
2.2547x10! (2.73x107%) =
3.3557x10! (1.70x1073%) =
1.2707x1072 (2.23x1074) =
2.1060x107! (2.51x107%) =
1.1816x107! (7.35x107%) =
3.0929x107! (9.22x107%) +
2.1662x107! (3.48x1072) +
3.4457x107! (3.72x107%) =
3.9024x1072 (3.96x107°) =
3.8961x1073 (4.41x107%) =
4.6500x 107> (4.80x107%) +
2.2937x10" (1.94x10") =

1.5759x 10" (5.60x10°) =
1.0587x 10" (4.83x10°) =
4.1045x1073 (2.59x107%) =
5.3771x1072 (6.50x10%) -
1.6755x10% (2.07x10') -
1.6358x 102 (1.43x10!) =
4.1098x1072 (2.08x107%) =
5.8669x1072 (2.07x1073) =
4.1037x1073 (3.67x107%) =
4.3021x1073 (1.38x107%) =
4.1003x1073 (3.25x107%) =
4.1822x1073 (4.75x107%) =
4.5097x1073 (6.11x107%) =
5.8975x1072 (1.10x1073) =
3.9312x107! (1.50x1071) =
1.1179%10° (1.55%1071) -
3.1870x 1072 (4.89x1072) =
1.9270x10~! (3.23x1072) =
2.3611x1072 (4.27x1072) =
1.1792x107! (1.20x1072) =
2.1590x1072 (4.26x1073) =
2.5109%x10~! (6.54x1073) -
6.4203x1072 (1.56x1073) -
2.2769%x10~1 (6.21x1073) -
225471071 (2.81x1075) =
3.3865x107! (5.34x1073) -
1.2798x1072 (1.62x107%) -
2.1305x10~! (2.58x1073) -
1.1589%107! (3.96x1073) =
3.1856x107! (6.98x1073) =
2.1669%x107! (4.58x1072) +
3.4867x1071 (5.88x1073) -
3.8799x1073 (5.26x1075) =
3.8674x107% (2.93x1075) +
4.6965x1073 (5.97x107%) =
2.2757x10" (2.03x10') =

1.7927 %10 (4.60x10°) =
1.2098 %101 (4.92x10°) =
41115x1073 (3.16x1075) =
5.4166x1072 (7.16x107%) -
1.6684 %102 (1.54x101) -
1.6016x 102 (1.60x101) =
4.1039x1073 (3.59x107%) =
5.8298x1072 (1.97x1073) +
4.1130x1073 (3.83x107%) =
4.3323x1073 (1.75x107%) =
4.0799x1073 (3.55x107%) +
4.1835%1073 (4.99x1075) =
4.5075x1073 (5.73x1075) =
5.8410x1072 (8.37x107%) +
3.4205x107! (6.73x1072) =
1.2398%10° (1.14x107 1) -
2.1731x1072 (3.61x1072) =
1.8012x 107! (4.91x107%) =
1.8118x1072 (3.09x1072) =
1.2634x107! (3.23x1072) =
2.1172x1072 (5.39x1073) =
2.5137x107! (4.65x1073) -
6.5213x1072 (2.10x1073) -
2.2713x107" (4.49x1073) -
2.2546x107! (2.27x107%) =
3.4089% 107! (6.47x1073) -
1.2839x1072 (1.68x10~4) -
2.1501x10"! (3.23x1073) -
1.1436 107! (2.76x107%) +
3.2552x107! (9.20x1073) -
2.2253%107! (3.17x1072) +
3.4698 %107 (4.62x1073) -
3.8795x1073 (4.55x1075) =
3.8695x 1072 (4.29x107°) +
4.6808x107% (6.32x107%) =
1.9949x10! (2.04x10!) =

1.8233x 10" (6.02x10°%)
1.1081x 10" (4.81x10°%)
411491073 (3.78x1075)
5.3243x 1072 (4.56x10~%)
1.5902x 10% (1.94x10%)
1.6203% 102 (1.60x101)
4.1119x1073 (3.26x1075)
5.9577x1072 (1.47x1073)
4.1107x1073 (2.65x107°)
4.3665x1072 (1.69x10~%)
4.1140x1073 (3.03x1075)
4.1788x1073 (5.83x107%)
4.5057x1073 (5.13x107°)
5.8941x1072 (6.68x10~%)
3.8033x10~" (1.19x101)
8.5394x10~! (1.43x1071)
3.5635x1072 (5.38x1072)
1.9064x10~! (3.08x1072)
2.9280x1072 (5.16x1072)
1.3883x 107! (6.04x1072)
2.0532x1072 (4.51x107%)
2.4095%10~" (8.39x1073)
6.3608x 1072 (1.83x107%)
2.2262x107! (3.68x107°%)
2.2547x10"" (1.68x107%)
3.3555x 107! (1.77x107%)
1.2639x1072 (1.05x107%)
2.1066x10"" (1.88x1073)
1.1660x107! (3.17x1073)
3.1606x10~" (9.77x1073)
2.2676x107" (2.47x1073)
3.4464x107" (3.88x1073)
3.8994 %1073 (4.98x107°)
3.8933x 1073 (3.48x1075)
4.6982x1073 (7.19x107°)
1.7501x 10" (1.63x10")

