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Abstract: This research paper develops a novel hybrid approach, called hybrid particle swarm
optimization–teaching–learning-based optimization (hPSO-TLBO), by combining two metaheuristic
algorithms to solve optimization problems. The main idea in hPSO-TLBO design is to integrate
the exploitation ability of PSO with the exploration ability of TLBO. The meaning of “exploitation
capabilities of PSO” is the ability of PSO to manage local search with the aim of obtaining possible
better solutions near the obtained solutions and promising areas of the problem-solving space. Also,
“exploration abilities of TLBO” means the ability of TLBO to manage the global search with the
aim of preventing the algorithm from getting stuck in inappropriate local optima. hPSO-TLBO
design methodology is such that in the first step, the teacher phase in TLBO is combined with the
speed equation in PSO. Then, in the second step, the learning phase of TLBO is improved based
on each student learning from a selected better student that has a better value for the objective
function against the corresponding student. The algorithm is presented in detail, accompanied by a
comprehensive mathematical model. A group of benchmarks is used to evaluate the effectiveness
of hPSO-TLBO, covering various types such as unimodal, high-dimensional multimodal, and fixed-
dimensional multimodal. In addition, CEC 2017 benchmark problems are also utilized for evaluation
purposes. The optimization results clearly demonstrate that hPSO-TLBO performs remarkably well in
addressing the benchmark functions. It exhibits a remarkable ability to explore and exploit the search
space while maintaining a balanced approach throughout the optimization process. Furthermore, a
comparative analysis is conducted to evaluate the performance of hPSO-TLBO against twelve widely
recognized metaheuristic algorithms. The evaluation of the experimental findings illustrates that
hPSO-TLBO consistently outperforms the competing algorithms across various benchmark functions,
showcasing its superior performance. The successful deployment of hPSO-TLBO in addressing four
engineering challenges highlights its effectiveness in tackling real-world applications.

Keywords: optimization; metaheuristic; particle swarm optimization; teaching–learning-based
optimization; hybrid-based algorithm; exploration; exploitation

1. Introduction

Optimization is the process of finding the best solution among all available solutions
for an optimization problem [1]. From a mathematical point of view, every optimization
problem consists of three main parts: decision variables, constraints, and objective function.
Therefore, the goal in optimization is to determine the appropriate values for the decision
variables so that the objective function is optimized by respecting the constraints of the
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problem [2]. There are countless optimization problems in science, engineering, industry,
and real-world applications that must be solved using appropriate techniques [3].

Metaheuristic algorithms are one of the most effective approaches used in handling
optimization tasks. Metaheuristic algorithms are able to provide suitable solutions for opti-
mization problems without the need for gradient information, only based on random search
in the problem solving space, using random operators and trial and error processes [4].
Advantages such as simple concepts, easy implementation, efficiency in nonlinear, non-
convex, discontinuous, nonderivative, NP-hard optimization problems, and efficiency in
discrete and unknown search spaces have led to the popularity of metaheuristic algorithms
among researchers [5]. The optimization process in metaheuristic algorithms starts with
the random generation of a number of solvable solutions for the problem. Then, during an
iteration-based process, these initial solutions are improved based on algorithm update
steps. At the end, the best improved solution is presented as the solution to the problem [6].
The nature of random search in metaheuristic algorithms means that there is no guarantee
of achieving the global optimum using these approaches. However, due to the proximity
of the solutions provided by metaheuristic algorithms to the global optimum, they are
acceptable as quasi-optimal solutions [7].

In order to perform the search process in the problem-solving space well, metaheuristic
algorithms must be able to scan the problem-solving space well at both global and local
levels. Global search with the concept of exploration leads to the ability of the algorithm to
search all the variables in the search space in order to prevent the algorithm from getting
stuck in the local optimal areas and to accurately identify the main optimal area. Local
search with the concept of exploitation leads to the ability of the algorithm to search
accurately and meticulously around the discovered solutions and promising areas with the
aim of achieving solutions that are close to the global optimum. In addition to the ability in
exploration and exploitation, what leads to the success of the metaheuristic algorithm in
providing a suitable search process is its ability to establish a balance between exploration
and exploitation during the search process [8]. The desire of researchers to obtain better
solutions for optimization problems has led to the design of numerous metaheuristic
algorithms.

The main question of this research whether, considering the many metaheuristic
algorithms that have been introduced so far, there is a need to design newer algorithms
or develop hybrid approaches from the combination of several metaheuristic algorithms.
In response to this question, the no free lunch (NFL) [9] theorem explains that no unique
metaheuristic algorithm is the best optimizer for all optimization applications. According
to the NFL theorem, the proper performance of a metaheuristic algorithm in solving a set
of optimization problems is not a guarantee of the same performance of that algorithm
in handling other optimization applications. Therefore, the NFL theorem, by keeping the
research field active, motivates researchers to be able to provide more effective solutions
for optimization problems by introducing new algorithms as well as developing hybrid
versions of the combination of several algorithms.

Numerous metaheuristic algorithms have been designed by researchers. Among
these, particle swarm optimization (PSO) [10] and teaching–learning-based optimization
(TLBO) [11] are successful and popular algorithms that have been widely employed to deal
with optimization problems in various sciences.

The design of PSO is inspired by the movement of flocks of birds and fish in search of
food. In PSO design, the position of the best member is used to update the position of the
population members. This dependence of the update process on the best member prevents
the algorithm from scanning the entire problem-solving space, and as a result, it can lead to
the rapid convergence of the algorithm in inappropriate local optima. Therefore, improving
the exploration ability in PSO in order to manage the global search plays a significant role
in the more successful performance of this algorithm.

In the design of TLBO, it is adapted from the exchange of knowledge between the
teacher and students and the students with each other in the educational space of the
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classroom. The teacher phase in the design of TLBO is such that it has led to the high
capability of this algorithm in exploration and global search.

The innovation and novelty of this article are in developing a new hybrid metaheuristic
algorithm called hybrid particle swarm optimization–teaching–learning-based optimization
(hPSO-TLBO), which is used in handling optimization tasks. The main motivation in
designing hybrid algorithms is to benefit from the advantages of two or more algorithms
at the same time by combining them. PSO has good quality in exploitation, but on the
other hand, it suffers from the weakness of exploration. On the other hand, TLBO has high
quality in exploration. Therefore, the main goal in designing hPSO-TLBO is to design a
powerful hybrid metaheuristic approach with benefit and combination the exploitation
power of PSO and the exploration power of TLBO.

The main contributions of this paper are as follows:

• hPSO-TLBO is developed based on the combination of particle swarm optimization–
teaching–learning-based optimization.

• The performance of hPSO-TLBO is tested on fifty-two standard benchmark functions
from unimodal, high-dimensional multimodal, fixed-dimensional multimodal types,
and the CEC 2017 test suite.

• The performance of hPSO-TLBO is evaluated in handling real-world applications,
challenged on four design engineering problems.

• The results of hPSO-TLBO are compared with the performance of twelve well-known
metaheuristic algorithms.

This paper is organized as follows: the literature review is presented in Section 2.
The proposed hPSO-TLBO approach is introduced and modeled in Section 3. Simulation
studies and results are presented in Section 4. The effectiveness of hPSO-TLBO in handling
real-world applications is challenged in Section 5. Finally, conclusions and suggestions for
future research are provided in Section 6.