+

=

~
i

7/9/20

2/10/24

6/11/19

Problem

CMOSCA g =2

CMOSCA g =10

CMOSCA g =15

CMOSCA B =5

DTLZ1

DTLZ2

DTLZ3

DTLZ4

DTLZ5

DTLZ6

DTLZ7

WFG1

WEG2

WEG3

WEFG4

WEG5

WEG6

WEG7

WEG8

WRNWNWNWNWNWRNWNWRNWNWRNWNWNWNWNWNWN g

WEG9

1.6761x 10 (3.94x10°) =
1.1537x 10" (4.01x10°) =
4.0992x1073 (2.59x107°) =
5.4058x1072 (7.27x107%) -
1.6731x102 (1.56x101) =
1.6290% 102 (1.42x101) =
4.1022x107% (3.43x107°) =
5.8481x1072 (2.17x1073) +
4.1053x1073 (3.52x107%) =
4.3433x1073 (2.32x107%) =
4.0799%1073 (3.35x107%) +
4.1752x1073 (4.29x107%) =
4.4963x1073 (4.94x107%) =
5.8313x 1072 (8.07x107%) +
3.7226x107! (8.60x1072) =
1.2694%10° (1.05x107?) -
2.1843x1072 (3.60x1072) =
1.8193x1071 (4.51x107%) =
1.2539x 1072 (3.20x107%) =
1.2889%1071 (9.48x1072) +
2.4712x1072 (8.76x107%) =
2.5300x107! (4.36x1073) -
6.5284x1072 (2.41x1073) -
2.2939x107! (7.01x1073) -
2.2547x107" (2.02x107%) =
3.4413x107! (1.00x1072) -
1.2856x 1072 (1.60x10~4) -
2.1524x107" (2.53x1073) -
1.1472x1071 (2.69x1073%) +
3.2575x107! (7.52x1073) -
2.2603x107" (1.26x1072) +
3.4966x107" (4.88x1073) -

1.5874x10" (3.94x10°) =
1.0875x 10" (4.65x10°%) =
4.1089x1072 (3.28x107%) =
5.4141x1072 (6.94x107%) -
1.6652x10% (1.58x10') =
1.5810x10% (1.35x10%) =
4.1235%x1072 (3.78x1075) =
5.8062x1072 (1.63x1073) +
410581073 (3.48x107%) =
433891072 (1.90x107%) =
4.0871x1073 (2.94x107°%) +
4.1549x107° (3.64x107°) +
4.4795x107° (5.82x107°) =
5.8443x1072 (1.06x1073) +
4.5902x10" (8.82x1072) -
1.2971x10° (9.35x1072) -
1.7349x1072 (2.59x1072) +
1.8330x107! (1.89x1072) =
1.8201x1072 (3.10x1072) =
1.3009%10~! (1.47x1072) +
2.3005x1072 (6.39x107%) =
2.5269%101 (5.29%x1073) -
6.5157x1072 (2.16x1073) -
2.3148x107" (6.98x1073) -
2.2547x107! (2.90x107%) =
3.4564x107" (1.06x1072) -
1.2914x1072 (1.83x107%) -
2.1690x10~" (2.85x1073) -
1.1336 107! (1.18x1073%) +
3.2585x 107" (6.85x1073) -
2.2263x107! (3.45x1072) +
3.4850x 10! (3.19%x1073) -

1.7088x 10! (3.40x10°) =
9.7277x10° (3.74x10°) =
41011x1073 (2.87x1075) =
5.4381x1072 (7.65x107%) -
1.6064x 102 (1.71x101) =
1.6358 %102 (1.34x101) =
4.1188x1073 (3.42x107%) =
5.7916x1072 (1.36 x1073) +
4.1101x1073 (291x107%) =
4.3671x1073 (2.53x107%) =
4.0828x1073 (3.18x107%) +
417701073 (4.24x107°%) =
4.4983x1073 (5.59x1075) =
5.8670x1072 (1.23x1073) =
430781071 (5.81x1072) -
1.3041%10° (1.05%x107?) -
2.1994x1072 (3.63x1072) =
1.8331x1071 (7.77x1073) =
1.8254x1072 (3.08x1072) +
1.3413x107! (1.38x1072) +
2.7480x1072 (8.18x1073) -
2.5231x107! (4.47x1073) -
6.6438x 1072 (2.55x1073) -
2.3074x107" (6.44x1073) -
2.2547x107! (3.34x107°) =
3.4362x107! (6.62x1073) -
1.2925x1072 (1.68x1074) -
2.1856x10~" (3.63x1073) -
1.1368 %1071 (2.55x1072%) +
3.2562x107! (8.46x1073) -
2.2985x107! (3.06x1073) -
3.4840x107" (3.40x1073) -

1.8233% 10! (6.02x10°)
1.1081x 10" (4.81x10°)
4.1149%x1073 (3.78x1075)
5.3243x1072 (4.56 x10™*)
1.5902x 10% (1.94x10')
1.6203% 102 (1.60x101)
4.1119x1073 (3.26x1075)
5.9577x1072 (1.47x1073)
4.1107x1073 (2.65x1075)
4.3665x1073 (1.69x107%)
4.1140x1073 (3.03x1075)
4.1788x1073 (5.83x1075)
4.5057x1073 (5.13x1075)
5.8941x1072 (6.68x10%)
3.8033x1071 (1.19x1071)
8.5394x1071 (1.43x1071)
3.5635x1072 (5.38x1072)
1.9064x10~! (3.08x1072)
2.9280x1072 (5.16x1072)
1.3883 %1071 (6.04x1072)
2.0532x1072 (4.51x1073)
2.4095x107! (8.39x1073)
6.3608x 1072 (1.83x107%)
2.2262x107! (3.68x107%)
2.2547x10~" (1.68x107°)
3.3555x 107! (1.77x107%)
1.2639x 1072 (1.05x 10~%)
2.1066x10~" (1.88x1073)
1.1660x1071 (3.17x1073)
3.1606x107! (9.77x1073)
2.2676x107" (2.47x1073)
3.4464x107" (3.88x1073%)
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Table 5. Cont.

Problem M D CMOSCA B =2 CMOSCA g =10 CMOSCA g =15 CMOSCA B =5
ZDT1 2 30 3.8759% 1073 (4.42x1075) = 3.8755%10~3 (3.30x10-5) = 3.8648x 1073 (4.20x1075) + 3.8994x 103 (4.98%x105)
ZDT2 2 30 3.8570x 1072 (2.88x107%) + 3.8829x1073 (3.72x107%) = 3.8800x 1073 (4.25x107%) = 3.8933x 1073 (3.48x1075)
ZDT3 2 30 4.6941x1073 (5.65x1075) = 4.6906x1073 (7.38x1075) = 4.6678x1073 (6.23x1075) = 4.6982x1073 (7.19x1075)
ZDT4 2 10 1.0998x 10! (1.03x 10) + 1.7827x10! (1.64x10) = 1.4417x10" (1.35x101) = 1.7501x 10 (1.63x101)