2. Literature Review

Various natural phenomena have inspired metaheuristic algorithms, the behavior
of living organisms in nature, genetics, and biology, laws and concepts of physics, rules
of games, human behavior, and other evolutionary phenomena. Based on the source of
inspiration in the design, metaheuristic algorithms are placed in five groups: swarm-based,
evolutionary-based, physics-based, game-based, and human-based.

Swarm-based metaheuristic algorithms have been proposed based on modeling swarm
behaviors among birds, animals, insects, aquatic animals, plants, and other living organ-
isms in nature. The most famous algorithms of this group are particle swarm optimization
(PSO) [10], artificial bee colony (ABC) [12], ant colony optimization (ACO) [13], and firefly
algorithm (FA) [14]. The PSO algorithm was developed using inspiration from the move-
ment of flocks of birds and fishes searching for food. ABC was proposed based on the
activities of honey bees in a colony, aiming to access food resources. ACO was introduced
based on modeling the ability of ants to discover the shortest path between the colony and
the food source. FA was developed using inspiration from optical communication between
fireflies. Foraging, hunting, migration, digging are among the most common natural be-
haviors among living organisms, which have been a source of inspiration in the design of
swarm-based metaheuristic algorithms such as the coati optimization algorithm (COA) [15],
whale optimization algorithm (WOA) [16], white shark optimizer (WSO) [17], reptile search
algorithm (RSA) [18], pelican optimization algorithm (POA) [19], kookaburra optimization
algorithm (KOA) [20], grey wolf optimizer (GWO) [21], walruses optimization algorithm
(WaOA) [22], golden jackal optimization (GJO) [23], honey badger algorithm (HBA) [24],
lyrebird optimization algorithm (LOA) [25], marine predator algorithm (MPA) [26], African
vultures optimization algorithm (AVOA) [27], and tunicate swarm algorithm (TSA) [28].

Evolutionary-based metaheuristic algorithms have been proposed based on modeling
concepts of biology and genetics such as survival of the fittest, natural selection, etc. The
genetic algorithm (GA) [29] and differential evolution (DE) [30] are among the most well-
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known and widely used metaheuristic algorithms developed based on the modeling of the
generation process, Darwin’s evolutionary theory, and the use of mutation, crossover, and
selection random evolutionary operators. Artificial immune system (AIS) [31] algorithms
are designed with inspiration from the human body’s defense mechanism against diseases
and microbes.

Physics-based metaheuristic algorithms have been proposed based on modeling con-
cepts, transformations, forces, laws in physics. Simulated annealing (SA) [32] is one of
the most famous metaheuristic algorithms of this group, which was developed based on
the modeling of the annealing process of metals, during which, based on physical trans-
formations, metals are melted under heat and then slowly cooled to become the crystal
of its idea. Physical forces have inspired the design of several algorithms, including the
gravitational search algorithm (GSA) [33], based on gravitational force simulation; spring
search algorithm (SSA) [34], based on spring potential force simulation; and momentum
search algorithm (MSA) [35], based on impulse force simulation. Some of the most popular
physics-based methods are water cycle algorithm (WCA) design [36], electromagnetism
optimization (EMO) [37], the Archimedes optimization algorithm (AOA) [38], Lichtenberg
algorithm (LA) [39], equilibrium optimizer (EO) [40], black hole algorithm (BHA) [41],
multi-verse optimizer (MVO) [42], and thermal exchange optimization (TEO) [43].

Game-based metaheuristic algorithms have been proposed, inspired by governing
rules, strategies of players, referees, coaches, and other influential factors in individual and
group games. The modeling of league matches was a source of inspiration in designing
algorithms such as football game-based optimization (FGBO) [44], based on a football
game, and the volleyball premier league (VPL) algorithm [45], based on a volleyball league.
The effort of players in a tug-of-war competition was the main idea in the design of tug of
war optimization (TWO) [46]. Some other game-based algorithms are the golf optimization
algorithm (GOA) [47], hide object game optimizer (HOGO) [48], darts game optimizer
(DGO) [49], archery algorithm (AA) [5], and puzzle optimization algorithm (POA) [50].

Human-based metaheuristic algorithms have been proposed, inspired by strategies,
choices, decisions, thoughts, and other human behaviors in individual and social life.
Teaching–learning-based optimization (TLBO) [11] is one of the most famous human-based
algorithms, which is designed based on modeling the classroom learning environment
and the interactions between students and teachers. Interactions between doctors and
patients in order to treat patients is the main idea in the design of doctor and patient
optimization (DPO) [51]. Cooperation among the people of a team in order to achieve
the set goals of that team is employed in teamwork optimization algorithm (TOA) [52]
design. The efforts of both the poor and the rich sections of the society in order to im-
prove their economic situation were a source of inspiration in the design of poor and rich
optimization (PRO) [53]. Some of the other human-based metaheuristic algorithms are
the mother optimization algorithm (MOA) [54], herd immunity optimizer (CHIO) [55],
driving training-based optimization (DTBO) [56], Ali Baba and the Forty Thieves (AFT) [57],
election-based optimization algorithm (EBOA) [58], chef-based optimization algorithm
(ChBOA) [59], sewing training-based optimization (STBO) [60], language education op-
timization (LEO) [61], gaining–sharing knowledge-based algorithm (GSK) [62], and war
strategy optimization (WSO) [63].

In addition to the groupings stated above, researchers have developed hybrid meta-
heuristic algorithms by combining two or more metaheuristic algorithms. The main goal
and motivation in the construction of hybrid metaheuristic algorithms is to take advantage
of several algorithms at the same time in order to improve the performance of the opti-
mization process compared to the single versions of each of the combined algorithms. The
combination of TLBO and HS was used to design the hTLBO-HS hybrid approach [64].
hPSO-YUKI was proposed based on the combination of PSO and the YUKI algorithm to
address the challenge of double crack identification in CFRP cantilever beams [65]. The
hGWO-PSO hybrid approach was designed by integrating GWO and PSO for static and
dynamic crack identification [66].
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PSO and TLBO algorithms are successful metaheuristic approaches that have always
attracted the attention of researchers and have been employed to solve many optimization
applications. In addition to using single versions of PSO and TLBO, researchers have
tried to develop hybrid approaches by integrating these two algorithms that benefit from
the advantages of both algorithms at the same time. A hybrid version of hPSO-TLBO
was proposed based on merging the better half of the PSO population and the better
half obtained from the TLBO teacher phase. Then, the merged population enters the
learner phase of TLBO. In this hybrid approach, there is no change or integration in
the equations [67]. A hybrid version of hPSO-TLBO based on population merging was
proposed for trajectory optimization [68]. The idea of dividing and merging the population
has also been used to solve optimization problems [69]. A hybrid version of PSO and TLBO
was proposed for distribution network reconfiguration [70]. A hybrid version of TLBO
and SA as well as the use of a support vector machine was developed for gene expression
data [71]. From the combination of the sine–cosine algorithm and TLBO, the hSCA-TLBO
hybrid approach was proposed for visual tracking [72]. Sunflower optimization and TLBO
were combined to develop hSFO-TLBO for biodegradable classification [73]. A hybrid
version called hTLBO-SSA was proposed from the combination of the salp swarm algorithm
and TLBO for reliability redundancy allocation problems [74]. A hybrid version consisting
of PSO and SA was developed under the title of hPSO-SA for mobile robot path planning in
warehouses [75]. Harris hawks optimization and PSO were integrated with Ham to design
hPSO-HHO for renewable energy applications [76]. A hybrid version called hPSO-GSA
was proposed from the combination of PSO and GSA for feature selection [77]. A hybrid
version made from PSO and GWO called hPSO-GWO was developed to deal with reliability
optimization and redundancy allocation for fire extinguisher drones [78]. A hybrid PSO-GA
approach was proposed for flexible flow shop scheduling with transportation [79].

In addition to the development of hybrid metaheuristic algorithms, researchers have
tried to improve existing versions of algorithms by making modifications. Therefore, nu-
merous improved versions of metaheuristic algorithms have been proposed by scientists
to improve the performance of the original versions of existing algorithms. An improved
version of PSO was proposed for efficient maximum power point tracking under partial
shading conditions [80]. An improved version of PSO was developed based on humming-
bird flight patterns to enhance search quality and population diversity [81]. In order to deal
with the planar graph coloring problem, an improved version of PSO was designed [82].
The application of an improved version of PSO was evaluated for the optimization of
reactive power [83]. An improved version of TLBO for optimal placement and sizing of
electric vehicle charging infrastructure in a grid-tied DC microgrid was proposed [84]. An
improved version of TLBO was developed for solving time–cost optimization in general-
ized construction projects [85]. Two improved TLBO approaches were developed for the
solution of inverse boundary design problems [86]. In order to address the challenge of
selective harmonic elimination in multilevel inverters, an improved version of TLBO was
designed [87].

Based on the best knowledge from the literature review, although several attempts
have been made to improve the performance of PSO and TLBO algorithms and also to
design hybrid versions of these two algorithms, it is still possible to develop an effective
hybrid approach to solve optimization problems by integrating the equations of these two
algorithms and making modifications in their design. In order to address this research
gap in the study of metaheuristic algorithms, in this paper, a new hybrid metaheuristic
approach combining PSO and TLBO was developed, which is discussed in detail in the
next section.

3. Hybrid Particle Swarm Optimization–Teaching–Learning-Based Optimization

In this section, PSO and TLBO are discussed first, and their mathematical equations
are presented. Then, the proposed hybrid particle swarm optimization–teaching–learning-
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based optimization (hPSO-TLBO) approach is presented based on the combination of PSO
and TLBO.

3.1. Particle Swarm Optimization (PSO)

PSO is a prominent swarm-based metaheuristic algorithm widely known for its ability
to emulate the foraging behavior observed in fish and bird flocks, enabling an effective
search for optimal solutions. All PSO members are candidate solutions representing
values of decision variables based on their position in the search space. The personal
best experience Pbesti

and the collective best experience gbest are used in PSO design in the
population updating process. Pbesti

represents the best candidate solution that each PSO
member has been able to achieve up to the current iteration. gbest is the best candidate
solution discovered up to the current iteration by the entire population in the search space.
The population update equations in PSO are as follows:

Xi(t + 1) = Xi(t) + Vi(t), (1)

Vi(t + 1) = ω(t)·Vi(t) + r1·c1·
(

Pbesti
− Xi(t)

)
+ r2·c2·(gbest − Xi(t)), (2)

ω(t) = 0.9− 0.8· t− 1
T − 1

(3)

where Xi(t) is the ith PSO member, Vi(t) is its velocity, Pbesti
is the best obtained solution

so far by the ith PSO member, gbest is the best obtained solution so far by overall PSO
population, ω(t) is the inertia weight factor with linear reduction from 0.9 to 0.1 during
algorithm iteration, T is the maximum number of iterations, t is the iteration counter, r1
and r2 are the real numbers with a uniform probability distribution between 0 and 1 (i.e.,
r1, r2 ∈ U[0, 1]), c1 and c2 (fulfilling the condition c1 + c2 ≤ 4) are acceleration constants
in which c1 represents the confidence of a PSO member in itself while c2 represents the
confidence of a PSO member in the population.

3.2. Teaching–Learning-Based Optimization (TLBO)

TLBO has established itself as a leading and extensively employed human-based
metaheuristic algorithm, effectively simulating the dynamics of educational interactions
within a classroom setting. Like PSO, each TLBO member is also a candidate solution to
the problem based on its position in the search space. In the design of TLBO, the best
member of the population with the most knowledge is considered a teacher, and the other
population members are considered class students. In TLBO, the position of population
members is updated under two phases (the teacher and learner phases).

In the teacher phase, the best member of the population with the highest level of
knowledge, denoted as the teacher, tries to raise the academic level of the class by teaching
and transferring knowledge to students. The population update equations in TLBO based
on the teacher phase are as follows:

Xi = Xi + r3·(T − I·M), (4)

M =
∑N

i=1 Xi

N
, (5)

where Xi is the ith TLBO member, T is the teacher, M is the mean value of the class,
r3 ∈ U[0, 1], I is a random integer obtained from a uniform distribution on the set {1, 2},
and N represents the number of population members.

In the learner phase, the students of the class try to improve their knowledge level and
thus the class by helping each other. In TLBO, it is assumed that each student randomly
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chooses another student and exchanges knowledge. The population update equations in
TLBO based on the learner phase are as follows:

Xi =

{
Xi + r4·(Xk − Xi), Fk < Fi;
Xi + r4·(Xi − Xk), else,

(6)

where Xk is the kth student (k ∈ {1, 2, 3, ..., N} and k ̸= i), Fk is its objective function value,
and r4 ∈ U[0, 1].

3.3. Proposed Hybrid Particle Swarm Optimization–Teaching–Learning-Based
Optimization (hPSO-TLBO)

This subsection presents the introduction and modeling of the proposed hPSO-TLBO
approach, which combines the features of PSO and TLBO. In this design, an attempt was
made to use the advantages of each of the mentioned algorithms so as to develop a hybrid
metaheuristic algorithm that performs better than PSO or TLBO.

PSO has a high exploitation ability based on the term r1·c1·
(

Pbesti
− Xi

)
in the up-

date equations; however, due to the dependence of the update process on the best pop-
ulation member gbest, PSO is weak in global search and exploration. In fact, the term
r2·c2·(gbest − Xi) in PSO can stop the algorithm by taking it to the local optimum and
reaching the stationary state (early gathering of all population members in a solution).

The teacher phase in TLBO incorporates large and sudden changes in the population’s
position, based on term r3·(T − I·M), resulting in global search and exploration capabilities.
Enhancing exploration in metaheuristic algorithms improves the search process, preventing
it from getting trapped in local optima and accurately identifying the main optimal area.
Hence, the primary concept behind the design of the proposed hPSO-TLBO approach
is to facilitate the exploration phase in PSO by leveraging the exceptional global search
and exploration capabilities of TLBO. According to this, in hPSO-TLBO, a new hybrid
metaheuristic algorithm is designed by integrating the exploration ability of TLBO with
the exploitation ability of PSO.

For the possibility and effectiveness of the combination of PSO and TLBO, the term
r2·c2·(gbest − Xi) was removed from Equation (2) (i.e., equation for velocity), and conversely,
to improve the discovery ability, the term r3·(T − I·M) from the teacher phase of TLBO was
added to this equation. Therefore, the new form of velocity equation in the hPSO-TLBO is
as follows:

Vi = ω(t)·Vi + r1·c1·
(

Pbesti
− Xi

)
+ r3·(T − I·M). (7)

Then, based on the velocity calculated from Equation (7), and based on Equation (1), a
new location for any hPSO-TLBO member is calculated by Equation (8). If the value of the
objective function improves at the new location, it supersedes the previous position of the
corresponding member based on Equation (9).