+/-/= 8/10/18 8/11/17 6/13/17
“+”,”=""and “- ” indicate that the results of competing CMOSCA using different  values are statistically superior,
similar, and inferior to results obtained by the CMOSCA using = 5 values, respectively. The best result of each
test problem is displayed in bold.
Table 6. HV values achieved by CMOSCA using different § values.
Problem M D CMOSCA B =2 CMOSCA =10 CMOSCA g =15 CMOSCA B =5
DTLZ1 2 6 0.0000%10° (0.00x10°) = 0.0000x10° (0.00x10°) = 0.0000%10° (0.00x10°) = 0.0000x 10° (0.00x10%)
3 7 0.0000x10° (0.00x 10°) = 0.0000x10° (0.00x10%) = 8.1450x 10 (4.46x107) = 0.0000x10° (0.00x 10°)
DTLZ) 2 11 3.4752x1071 (4.20x1075) + 3.4736x101 (7.13x1075) - 34732x101 (7.84x1075) - 34743%101 (5.68x1075)
3 12 55109%10~1 (2.45%1073) - 5.5078x 101 (1.82x1073) - 54892x101 (2.29%1073) - 5.5278x107 (1.94x10~3)
DTLZ3 2 11 0.0000x10° (0.00x 10°) = 0.0000x10° (0.00x 10°) = 0.0000x10° (0.00x 10°) = 0.0000x10° (0.00x 10°)
3 12 0.0000%10° (0.00x10°) = 0.0000x10° (0.00x10°) = 0.0000%10° (0.00x10%) = 0.0000x 10° (0.00x10%)
DTLZ4 2 11 3.4728x107! (1.31x107%) = 3.4725x1071 (8.88x1075) - 3.4720x107! (7.92x1075) - 3.4733x107! (7.32x1075)
3 12 5.4209x 107! (3.87x107%) + 5.4082x107! (4.38x107%) = 5.4194x107! (3.67x1073) + 5.3966x107! (3.31x1073)
DTLZ5 2 11 3.4753x 107! (4.47x107%) + 3.4736x1071 (6.34x1075) - 3.4730x 107! (6.47x1073) - 3.4744x107! (6.74x1075)
3 12 199491071 (2.54x1074) - 1.9971x1071 (1.72x107%) = 1.9971x1071 (1.63x107%) = 1.9972x107! (1.87x10~%)
DTLZ6 2 11 3.4754x107! (4.62x107%) = 3.4752x1071 (5.84x1075) = 3.4753x107! (4.14x107%) = 3.4753x 107! (4.45x1075)
3 12 2.0018x107! (5.24x107%) = 2.0018x107! (2.72x1075) = 2.0017x107! (3.78x107%) = 2.0017x107! (3.98x1075)
DILZ7 2 21 2.4294x107! (9.08x107°) = 2.4294x1071 (9.57x107%) = 2.4294x107! (1.21x1073) = 242941071 (1.03x1075)
3 22 2.7867x107! (8.10x107%) = 2.7869%x1071 (7.01x107%) = 2.7870x107! (7.05x107%) = 2.7871x107! (5.17x107%)
WEGL 2 11 4.7170x107! (5.12x1072) - 4.8977x107! (6.80x1072) = 512551071 (3.70x1072) = 5.0330x107! (5.46x1072)
3 12 6.2541x1071 (6.57x1072) + 4.4784x107! (6.09x1072) - 3.9320x107! (3.77x1072) - 5.6834x107! (5.89x1072)
WEG2 2 11 6.1647x1071 (2.97x1072) - 6.1919x1071 (3.02x1072) = 6.2561x1071 (2.23x1072) = 6.1720x107! (3.33x1072)
3 12 9.1747x107! (3.67x1072) = 9.1371x107! (3.63x1072) - 9.2543x 107! (1.76 x107%) + 9.1668x107! (3.63x1072)
WEG3 2 11 5.3376x107! (5.01x1072) - 5.7511x107! (2.24x1072) = 5.7790x107! (1.61x1072) = 5.7214x107! (2.70x1072)
3 12 3.4594x 10! (3.59%1072) - 3.7349x 1071 (7.44x1073) = 3.6804x10~1 (1.69%x1072) = 3.6348x 10! (3.13x102)
WEG4 2 11 3.3661x107! (4.56x1073) - 3.3898x1071 (2.94x107%) = 3.3972x107! (3.14x1073) = 3.3972x107! (3.23x107%)
3 12 5.1155x 107! (9.66x107%) = 4.9935x107! (5.02x1073) - 4.9652x107! (4.61x1073) - 5.0911x107! (8.68x1073)
WEG5 2 11 3.1363x 107! (1.93x107%) = 3.1304x107! (1.43x1073) - 3.1202x107! (1.98x1073) - 3.1363x107! (1.39x107%)
3 12 5.0575x107! (4.61x107%) = 5.0120x107! (5.25x1073) - 5.0072x107! (3.72x1073) - 5.0496x107! (3.75x1073)
WFG6 2 11 2.2699x107! (5.14x107%) = 2.2697x1071 (5.25%1075) = 2.2699x107! (4.78x107%) = 2.2697x107! (5.36x1075)
3 12 4.1675x107! (7.97x107%) + 4.1517x107! (2.78x1073) = 4.1348x107! (3.54x1073) - 4.1628x107! (8.87x107%)