Xnew
i = Xi + Vi, (8)

Xi =

{
Xnew

i , Fnew
i ≤ Fi;

Xi, else,
(9)

where Xnew
i is the new proposed location for the ith population member in the search space

and Fnew
i is objective function value of Xnew

i .
During the student phase of TLBO, every student chooses another student at random

for the purpose of exchanging knowledge. A randomly selected student may have a better
or worse knowledge status compared to the student who is the selector. In hPSO-TLBO
design, an enhancement is introduced in the student phase, assuming that each student
selects a superior student to elevate their knowledge level and enhance overall performance.
In this case, if the objective function value of a member represents the scientific level of
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that member, the set of better students for each hPSO-TLBO member is determined using
Equation (10):

CSi =
{

X↕; Fk < F↕ ∧ ↕ ∈ {1, 2, . . . , N}
}
∪ T, (10)

where CSi is the set of suitable students for guiding the ith member Xi, and X↕ is the
population member with a better objective function value F↕ than member Xi.

In the implementation of hPSO-TLBO, each student uniformly randomly chooses one
of the higher-performing students from a given set and proceeds to exchange knowledge
with them. Based on the exchange of knowledge in the student phase, a new location of
each member is calculated by Equation (11). If the new position leads to an improvement in
the objective function value, it replaces the previous position of the corresponding member,
as specified by Equation (12).

Xnew
i = Xi + r4(SSi − Xi), (11)

Xi =

{
Xnew

i , Fnew
i ≤ Fi;

Xi, else,
(12)

where SSi is the selected student for guiding the ith population member.
Figure 1 presents a flowchart illustrating the implementation steps of the hPSO-TLBO

approach, while Algorithm 1 provides the corresponding pseudocode.

Algorithm 1. Pseudocode of hPSO-TLBO

Start hPSO-TLBO.
1. Input problem information: variables, objective function, and constraints.
2. Set the population size N and the maximum number of iterations T.
3. Generate the initial population matrix at random.
4. Evaluate the objective function.
5. For t = 1 to T
6. Update the value of ω(t) by Equation (3) and the value of the teacher T.

7.
Calculate M using Equation (5). M←

N
∑

i=1
Xi

N
8. For i = 1 to N
9. Update Pbesti

based on comparison Xi with Pbesti
.

10. Set the best population member as teacher T.

11.
Calculate hybrid velocity for the ith member using Equation (7).
Vi ← ω(t)·Vi + r1·c1·

(
Pbesti

− Xi
)
+ r3·(T − I·M)

12. Calculate new position of the ith population member using Equation (8). Xnew
i ← Xi + Vi

13. Update the ith member using Equation (9). Xi ←
{

Xnew
i , Fnew

i ≤ Fi;
Xi, else.

14.
Determine candidate students set for the ith member using Equation (10).
CSi ← {Xk| Fk < Fi, k ∈ {1, 2, . . . , N}} ∪ T

15.
Calculate the new position of the ith population member based on modified student phase by Equation (11).
Xnew

i ← Xi + r4·(SSi − Xi)

16. Update the ith member using Equation (12). Xi ←
{

Xnew
i , Fnew

i ≤ Fi;
Xi, else.

17. end
18. Save the best candidate solution so far.
19. end
20. Output the best quasi-optimal solution obtained with hPSO-TLBO.
End hPSO-TLBO.
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where 𝑆𝑆𝑖 is the selected student for guiding the 𝑖th population member. 

Figure 1 presents a flowchart illustrating the implementation steps of the hPSO-

TLBO approach, while Algorithm 1 provides the corresponding pseudocode. 

 

Figure 1. Flowchart of hPSO-TLBO.

3.4. Computational Complexity of hPSO-TLBO

This subsection focuses on evaluating the computational complexity of the hPSO-
TLBO algorithm. The initialization of hPSO-TLBO for an optimization problem with m
decision variables has a computational complexity of O(Nm), where N represents the
number of population members. In each iteration, the position of the population members
in the search space is updated in two steps. As a result, in each iteration, the value of the
objective function for each population member is computed twice. Hence, the computa-
tional complexity of the population update process in hPSO-TLBO is O(2NmT), with T
representing the total number of the algorithm’s iterations. Based on these, the overall
computational complexity of the proposed hPSO-TLBO approach is O(Nm(2T + 1)).

Similarly, the computational complexity of each of the PSO and TLBO algorithms
can also be evaluated. PSO has a computational complexity of O(Nm(T + 1)) and TLBO
has a computational complexity of O(Nm(2T + 1)). Therefore, from the point of view
of computational complexity, the proposed hPSO-TLBO approach has a similar situation
to TLBO, but compared to PSO, it has twice the computational complexity. Actually, the
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number of function evaluations in each iteration in hPSO-TLBO and TLBO is equal to 2N
and in PSO is equal to N.

4. Simulation Studies and Results

In this section, the performance of the proposed hPSO-TLBO approach in solving
optimization problems is evaluated. For this purpose, a set of fifty-two standard benchmark
functions of unimodal, high-dimensional multimodal, and fixed-dimensional multimodal
types [88], and CEC 2017 test suite [89] were employed.

4.1. Performance Comparison and Experimental Settings

In order to check the quality of hPSO-TLBO, the obtained results were compared with
the performance of twelve well-known metaheuristic algorithms: PSO, TLBO, improved
PSO (IPSO) [81], improved TLBO (ITLBO) [87], hybrid PSO-TLBO (hPT1) developed
in [67], hybrid PSO-TLBO (hPT2) developed in [90], GWO, MPA, TSA, RSA, AVOA, WSO.
Therefore, hPSO-TLBO was compared with twelve metaheuristic algorithms in total. The
experiments were carried out on a Windows 10 computer with a 2.2GHz Core i7 processor
and 16 GB of RAM, utilizing MATLAB 2018a as the software environment. The optimization
results are reported using six statistical indicators: mean, best, worst, standard deviation
(std), median, and rank. In addition, the value of the mean index was used to rank the
metaheuristic algorithms in handling each of the benchmark functions.

4.2. Evaluation of Unimodal Test Functions F1 to F7

Unimodal functions are valuable for evaluating the exploitation and local search
capabilities of metaheuristic algorithms since they lack local optima. Table 1 presents the
optimization results of unimodal functions F1 to F7, obtained using hPSO-TLBO and other
competing algorithms. The optimization results demonstrate that hPSO-TLBO excels in
local search and exploitation, consistently achieving the global optimum for functions F1
to F6. Furthermore, hPSO-TLBO emerged as the top-performing optimizer for solving
function F7. The analysis of simulation outcomes confirms that hPSO-TLBO, with its
exceptional exploitation capability and superior results, outperforms competing algorithms
in tackling functions F1 to F7 of unimodal type.

Table 1. Optimization results of unimodal functions.

F hPSO-
TLBO WSO AVOA RSA MPA TSA GWO hPT2 hPT1 ITLBO IPSO TLBO PSO

F1

Mean 0 58.07159 7.09E-61 7.09E-61 1.69E-49 4.1E-47 7.09E-
61 0.131844 1.63E-59 7.09E-61 1.17E-16 0.088953 26.87535

Best 0 4.665568 5.99E-63 5.99E-63 3.36E-52 1.27E-50 5.99E-
63 0.092965 1.38E-61 5.99E-63 4.72E-17 0.000429 15.79547

Worst 0 210.5042 3.09E-60 3.09E-60 1.46E-48 2.91E-46 3.09E-
60 0.177363 7.11E-59 3.09E-60 3.29E-16 1.231554 50.15932

Std 0 45.40585 8.38E-61 8.38E-61 3.38E-49 8.61E-47 8.38E-
61 0.023884 1.92E-59 8.38E-61 6.16E-17 0.267405 9.002594

Median 0 40.01959 4.31E-61 4.31E-61 3.67E-50 3.77E-48 4.31E-
61 0.13263 9.91E-60 4.31E-61 9.97E-17 0.008564 24.84615

Rank 1 11 2 2 5 6 2 9 4 3 7 8 10

Mean 0 1.885416 5.43E-36 5.43E-36 6.14E-28 1.86E-28 5.43E-
36 0.228358 1.25E-34 5.44E-36 4.83E-08 0.789031 2.456858

Best 0 0.583709 1.95E-37 1.95E-37 1.63E-29 1.78E-30 1.95E-
37 0.141042 4.49E-36 1.97E-37 3.07E-08 0.039898 1.537836

Worst 0 6.560237 3.17E-35 3.17E-35 4.15E-27 1.61E-27 3.17E-
35 0.32117 7.29E-34 3.17E-35 1.09E-07 2.196863 3.353961

Std 0 1.526648 7.67E-36 7.67E-36 9.41E-28 4.55E-28 7.67E-
36 0.0542 1.76E-34 7.67E-36 1.61E-08 0.621855 0.468754

Median 0 1.348491 2.61E-36 2.61E-36 3.1E-28 1.74E-29 2.61E-
36 0.236442 5.99E-35 2.63E-36 4.52E-08 0.514708 2.415588

F2

Rank 1 10 2 2 6 5 2 8 4 3 7 9 11

F3

Mean 0 1573.92 8.72E-16 8.72E-16 2.21E-12 1.04E-10 17586.09 14.07412 2E-14 8.72E-16 418.9635 341.9832 1911.093
Best 0 916.7392 9.45E-21 9.45E-21 1.62E-16 2.18E-18 1819.369 5.263941 2.17E-19 9.48E-21 216.719 19.18004 1254.853

Worst 0 3121.842 1.62E-14 1.62E-14 1.27E-11 1.72E-09 30564.02 43.12089 3.73E-13 1.62E-14 1045.265 903.4752 3047.672
Std 0 540.174 3.53E-15 3.53E-15 3.77E-12 3.75E-10 7362.857 9.262445 8.11E-14 3.53E-15 189.5394 248.1753 550.4119

Median 0 1373.011 1.87E-17 1.87E-17 1.61E-13 9.48E-14 17907.73 10.46683 4.3E-16 1.87E-17 352.7354 258.2018 1850.929
Rank 1 10 2 2 5 6 12 7 4 3 9 8 11
Mean 0 15.23952 4.92E-16 4.92E-16 4.92E-16 0.003897 45.65984 0.482066 1.13E-14 4.92E-16 1.088936 5.533212 2.492984
Best 0 10.49816 2.63E-17 2.63E-17 2.67E-17 8.51E-05 0.797019 0.234307 6.04E-16 2.63E-17 8.72E-09 2.017958 1.952933

Worst 0 21.00169 2.3E-15 2.3E-15 2.3E-15 0.031568 80.80556 0.848542 5.29E-14 2.3E-15 4.341798 11.77172 3.518006
Std 0 2.484433 5.71E-16 5.71E-16 5.71E-16 0.006836 25.48147 0.165382 1.31E-14 5.71E-16 1.193547 2.153131 0.401768

Median 0 15.65954 2.55E-16 2.55E-16 2.55E-16 0.001295 48.83455 0.467904 5.85E-15 2.55E-16 0.799113 5.183052 2.452526

F4

Rank 1 11 2 2 4 6 12 7 5 3 8 10 9

F5

Mean 0 9516.431 1.066232 12.51932 21.61701 26.15764 25.12883 85.84715 24.48729 24.6691 39.87864 4064.647 525.661
Best 0 1188.169 1.025518 1.025505 21.1648 23.70648 24.59573 25.39379 23.55223 23.59366 23.85439 24.20836 202.6519

Worst 0 81,693.13 1.089267 26.63229 22.24073 26.54457 26.40645 334.024 25.01649 26.42328 148.4471 79368.29 1989.749
Std 0 17,267.51 0.020618 12.68763 0.333573 0.674837 0.500437 87.30341 0.473488 0.806602 38.14302 17309.01 365.6698

Median 0 4943.759 1.052191 1.088766 21.59754 26.44754 24.93124 27.53712 24.16495 24.2643 24.28404 76.94997 420.079
Rank 1 13 2 3 4 8 7 10 5 6 9 12 11
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Table 1. Cont.

F hPSO-
TLBO WSO AVOA RSA MPA TSA GWO hPT2 hPT1 ITLBO IPSO TLBO PSO

Mean 0 88.93565 0.026507 5.716556 0.026507 3.27064 0.098382 0.159556 0.608782 1.137933 0.026507 0.08241 30.11387
Best 0 14.95731 0.009897 3.257687 0.009897 2.279437 0.023498 0.089817 0.22729 0.233809 0.009897 0.010145 13.77592

Worst 0 337.0663 0.05023 6.428149 0.05023 4.238575 0.308096 0.250358 1.153614 1.917394 0.05023 0.497324 55.34426
Std 0 82.15401 0.01201 0.885657 0.01201 0.596429 0.084744 0.041251 0.275827 0.423887 0.01201 0.125926 11.65958

Median 0 61.32398 0.029174 6.111534 0.029174 3.382167 0.060521 0.16307 0.670012 1.099359 0.029174 0.030784 27.94543

F6

Rank 1 13 4 11 3 10 6 7 8 9 2 5 12

F7

Mean 2.54E-05 0.000115 9.04E-05 6.18E-05 0.000517 0.003862 0.001161 0.010269 0.000767 0.001383 0.046565 0.162282 0.009365

Best 2.35E-06 2.3E-05 1.5E-05 1.43E-05 0.000133 0.001351 8.11E-
05 0.00354 0.000168 8.83E-05 0.012474 0.060852 0.002701

Worst 6.89E-05 0.000317 0.000261 0.000159 0.000801 0.008816 0.004798 0.019927 0.001803 0.002604 0.08422 0.362473 0.019393
Std 1.93E-05 7.92E-05 6.36E-05 3.04E-05 0.000184 0.002009 0.001241 0.004336 0.00042 0.000755 0.021471 0.067986 0.004146

Median 1.83E-05 8.37E-05 7.21E-05 5.91E-05 0.000502 0.003319 0.000752 0.010003 0.00078 0.001351 0.045702 0.156642 0.009006
Rank 1 4 3 2 5 9 7 11 6 8 12 13 10

Sum rank 7 72 17 24 32 50 48 59 36 35 54 65 74
Mean rank 1 10.28571 2.428571 3.428571 4.571429 7.142857 6.857143 8.428571 5.142857 5 7.714286 9.285714 10.57143

Total ranking 1 12 2 3 4 8 7 10 6 5 9 11 13

4.3. Evaluation of High-Dimensional Multimodal Test Functions F8 to F13

Due to having multiple local optima, high-dimensional multimodal functions are
suitable options for global exploration and search in metaheuristic algorithms. The results
of implementing hPSO-TLBO and competing algorithms on high-dimensional multimodal
benchmarks F8 to F13 are presented in Table 2. Based on the results, hPSO-TLBO, with
high discovery ability, was able to handle functions F9 and F11 while identifying the
main optimal area, converging to the global optimum. The hPSO-TLBO demonstrates
exceptional performance as the top optimizer for benchmarks F8, F10, F12, and F13. The
simulation results clearly indicate that hPSO-TLBO, with its remarkable exploration capa-
bility, outperforms competing algorithms in effectively handling benchmarks F8 to F13 of
high-dimensional multimodal type.