WEG7 2 11 3.4734x107! (9.62x107%) + 3.4688x1071 (1.27x107%) - 3.4670x107! (1.31x107%) - 3.4719x107! (1.15x107%)
3 12 5.5486x 1071 (1.92x107%) + 5.4486x1071 (2.45x1073) - 5.4097x107! (3.47x1073) - 5.5302x107! (2.17x1073)
WEGS 2 11 2.8421x107! (3.93x1073) = 2.8558x1071 (1.94x1073) = 2.8630x107! (1.36x1073) + 2.8525x107! (1.69x1073)
3 12 4.4568x 107! (6.95x1073) + 4.3986x107! (5.26x1073) = 4.3361x107! (6.77x1073) - 4.4087x107! (6.67x1073)
WEFG9 2 11 2.3244x107! (1.93x1072) + 2.3192x1071 (2.41x1072) + 2.2874x107! (1.65x1072) + 2.2643x107! (1.04x1073)
3 12 4.0653x107! (2.88x1073) = 4.0391x107! (3.56x1073) - 4.0433x107! (2.39x1073) - 4.0623x107! (2.68x1073)
ZDT1 2 30 7.2054x1071 (2.95x1075) + 7.2050x1071 (6.05x1075) = 7.2048x1071 (6.05%107%) = 7.2049x1071 (5.25%1075)
ZDT2 2 30 4.4509x107! (3.58x107%) = 4.4510x107! (2.96x1075) = 4.4507x107! (3.64x1075) - 4.4510x107! (4.02x1075)
ZDT3 2 30 5.9981x 107! (1.98x1075) + 5.9979x1071 (2.13x1075) = 5.9979x107! (2.38x107%) = 5.9979x107! (2.39x1075)
ZDT4 2 10 0.0000x10° (0.00x 10°) = 0.0000x10° (0.00x 10%) = 0.0000%10° (0.00x 10°) = 0.0000x10° (0.00x 10°)
+/-/= 11/7/18 1/12/23 4/14/18
Problem M D CMOSCA B =2 CMOSCA 8 =10 CMOSCA B =15 CMOSCA B =5
DTLZ1 2 6 0.0000x10° (0.00x 10°) = 0.0000x10° (0.00x 10°) = 0.0000x10° (0.00x 10°) = 0.0000%10° (0.00x 10°)
3 7 0.0000%10° (0.00x10°) = 0.0000x10° (0.00x 10°) = 0.0000%10° (0.00x10%) = 0.0000x10° (0.00x10%)
DILZ2 2 11 3.4729x107! (8.35x1073) - 3.4728x1071 (7.07x1075) - 3.4727x107! (8.73x1073) - 3.4743x107! (5.68x1075)
3 12 5.4915x107! (1.81x1073) - 5.4899x1071 (2.12x1073) - 5.4782x107! (2.21x1073) - 5.5278x107! (1.94x10~%)
DTLZ3 2 11 0.0000x10° (0.00x 10°) = 0.0000x10° (0.00x 10%) = 0.0000x10° (0.00x 10°) = 0.0000x10° (0.00x 10°)
3 12 0.0000x10° (0.00x 10°) = 0.0000x10° (0.00x 10°) = 0.0000x10° (0.00x 10°) = 0.0000%10° (0.00x 10°)
DTLZ4 2 11 3.4719x10! (1.08x1074) - 34718x1071 (1.25%1074) - 3.4719x107! (9.34x1075) - 3.4733x 101 (7.32x1075)
3 12 5.4133x 1071 (4.38x1073) + 54152x1071 (3.51x1073) + 5.4120x10~1 (3.08x1073) = 5.3966x 1071 (3.31x1073)
DTLZS 2 11 3.4731x107! (7.37x1075) - 34727x1071 (7.93x107%) - 3.4724x1071 (7.99x1075) - 34744x1071 (6.74x1075)
3 12 1.9967x1071 (1.92x1074) = 1.9968x1071 (1.78x1074) = 1.9963x107! (2.07x1074) = 1.9972x 1071 (1.87x 1074
DTLZ6 2 11 34754x1071 (4.09x1075) = 34754x1071 (4.31x1075) = 3.4753x1071 (4.83x1075) = 34753x1071 (4.45x1075)
3 12 2.0018x 107! (4.17x1075) = 2.0016x107! (3.80x105) = 2.0019x 101 (3.24x1075) = 2.0017x1071 (3.98x1075)
DTLZ7 2 21 2.4294x1071 (1.09x1075) = 2.4295x1071 (1.23x1075) = 2.4295x1071 (1.08x1075) = 2.4294x1071 (1.03x1075)
3 22 2.7868x 1071 (7.45x1074) = 2.7842x1071 (8.96x1074) = 2.7850x 1071 (5.86x1074) = 2.7871x101 (5.17x10~%)
WEGI 2 11 4.9539x1071 (4.76x1072) = 4.4960x10! (4.55x1072) - 4.6903x1071 (2.90x1072) - 5.0330x 107! (5.46x1072)
3 12 3.7740x 10! (3.59x10~2) - 3.6193x1071 (3.29x1072) - 3.5814x 10! (3.51x1072) - 5.6834x 107! (5.89x102)
WEG2 2 11 6.2556x1071 (2.23x1072) = 6.2816x 1071 (1.60x1072) + 6.2541x107! (2.24x1072) = 6.1720x 107! (3.33x1072)
3 12 9.2445x 1071 (2.07x1073) + 9.2069x1071 (1.90x1072) + 9.2197x1071 (2.12x1073) + 9.1668x 107! (3.63x1072)
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Table 6. Cont.