Table 2. Optimization results of high-dimensional multimodal functions.

F hPSO-
TLBO WSO AVOA RSA MPA TSA GWO hPT2 hPT1 ITLBO IPSO TLBO PSO

F8

Mean −12,498.6 −7441.49 −12,216.6 −6018.45 −9764.22 −6637.83 −10,978.1 −8130.21 −6585.37 −6161.34 −3679.16 −6997.53 −8648.79
Best −12,622.8 −9148.22 −12,328.4 −6214.34 −10450.1 −7689.05 −12314 −9292.31 −7292.22 −7424.16 −4727.93 −8481.16 −9748.05

Worst −11,936.3 −6604.3 −11715 −5570.82 −9263.23 −5103.76 −8038.63 −7294.3 −5644.31 −5239.76 −3087.21 −5627.46 −7433.78
Std 185.933 632.4496 166.3366 191.7651 309.4905 620.8402 1488.781 623.0539 425.9794 530.8499 431.4128 643.493 548.4352

Median −12,577.8 −7384.82 −12,293.4 −6058.43 −9804.06 −6608.26 −11,853.8 −8022.38 −6586.24 −6192.06 −3598.29 −7140.36 −8616.57
Rank 1 7 2 12 4 9 3 6 10 11 13 8 5
Mean 0 21.70166 6.84E-16 6.84E-16 6.84E-16 152.5399 6.84E-16 86.19788 1.57E-14 6.84E-16 25.11628 59.66324 48.1797
Best 0 12.88139 0 0 0 79.07429 0 46.51055 0 0 12.27323 35.06638 20.47009

Worst 0 40.48713 4.56E-15 4.56E-15 4.56E-15 253.9196 4.56E-15 131.5313 1.05E-13 4.56E-15 42.95628 100.9408 67.75744
Std 0 7.415334 1.27E-15 1.27E-15 1.27E-15 43.88833 1.27E-15 21.68033 2.92E-14 1.27E-15 7.886816 16.21153 11.8805

Median 0 19.99106 0 0 0 146.858 0 85.53992 0 0 23.23147 57.33199 46.35864

F9

Rank 1 4 2 2 2 9 2 8 3 2 5 7 6

F10

Mean 8.88E-16 4.662244 1.52E-15 1.52E-15 4.5E-15 1.094762 4.34E-15 0.509188 1.55E-14 4.65E-15 7.24E-09 2.402969 3.150025
Best 8.88E-16 2.980712 1.17E-15 1.17E-15 1.74E-15 8E-15 1.46E-15 0.088639 7.43E-15 4.3E-15 4.11E-09 1.4921 2.5393

Worst 8.88E-16 7.22389 1.74E-15 1.74E-15 4.87E-15 2.972354 8E-15 2.216136 2.05E-14 4.87E-15 1.27E-08 4.455792 4.090043
Std 0 1.050992 1.39E-16 1.39E-16 6.46E-16 1.350455 1.96E-15 0.582673 3.19E-15 1.39E-16 2.01E-09 0.738078 0.341285

Median 8.88E-16 4.563645 1.46E-15 1.46E-15 4.59E-15 2.03E-14 4.59E-15 0.171211 1.4E-14 4.59E-15 6.81E-09 2.408861 3.198028
Rank 1 12 2 2 4 9 3 8 6 5 7 10 11
Mean 0 1.512162 5.37E-05 5.37E-05 5.37E-05 0.007845 5.37E-05 0.352208 0.001234 5.37E-05 6.351044 0.163292 1.298331
Best 0 0.972628 0 0 0 0 0 0.22393 0 0 2.639784 0.002841 1.134942

Worst 0 2.894179 0.000755 0.000755 0.000755 0.018104 0.000755 0.472258 0.017341 0.000755 11.13516 0.771711 1.520656
Std 0 0.466901 0.000176 0.000176 0.000176 0.005425 0.000176 0.070424 0.004033 0.000176 2.341121 0.196554 0.106538

Median 0 1.410629 0 0 0 0.008084 0 0.367154 0 0 6.442223 0.107808 1.275578

F11

Rank 1 8 2 2 2 4 2 6 3 2 9 5 7

F12

Mean 1.57E-32 2.882539 0.0016 1.162552 0.0016 5.105635 0.019307 0.807492 0.036737 0.064448 0.186664 1.324184 0.243809
Best 1.57E-32 0.841956 0.000504 0.678786 0.000504 0.915241 0.002818 0.001689 0.011573 0.022023 0.001228 0.002242 0.055508

Worst 1.57E-32 6.513307 0.003481 1.450986 0.003481 12.45602 0.121128 3.392312 0.079946 0.120129 0.821731 4.600176 0.576584
Std 2.74E-48 1.574216 0.000836 0.26155 0.000836 3.338511 0.03409 1.029815 0.019191 0.018042 0.264223 1.106087 0.119679

Median 1.57E-32 2.551467 0.001521 1.225406 0.001521 3.794602 0.006401 0.371998 0.034924 0.063014 0.072401 1.133776 0.234452
Rank 1 12 3 10 2 13 4 9 5 6 7 11 8
Mean 1.35E-32 3171.704 0.02061 0.02061 0.022811 2.414466 0.209698 0.049488 0.473338 0.991581 0.070534 3.199289 2.406486
Best 1.35E-32 12.16954 1.88E-06 1.88E-06 0.007909 1.790394 0.047447 0.019729 4.32E-05 0.539453 0.007909 0.028472 1.150151

Worst 1.35E-32 54770.43 0.03811 0.03811 0.03811 3.308616 0.624983 0.105229 0.875262 1.377995 0.844427 11.10643 3.48383
Std 2.74E-48 11920.44 0.010099 0.010099 0.009378 0.481365 0.159473 0.023458 0.231945 0.200568 0.179163 2.605342 0.652146

Median 1.35E-32 38.99428 0.020744 0.020744 0.023381 2.251915 0.166636 0.04162 0.476406 1.000383 0.028803 2.930893 2.536779

F13

Rank 1 13 3 2 4 11 7 5 8 9 6 12 10
Sum Rank 6 56 14 30 18 55 21 42 35 35 47 53 47
Mean rank 1 9.333333 2.333333 5 3 9.166667 3.5 7 5.833333 5.833333 7.833333 8.833333 7.833333

Total ranking 1 11 2 5 3 10 4 7 6 6 8 9 8

4.4. Evaluation of Fixed-Dimensional Multimodal Test Functions F14 to F23

Multimodal functions with a fixed number of dimensions are suitable criteria for
simultaneous measurement of exploration and exploitation in metaheuristic algorithms.
Table 3 presents the outcomes achieved by applying hPSO-TLBO and other competing
optimizers to fixed-dimension multimodal benchmarks F14 to F23. The proposed hPSO-
TLBO emerged as the top-performing optimizer for functions F14 to F23, showcasing its
effectiveness. In cases where hPSO-TLBO shares the same mean index values with certain
competing algorithms, its superior performance is evident through better std index values.
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The simulation results highlight hPSO-TLBO’s exceptional balance between exploration and
exploitation, surpassing competing algorithms in handling fixed-dimension multimodal
functions F14 to F23. The performance comparison by convergence curves is illustrated in
Figure 2.