Problem M D CMOSCA B =2 CMOSCA B =10 CMOSCA g =15 CMOSCA B =5
WEG3 2 11 5.8079%x10! (3.54x107%) = 5.7781x107! (1.62x1072) = 5.7776x10~1 (1.61x1072) + 5.7214x107! (2.70x1072)
3 12 3.6678x1071 (6.44x1073) + 3.6538x101 (7.94x1073) + 3.6401x1071 (7.27x1073) + 3.6348x1071 (3.13x1072)
WECA 2 11 3.3771x107! (4.69x1073) = 3.3886x10°1 (3.29x1073) = 3.3634x107! (4.43x1073) - 3.3972x107" (3.23x1073)
3 12 4.9573x1071 (3.69%1073) - 4.9622x107" (4.49x1073) - 4.9613x1071 (3.74x1073) - 5.0911x10~! (8.68x1073)
WEGS 2 11 3.1203x107! (2.09%1073) - 3.1198x107! (1.94x1073) - 3.1099x107! (2.19%1073) - 3.1363x10! (1.39x10°4)
3 12 4.9873x1071 (6.00x1073) - 4.9789x107! (5.59x1073) - 4.9782x1071 (6.11x1073) - 5.0496x10~! (3.75x1073)
WEGE 2 11 2.2697x1071 (4.73x1075) = 2.2699x10! (4.88x1075) + 2.2698x1071 (4.77x1075) = 2.2697x10! (5.36x107)
3 12 4.1189x107! (5.26x1073) - 4.1146x107" (6.09x1073) - 4.1248x1071 (3.92x1073) - 41628x1071 (8.87x1074)
WEGT 2 11 3.4662x1071 (1.46x1074) - 3.4660x1071 (1.60x1074) - 3.4657x1071 (1.79%10%) - 3.4719x107! (1.15x1074)
3 12 5.3768x107! (3.58x1073) - 5.3586x10~! (2.44x1073) - 5.3436x107! (3.19%1073) - 5.5302x10~! (2.17x1073)
WEGS 2 11 2.8623x1071 (1.22x1073) + 2.8674x1071 (5.45x1074) + 2.8665x1071 (1.19%1073) + 2.8525x10! (1.69x1073)
3 12 4.3398x107! (4.56x1073) - 4.3449x107" (4.51x1073) - 4.3398x107! (6.53%1073) - 4.4087x10! (6.67x1073)
WEG9 2 11 2.2721x1071 (8.25x1073) + 2.2889x10! (1.86x1072) + 2.2512x107! (1.20x1073) - 2.2643x10! (1.04x1073)
3 12 4.0290x1071 (2.87x1073) - 4.0390x107" (2.62x1073) - 4.0374x1071 (2.82x1073) - 4.0623x107! (2.68x1073)
ZDT1 2 30 7.2048%10! (7.51x1075) = 7.2049x101 (4.55x1075) = 7.2047x107! (4.25x1075) = 7.2049%10! (5.25x1075)
ZDT2 2 30 4.4509x1071 (3.48x1075) = 4.4507 107" (4.90x1075) - 4.4507x107" (4.96x1075) - 4.4510x10! (4.02x1075)
ZDT3 2 30 5.9979x10~1 (2.23x1075) = 5.9979x10~1 (2.81x1075) = 5.9980x 10! (2.39x1075) = 5.9979x10~! (2.39x10-5)
ZDT4 2 10 0.0000%10° (0.00%10°) = 0.0000%10° (0.00%10°) = 0.0000%10° (0.00%10°) = 0.0000%10° (0.00%10°)
+/-/= 5/13/18 7/15/14 4/17/15
“+”,”="and “- ” indicate that the results of competing CMOSCA using different B values are statistically superior,
similar, and inferior to results obtained by the CMOSCA using = 5 values, respectively. The best result of each
test problem is displayed in bold.
4.3. Comparisons among Three CMOSCA Variants
To verify the effects of the SDE-based competition mechanism on the performance
of the CMOSCA, the SDE-based competition mechanism is compared with the other
two approaches (i.e., angle-based competition mechanism and Euclidean distance-based
competition mechanism). The CMOSCA with these two approaches are denoted as the
CMOSCAA and the CMOSCAD, respectively. Experiments are performed to compare these
three CMOSCA variants. The parameter value settings for these three CMOSCA variants
are the same as in the previous section. Table 7 reports the experiment IGD values of
30 independent running on DTLZ1-DTLZ7, WFG1-WFG9 and ZDT1-ZDT4 test problems.
It can be observed from the Table 7 that the proposed CMOSCA outperforms the other
two variants. Table 8 provides the experiment HV values of 30 independent running on
DTLZ1-DTLZ7, WFG1-WFG9 and ZDT1-ZDT4 test problems. From the Table 8, we can also
observe that the proposed CMOSCA outperforms the other two variants. This is because
the SDE-based competition mechanism can measure both diversity and convergence of
the solutions.
Table 7. IGD values achieved by three CMOSCA variants.
Problem M D CMOSCAA CMOSCAD CMOSCA
DTLZ1 2 6 1.8997x10! (6.26x10°) = 1.8496x 10! (6.55x10°) = 1.8233x 10! (6.02x10°)
3 7 1.1280x 10! (4.33x10°) = 1.0678 x 10! (4.45x10°) = 1.1081x 10" (4.81x10°)
DTLZ2 2 11 4.1038x1073 (3.45%107%) = 4.1125x1073 (3.84x107%) = 4.1149x1073 (3.78 x1072)
3 12 5.3713%x1072 (5.98x107%) - 5.2984x1072 (5.50x107%) = 5.3243x1072 (4.56x10~%)
DTLZ3 2 11 1.6913x10% (1.87x10%) - 1.7087 %102 (1.80x101) - 1.5902 % 10% (1.94x10")
3 12 1.5527x10% (1.72x10') = 1.6192x102 (1.65x10%) = 1.6203 %102 (1.60x101)
DTLZ4 2 11 4.1188x1073 (3.66x107%) = 4.1171x1073 (3.60x107%) = 4.1119%1073 (3.26x107°)
3 12 5.9014x1072 (1.80x1073) = 5.7189x 1072 (1.96x1073) + 5.9577x1072 (1.47x1073)
DTLZ5 2 11 4.1033x1073 (4.02x107%) = 4.1142x1073 (2.93x107%) = 4.1107x1073 (2.65x107%)
3 12 5.1442%1073 (5.49x107%) - 4.2607x1073 (1.03x107%) + 4.3665x1073 (1.69x10~%)
DTLZ6 2 11 4.0768x1073 (2.82x107°) + 4.0938x1073 (2.60x107%) + 4.1140%x1073 (3.03x107%)
3 12 4.1680x1073 (5.58x107%) = 4.1686x1073 (4.40x107%) = 4.1788x1073 (5.83x107°)
DILZ7 2 21 4.4714x1073 (5.49x107°) + 45119%1073 (7.67x107%) = 4.5057x1073 (5.13x107%)
3 22 5.8436x1072 (1.33x1073) + 5.8680x1072 (1.23x1073) = 5.8941x1072 (6.68x10~%)
WEGL 2 11 3.6703x1071 (1.09x107!) = 5.7172x1071 (1.42x1071) - 3.8033x1071 (1.19x1071)
3 12 1.1237x10° (1.18x107 1) - 1.3241x10° (1.15x1071) - 8.5394x 1071 (1.43x1071)
WEG2 2 1 45567 %1072 (6.09x1072) = 7.4616x1072 (7.14x1072) - 3.5635x1072 (5.38 x1072)
3 12 1.8933x1071 (2.77x1072) = 2.1603x10~1 (4.28x1072) - 1.9064 %101 (3.08x1072)
WEG3 2 1 2.9572x1072 (5.16x1072) - 4.0745x1072 (6.41x1072) - 2.9280x1072 (5.16 x1072)
3 12 1.4767x1071 (2.29%1072) - 1.6052x1071 (6.33x1072) - 1.3883x 1071 (6.04x1072)
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Table 7. Cont.

Problem M D CMOSCAA CMOSCAD CMOSCA
WFG4 2 11 2.4884x1072 (7.53x1073) - 2.5662x1072 (9.48x1073) - 2.0532x1072 (4.51x1073)
3 12 2.5274x1071 (4.80x1073) - 2.4420x1071 (8.85x1073) = 2.4095x 1071 (8.39x1073)
WEGS 2 11 6.4533%1072 (1.39x1073) - 6.3745x1072 (1.06x1073) = 6.3608x 1072 (1.83x10~%)
3 12 2.2664x1071 (6.26x1073) - 223601071 (4.37x1073) = 2.2262x107! (3.68x1073)
WEG6 2 11 2.2547x1071 (5.73x1072) - 2.2547x1071 (2.02x107%) = 2.2547x 1071 (1.68x107°)
3 12 3.3692x1071 (5.75x1073) = 3.3754x1071 (4.19x1073) - 3.3555x 1071 (1.77x1073)
WEGY 2 11 1.2834x1072 (1.42x10~%) - 1.2805%x1072 (1.88x10~%) - 1.2639%1072 (1.05x10~%)
30 12 2.1510x10~1 (4.05%x1073) - 2.1444x1071 (3.11x1073) - 2.1066x 107! (1.88x1073)
WFGS 2 11 1.1509x 1071 (3.53x1073) + 1.1843x1071 (4.11x1073) - 1.1660x1071 (3.17x1073)
3 12 3.2616x1071 (8.27x1073) - 3.2911x1071 (1.08x1072) - 3.1606 <1071 (9.77x1073)
WEG9Y 2 1 2.2322x1071 (2.19x1072) + 2.2021x107! (3.29x1072) = 2.2676x1071 (2.47x1073)
3 12 3.4681x1071 (4.54x1073) = 3.4470x1071 (3.49x1073) = 3.4464 <1071 (3.88x1073)
ZDT1 230 3.8606x 1073 (4.58 x107°) + 3.8777x1073 (3.78x107°) = 3.8994x 1073 (4.98x107°)
ZDT2 230 3.8505x 1073 (2.87x107°) + 3.8635x1073 (2.90x107%) + 3.8933x1073 (3.48x107)
ZDT3 2 30 4.6639x1073 (5.03x107°) = 4.6779x1073 (4.28x107%) = 4.6982x1073 (7.19x107%)
ZDT4 2 10 2.1828x10! (1.56x10') = 2.2784x10" (1.82x10') = 1.7501x 10" (1.63x101)
+/-/= 7/14/15 4/13/19
“+”,"”="and “-” indicate that the results of the CMOSCAA and CMOSCAD are statistically superior, similar, and
inferior to results obtained by the CMOSCA, respectively. The best result of each test problem is displayed in bold.
Table 8. HV values achieved by three CMOSCA variants.
Problem M D CMOSCAA CMOSCAD CMOSCA
e 2 6 4.9801x10~% (2.73x1073) = 0.0000x10° (0.00x10°%) = 0.0000x10° (0.00x10°)
3 7 0.0000x10° (0.00x10°) = 0.0000%10° (0.00x10°) = 0.0000x10° (0.00x10°)
DTLZ2 2 11 3.4724x1071 (9.67x107%) - 3.4750x 1071 (5.17x1075) + 3.4743x1071 (5.68x107°)
3 12 5.5033x10~1 (2.21x1073) - 5.5478 x 1071 (1.42x1073) + 5.5278x107! (1.94x1073)
DTLZ3 2 11 0.0000x10° (0.00%10°) = 0.0000x10° (0.00x10°) = 0.0000x10° (0.00x 109)
3 12 0.0000x10° (0.00x10°) = 0.0000x10° (0.00x10°) = 0.0000x10° (0.00x 10°)
DTLZ4 2 11 3.4714x1071 (7.74x1072) - 3.4743x1071 (5.31x107°) + 3.4733x1071 (7.32x107%)
3 12 5.4179x1071 (3.26x1073) + 5.4538x 107! (4.14x1073) + 5.3966 %1071 (3.31x1073)
DTLZ5 2 11 3.4720%x1071 (8.66x107%) - 3.4750x1071 (4.72x107°) + 3.4744 %1071 (6.74x107%)
3 12 1.9911x10 ! (3.17x107%) - 1.9987x 1071 (1.15x10~%) + 1.9972x1071 (1.87x10~%)
DTLZ6 2 11 3.4753x1071 (4.55x107°) = 3.4752x1071 (4.51x107°) = 3.4753 <1071 (4.45x107°)
3 12 2.0018x 107! (4.58x107°) = 2.0016x10~1 (2.65x107%) = 2.0017x1071 (3.98x107?)
DILZ7 2 21 2.4295%x1071 (9.49x107°) + 2.4294%1071 (1.57x107%) = 2.4294%1071 (1.03x107%)
3 22 2.7884x1071 (7.48x107%) = 2.7891x10~! (7.43x107%) = 2.7871x1071 (5.17x10~%)
WEG1 2 11 5.1069x 1071 (4.98x1072) = 3.9481x1071 (6.46x1072) - 5.0330x107! (5.46x1072)
3 12 4.6057x10~1 (5.11x1072) - 3.6556x10~1 (5.26x1072) - 5.6834x 107! (5.89x1072)
WEG2 2 11 6.1075%x1071 (3.76x1072) = 5.9275%x10~1 (4.40x1072) - 6.1720x1071 (3.33x1072)
3 12 9.1862x107! (3.17x1072) + 8.8812x1071 (5.24x1072) - 9.1668x107! (3.63x1072)
WEG3 2 11 5.7178x1071 (2.69x1072) - 5.6606x1071 (3.36x1072) - 5.7214x 1071 (2.70x1072)
3 12 3.5253x1071 (1.39%x1072) - 3.5365x 107! (3.06x1072) - 3.6348x107! (3.13x1072)
WEG4 2 11 3.3711x1071 (4.72x1073) - 3.3624x1071 (5.95x1073) - 3.3972x1071 (3.23x1073)
3 12 4.9800x1071 (4.03x1073) - 5.0639x107! (8.82x1073) = 5.0911x 107! (8.68x107%)
WFGS 2 11 3.1259x 1071 (1.39x1073) - 3.1344x1071 (9.88x107%) = 3.1363x 1071 (1.39x107%)
3 12 5.0278x10~1 (4.50x1073) - 5.0607x 1071 (4.39%x1073) = 5.0496 %1071 (3.75x1073)
WEG6 2 1 2.2696x1071 (5.03x107%) = 2.2697x107! (6.21x107°) = 2.2697x1071 (5.36x1075)
3 12 4.1606x1071 (3.21x1073) = 4.1608x1071 (2.25x1073) = 4.1628x 1071 (8.87x107%)
WEGY 2 11 3.4660x1071 (1.39x107%) - 3.4695x1071 (1.13x107%) - 3.4719x1071 (1.15x107%)
3 12 5.4076x10~1 (4.01x1073) - 5.4761x10~1 (3.09x1073) - 5.5302x1071 (2.17x1073)
WEGS 2 11 2.8598x 1071 (1.86x1073) + 2.8431x1071 (2.18x1073%) = 2.8525x107! (1.69x1073)
3 12 4.3333x107! (6.61x1073) - 4.3261x1071 (7.31x1073) - 4.4087x1071 (6.67x1073)
WEG9 2 11 2.2865%x1071 (1.23x1072) + 2.2982x10~ 1 (1.74x1072) = 2.2643%1071 (1.04x1073)
3 12 4.0447x1071 (2.41x1073) - 4.0602x1071 (2.33x1073) = 4.0623x1071 (2.68x1073)
ZDT1 2 30 7.2055x 107! (3.46x1075) + 7.2051x1071 (4.45%x107°) = 7.2049x1071 (5.25x1075)
ZDT2 2 30 4.4511x1071 (2.69x107°) = 4.4508x10~1 (3.60x107°) - 4.4510x10~1 (4.02x107%)
ZDT3 2 30 5.9980x101 (2.09%x1075) = 5.9980%10~1 (1.98x107%) = 5.9979x10~1 (2.39x107?)
ZDT4 2 10 0.0000 % 10° (0.00x10°) = 0.0000%10° (0.00x10°) = 0.0000%10° (0.00x10°)
+/-/= 6/16/14 6/11/19