Table 3. Optimization results of fixed-dimensional multimodal functions.

F hPSO-
TLBO WSO AVOA RSA MPA TSA GWO hPT2 hPT1 ITLBO IPSO TLBO PSO

F14

Mean 0.397887 0.397928 0.397928 0.409123 0.398381 0.39796 0.397928 0.397928 0.397929 0.397992 0.397928 0.703449 0.457962
Best 0.397887 0.397887 0.397887 0.39867 0.397887 0.397893 0.397887 0.397887 0.397888 0.397899 0.397887 0.397887 0.397887

Worst 0.397887 0.398145 0.398145 0.474877 0.401023 0.398168 0.398146 0.398145 0.398145 0.398164 0.398145 2.506628 1.591156
Std 0 7.35E-05 7.36E-05 0.016725 0.000896 8.73E-05 7.35E-05 7.36E-05 7.35E-05 8.56E-05 7.36E-05 0.61029 0.260471

Median 0.397887 0.397894 0.397894 0.403092 0.397971 0.397918 0.397895 0.397894 0.397894 0.397973 0.397894 0.397918 0.397966
Rank 1 4 2 10 9 7 5 3 6 8 2 12 11
Mean 3 3.2491 3.249101 5.693971 6.034843 10.74003 3.249123 3.249101 3.249112 3.249101 3.2491 3.2491 7.040393
Best 3 3.001098 3.001098 3.002107 3.013375 3.001104 3.001098 3.001098 3.001101 3.001099 3.001098 3.001098 3.003001

Worst 3 5.127366 5.127366 27.95563 28.91822 81.45687 5.127367 5.127367 5.127377 5.127368 5.127366 5.127366 31.20499
Std 1.14E-15 0.489279 0.489279 7.321184 5.961004 22.46757 0.489272 0.489279 0.489277 0.489279 0.489279 0.489279 8.990184

Median 3 3.04441 3.04441 3.14002 3.541047 3.140014 3.044417 3.04441 3.04443 3.044411 3.04441 3.04441 3.179816

F15

Rank 1 2 6 10 11 13 9 5 8 7 4 3 12

F16

Mean −3.86278 −3.85185 −3.85185 −3.82907 −3.7303 −3.8515 −3.84977 −3.85185 −3.85051 −3.85088 −3.85185 −3.85185 −3.85171
Best −3.86278 −3.86278 −3.86278 −3.85382 −3.86278 −3.86268 −3.86277 −3.86278 −3.86278 −3.86253 −3.86278 −3.86278 −3.86276

Worst −3.86278 −3.81789 −3.81789 −3.77776 −3.31594 −3.81781 −3.8175 −3.81789 −3.81778 −3.81766 −3.81789 −3.81789 −3.81759
Std 2.22E-15 0.010564 0.010564 0.021113 0.12881 0.010411 0.010321 0.010564 0.010614 0.01013 0.010564 0.010564 0.010686

Median −3.86278 −3.85184 −3.85184 −3.83257 −3.73109 −3.8518 −3.85033 −3.85184 −3.85132 −3.85144 −3.85184 −3.85184 −3.85177
Rank 1 2 4 11 12 7 10 5 9 8 3 3 6
Mean −3.322 −3.24156 −3.21013 −2.76672 −2.56172 −3.19829 −3.19374 −3.21528 −3.20179 −3.18745 −3.25727 −3.20672 −3.17472
Best −3.322 −3.31434 −3.28525 −3.038 −3.22873 −3.31233 −3.30934 −3.31434 −3.31434 −3.29852 −3.31434 −3.31434 −3.2439

Worst −3.322 −3.15104 −3.10447 −1.75378 −1.84535 −3.07187 −3.0508 −3.096 −3.00597 −2.93767 −3.20079 −3.04679 −2.9906
Std 4.34E-16 0.044955 0.059342 0.276987 0.31673 0.060395 0.075584 0.064426 0.079772 0.082864 0.026923 0.077408 0.06172

Median −3.322 −3.2565 −3.21667 −2.84296 −2.61407 −3.18964 −3.20415 −3.24865 −3.21227 −3.19193 −3.2616 −3.23928 −3.18554

F17

Rank 1 3 5 12 13 8 9 4 7 10 2 6 11

F18

Mean −10.1532 −8.37918 −9.91819 −5.42633 −7.63223 −6.1929 −9.24171 −8.80122 −9.24604 −7.01014 −7.31095 −5.92734 −6.48809
Best −10.1532 −10.1447 −10.1531 −5.6612 −10.1516 −10.1238 −10.1524 −10.153 −10.1529 −9.25331 −10.1531 −10.0716 −9.60167

Worst −10.1532 −3.1694 −9.54887 −5.05701 −5.05701 −3.10699 −5.28384 −5.25966 −5.09691 −3.88379 −3.1694 −3.14741 −2.90764
Std 2.03E-15 2.727104 0.169179 0.169179 1.920128 2.796647 1.602728 1.93072 1.67125 1.762604 2.999827 2.451367 2.42999

Median −10.1532 −9.84425 −9.95037 −5.45851 −7.99154 −5.27858 −9.84367 −9.80279 −9.91216 −7.29137 −9.75152 −5.33906 −7.07368
Rank 1 6 2 13 7 11 4 5 3 9 8 12 10
Mean −10.4029 −9.8836 −10.2207 −5.53737 −8.18247 −7.12047 −8.19905 −8.48644 −10.2202 −8.05921 −9.97953 −6.67863 −7.54998
Best −10.4029 −10.4027 −10.4027 −5.71945 −10.4006 −10.3165 −10.3774 −10.3792 −10.4025 −9.81922 −10.4027 −10.383 −10.0062

Worst −10.4029 −3.63785 −9.98411 −5.30082 −5.30082 −2.43296 −2.47727 −3.53837 −9.98285 −4.54312 −5.44475 −3.25513 −3.17664
Std 3.42E-15 1.444153 0.161004 0.161004 1.961534 3.117332 2.608368 2.356317 0.161051 1.460086 1.054647 3.033817 1.711875

Median −10.4029 −10.2047 −10.296 −5.61271 −9.10019 −7.78563 −9.98165 −10.0327 −10.2957 −8.36284 −10.2334 −5.41806 −7.93751

F19

Rank 1 5 2 13 8 11 7 6 3 9 4 12 10

F20

Mean −10.5364 −10.4274 −10.4274 −5.66249 −9.20887 −7.67717 −8.70667 −9.48063 −10.427 −8.26849 −10.208 −6.80118 −6.74773
Best −10.5364 −10.5295 −10.5295 −5.76459 −10.4527 −10.4346 −10.5286 −10.5295 −10.5293 −9.76719 −10.5295 −10.5216 −9.80024