“+”,“=""and “- " indicate that the results of the CMOSCAA and CMOSCAD are statistically superior, similar, and
inferior to results obtained by the CMOSCA, respectively. The best result of each test problem is displayed in bold.
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4.4. Applying Our Proposed CMOSCA to Engineering Design Problems

In this part, to further evaluate the performance of the CMOSCA in handling the
real-world problems, we apply the CMOSCA to deal with the engineering design problems
including four bar truss design [73], hatch cover design [74], two bar truss design [75],
welded beam design [76] and vehicle crashworthiness design [77]. Four bar truss design
attempts to minimize the two objective functions (i.e., structural volume and joint displace-
ment) and is subject to the member stresses on the four-bar truss. Hatch cover design
is considered as a two-objective problem to minimize the weight of the cover and the
constraint violation values [78]. Two bar truss design aims to minimize the two objective
functions (i.e., structural volume and joint displacement) and is subject to the member
stresses and design variables. Welded beam design is considered as a three-objective
problem to minimize the cost, end deflection and the constraint violation values. Vehicle
crashworthiness design aims to minimize the three objective functions(i.e., the mass of the
vehicle, the integration of collision acceleration and the toe board intrusion). More informa-
tion on the engineering design problems can be found in the references mentioned above.
The proposed CMOSCA and the other six MOEAs are compared on these engineering
design problems.

Table 9 provides the statistical HV results obtained by the seven competing MOEAs
on these five engineering design problems. From the Table 9, it can be seen that the
proposed CMOSCA, MOEA /D-DE and EMOSO obtain the highest HV results on 2, 2, 1
out of 5 engineering design problems, respectively. The other four MOEAs do not have
the highest HV results. The proposed CMOSCA performs best on problems four bar truss
design and vehicle crashworthiness design. The EMOSO performs best on the hatch cover
design problem. The MOEA /D-DE performs best on problems two bar truss design and
welded beam design. From the Wilcoxon rank sum test results in the Table 9, it can also be
observed that the proposed CMOSCA outperforms the other six MOEAs. Specifically, we
can see that CMOSCA outperforms the EMOSO, CMOPSO, MOEA /D, NSGA-II, MOEA /D-
DE, and MMOPSO on 2, 2, 3, 4, 3, and 4 out of 5 test problems, respectively, while it loses
on0,0,1,1,1, and 1 out of 5 test problems. In conclusion, our proposed CMOSCA is a
competitive MOEA for solving these engineering design problems.

Table 9. HV results obtained by the seven competing MOEAs on engineering design problems.

Problem M D EMOSO CMOPSO MOEAD CMOSCA
Four bar truss design 2 4 59810x10°! (124x10°%)-  >IBI0X 1071_ (1.09x107%) (g'gg%lﬁ’@_ 5.9810x10~" (9.02x1017)
Hatch cover design 2 2 88750x10-1 (5.76x10-6)=  5:8750% 1071:(5'4” 1079) 2.739783?013;1_ 8.8750x10"" (5.81x107%)
Two bar truss design 3 3 98210x10-1 (634x10-%)= 8187 1071:(8'0(” 107) éﬁgfﬁffi; 9.8546x 101 (7.64x1073)
Welded beam design 3 4 7.8936x10-1 (4.04x10-1y= [ D242X 1071:(4'25 x107) 3221%1,2;1 6.0661x10~1 (4.60x10~1)
Vehicle crashworthiness design 3 5 24398x107! (3.03x1075) - 24397 1071_ (3:54x1072) (itigfiolg; 1_ 2.4399x107" (1.53x1079)
+/-/= 0/2/3 0/2/3 1/3/1
Problem M D NSGAII MOEADDE MMOPSO CMOSCA
Four bar truss design 2 4 59810x10° 261x10°9)-  >B10% 1071_ (10610 (52.968813 1X01—%;1_ 5.9810x10! (9.02x10° 1)
Hatch cover design 2 2 88747107 (128x10-5).  58665x107 (411x107) 3%45;0{0;)1_ 8.8750x 101 (5.81x1076)
Two bar truss design 3 3 97451x10°1 (150x10-2)-  2-2176% 107;(6'6“ 107) 33%%?013;1_ 9.8546x 101 (7.64x10-3)
Welded beam design 3 4 89927x10°! (3.05x10-1)+ 29991 1071 2131077 (gzii‘llxol,?l; 6.0661x10~1 (4.60x10~1)
Vehicle crashworthiness design 35 24399x1071 (479x107).  24399x1071 (160x10°) ég”f fol,()s;l_ 2.4399%10! (1.53x1076)
+/-/= 1/4/0 1/3/1 1/4/0
“+”,“="and “- ” indicate that the results of competing MOEAs are statistically superior, similar, and inferior to

results obtained by the CMOSCA, respectively. The best result of each test problem is displayed in bold.
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However, the following aspects need to be considered when using the proposed
COMSCA to solve other real-world problems. First, we need to clarify the objectives of
the problem and determine the decision variables and constraints involved. Then make
appropriate adjustments and improvements to the proposed COMSCA according to the
specific conditions of the problem, such as the individual coding method of the algorithm,
to meet the needs of the real-world problems.

5. Conclusions

A novel multi-objective sine cosine algorithm based on a competitive mechanism
(CMOSCA) was presented in this study. In the CMOSCA, a SDE-based competitive mecha-
nism is utilized to devise a new position updating operation for creating offspring agents,
which can make use of the SDE to achieve a good balance between the diversity and
convergence. Moreover, we also proposed two CMOSCA variants, which adopt the angle-
based competitive mechanism and Euclidean distance-based competitive mechanism,
respectively. Six representative MOEAs were adopted to verify the performance of the
proposed CMOSCA on twenty test problems with different characteristics. We experi-
mentally analyzed the influences of the parameter  and compare the CMOSCA with
its two variants. The experimental results exhibited the effectiveness and robustness of
our proposed CMOSCA. Finally, several engineering design problems were employed to
further evaluate the CMOSCA and results of the engineering problems also demonstrated
the competitiveness of our proposed CMOSCA.

However, our proposed CMOSCA algorithm has some shortcomings. First, it does
not perform well on some problems with multi-modal PFE, such as DTLZ3, because it is
still possible to fall into a local optimum. Second, the time complexity of the proposed
CMOSCA is not the best among the competing MOEAs. Third, the performance of the
proposed CMOSCA may degrade as the number of objectives and decision variables in
multi-objective problems increases.

There are many more complex and challenging problems in multi-objective problems,
such as variables that are stochastic, uncertain, dynamic, large-scale and constrained, which
are interesting and challenging research problems. In our future work, we will further
extend our proposed CMOSCA with new strategies [79,80] to solve more complex MOPs,
large-scale MOPs, and dynamic MOPs. In addition, we will try to apply our improved
algorithms to solve more other real-world problems.
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Abbreviations

Abbreviation
CMOPSO
CMOSCA

CMOSCAA

CMOSCAD

CSO
DE

DTLZ

EA-M2SCA
EA-MHSCA
EED

EELD

EMOSO

FES

HV

IBEA

MaOSCA
MaxFES
MMOPSO
MOEA/D
MOEA/D-AM2M

MOEA/DD
MOEA /D-DE
MOEA /D-M2M

MOEA /D-PaS
MOEAs
MOPs
MOSCA
MOSCA-SSC
MPS

MSCA

MSCO
NSGA-II

NSGA-III

PF

PlatEMO

PS

PSO

RVEA

SCA

SDE
SMS-EMOA

TC-MOPSO

Two-arch2
VEGA

WEG
ZDT

Definition

competitive mechanism based multi-objective particle swarm optimizer
multi-objective sine cosine algorithm based on the competitive mechanism
multi-objective sine cosine algorithm based on

the angle competitive mechanism

multi-objective sine cosine algorithm based on

the Euclidean distance competitive mechanism

competitive swarm optimizer

differential evolution

scalable test problems for evolutionary multiobjective optimization,
DTLZ are abbreviations of the reference authors

energy-aware multi-objective modified sine cosine algorithm

hybrid improved version multi-objective modified sine cosine algorithm
environmental/economic dispatch

economic emission load dispatch

efficient multi-objective optimization algorithm based on

level swarm optimizer

current number of function evaluations

hypervolume

indicator-based evolutionary algorithm

many-objective sine cosine algorithm

maximum number of function evaluations

multi-objective particle swarm optimization with multiple search strategies
multiobjective evolutionary algorithm based on decomposition

a new variant of MOEA /D-M2M with adaptive adjustment
evolutionary many-objective optimization algorithm based on
dominance and decomposition

MOEA /D with differential evolution operators

decomposition of a multiobjective optimization problem

into a number of simple multiobjective subproblems
decomposition-based algorithms using pareto adaptive scalarizing methods
multi-objective evolutionary algorithms

multi-objective optimization problems

multi-objective sine cosine algorithm

multi-objective sine cosine algorithm for spatial-spectral clustering
multiprocessor systems

modified sine cosine algorithm

multi-objective sine cosine optimization algorithm

fast and elitist multiobjective genetic algorithm

evolutionary many-objective optimization algorithm

using reference-point-based nondominated sorting approach

Pareto front

platform for evolutionary multi-objective optimization

Pareto-optimal set

particle swarm optimization

reference vector guided evolutionary algorithm

sine cosine algorithm

shift-based density estimation

s-metric selection based MOEA

multiobjective particle swarm optimization algorithm

based on tripartite competition mechanism

improved two-archive algorithm for many-objective optimization
vector evaluated genetic algorithm

scalable multi-objective test problem toolkit,

WEG is abbreviation of Walking Fish Group

multi-objective test problem, ZDT are abbreviations of the reference authors
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