Worst −10.5364 −10.1103 −10.1103 −5.34538 −5.34538 −3.35452 −2.60974 −5.38693 −10.11 −4.87011 −6.04545 −3.2291 −3.28855
Std 2.7E-15 0.113406 0.113406 0.113407 1.381663 2.948184 2.843599 1.92362 0.113391 1.422554 0.963479 3.310305 2.211936

Median −10.5364 −10.4585 −10.4585 −5.69352 −9.5868 −10.0178 −10.413 −10.4331 −10.4582 −8.77756 −10.4585 −4.53964 −7.24575
Rank 1 2 3 13 7 10 8 6 4 9 5 11 12
Mean 0.397887 0.397928 0.397928 0.409123 0.398381 0.39796 0.397928 0.397928 0.397929 0.397992 0.397928 0.703449 0.457962
Best 0.397887 0.397887 0.397887 0.39867 0.397887 0.397893 0.397887 0.397887 0.397888 0.397899 0.397887 0.397887 0.397887

Worst 0.397887 0.398145 0.398145 0.474877 0.401023 0.398168 0.398146 0.398145 0.398145 0.398164 0.398145 2.506628 1.591156
Std 0 7.35E-05 7.36E-05 0.016725 0.000896 8.73E-05 7.35E-05 7.36E-05 7.35E-05 8.56E-05 7.36E-05 0.61029 0.260471

Median 0.397887 0.397894 0.397894 0.403092 0.397971 0.397918 0.397895 0.397894 0.397894 0.397973 0.397894 0.397918 0.397966

F21

Rank 1 4 2 10 9 7 5 3 6 8 2 12 11

F22

Mean 3 3.2491 3.249101 5.693971 6.034843 10.74003 3.249123 3.249101 3.249112 3.249101 3.2491 3.2491 7.040393
Best 3 3.001098 3.001098 3.002107 3.013375 3.001104 3.001098 3.001098 3.001101 3.001099 3.001098 3.001098 3.003001

Worst 3 5.127366 5.127366 27.95563 28.91822 81.45687 5.127367 5.127367 5.127377 5.127368 5.127366 5.127366 31.20499
Std 1.14E-15 0.489279 0.489279 7.321184 5.961004 22.46757 0.489272 0.489279 0.489277 0.489279 0.489279 0.489279 8.990184

Median 3 3.04441 3.04441 3.14002 3.541047 3.140014 3.044417 3.04441 3.04443 3.044411 3.04441 3.04441 3.179816
Rank 1 2 6 10 11 13 9 5 8 7 4 3 12
Mean −3.86278 −3.85185 −3.85185 −3.82907 −3.7303 −3.8515 −3.84977 −3.85185 −3.85051 −3.85088 −3.85185 −3.85185 −3.85171
Best −3.86278 −3.86278 −3.86278 −3.85382 −3.86278 −3.86268 −3.86277 −3.86278 −3.86278 −3.86253 −3.86278 −3.86278 −3.86276

Worst −3.86278 −3.81789 −3.81789 −3.77776 −3.31594 −3.81781 −3.8175 −3.81789 −3.81778 −3.81766 −3.81789 −3.81789 −3.81759
Std 2.22E-15 0.010564 0.010564 0.021113 0.12881 0.010411 0.010321 0.010564 0.010614 0.01013 0.010564 0.010564 0.010686

Median −3.86278 −3.85184 −3.85184 −3.83257 −3.73109 −3.8518 −3.85033 −3.85184 −3.85132 −3.85144 −3.85184 −3.85184 −3.85177

F23

Rank 1 2 4 11 12 7 10 5 9 8 3 3 6
Sum rank 10 44 34 106 88 102 67 51 67 74 48 81 96
Mean rank 1 4.4 3.4 10.6 8.8 10.2 6.7 5.1 6.7 7.4 4.8 8.1 9.6

Total ranking 1 3 2 12 9 11 6 5 6 7 4 8 10
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4.5. Evaluation CEC 2017 Test Suite

In this subsection, the performance of hPSO-TLBO is evaluated in handling the CEC
2017 test suite. The test suite employed in this study comprises thirty standard bench-
marks, including three unimodal functions (C17-F1 to C17-F3), seven multimodal functions
(C17-F4 to C17-F10), ten hybrid functions (C17-F11 to C17-F20), and ten composition
functions (C17-F21 to C17-F30). However, the C17-F2 function was excluded from the simu-
lations due to its unstable behavior. Detailed CEC 2017 test suite information can be found
in [89]. The implementation results of hPSO-TLBO and other competing algorithms on the
CEC 2017 test suite are presented in Table 4. Boxplots of the performance of metaheuristic
methods in handling benchmarks from the CEC 2017 set are shown in Figure 3. The opti-
mization results demonstrate that hPSO-TLBO emerged as the top-performing optimizer
for functions C17-F1, C17-F3 to C17-F24, and C17-F26 to C17-F30. Overall, evaluating
the benchmark functions in the CEC 2017 test set revealed that the proposed hPSO-TLBO
approach outperforms competing algorithms in achieving superior results.

Table 4. Optimization results of CEC 2017 test suite.

hPSO-
TLBO WSO AVOA RSA MPA TSA GWO hPT2 hPT1 ITLBO IPSO TLBO PSO

Mean 100 5.29E+09 3748.368 9.6E+09 33,159,361 1.64E+09 82,897,341 42,368,208 50,218,729 46,455,430 2.19E+09 1.38E+08 3091.392
Best 100 4.38E+09 508.7437 8.29E+09 10,544.92 3.5E+08 26,138.81 10,715,873 14,220,698 14,179,262 1.92E+09 61,616,141 341.377

Worst 100 6.79E+09 11272.16 1.14E+10 1.2E+08 3.56E+09 3.01E+08 78,853,365 82,349,955 75,758,100 2.6E+09 3.34E+08 9150.309
Std 0 1.1E+09 5382.989 1.49E+09 61,500,184 1.51E+09 1.54E+08 32,783,474 35,674,006 31,933,461 3.27E+08 1.38E+08 4290.734

Median 100 5E+09 1606.281 9.33E+09 6,078,119 1.31E+09 15,193,524 39,951,797 52,152,132 47,942,180 2.12E+09 79,005,680 1436.94

C17-F1

Rank 1 12 3 13 4 10 8 5 7 6 11 9 2

C17-F3

Mean 300 8033.049 301.7791 9082.776 1340.568 10543.27 2901.42 958.6736 981.4005 863.5039 2647.886 700.4938 300
Best 300 4074.832 300 4905.748 761.6017 4026.168 1454.004 589.3344 598.4639 546.0747 2060.398 460.8804 300

Worst 300 10,742.63 303.8055 12,146.04 2399.799 14,898.69 5549.497 1575.43 1603.381 1365.497 3170.95 857.0187 300
Std 0 3069.111 2.171373 3482.46 795.0646 4856.717 1987.661 471.1406 478.0596 388.2045 532.1373 182.6734 0

Median 300 8657.364 301.6555 9639.658 1100.436 11624.12 2301.09 834.9652 861.8787 771.2216 2680.099 742.0381 300
Rank 1 11 3 12 8 13 10 6 7 5 9 4 2
Mean 400 902.4571 405.3373 1295.052 407.1945 566.7586 411.9069 406.1412 407.7145 405.3359 611.6262 409.4929 419.97
Best 400 677.5934 401.6131 818.3657 402.3049 473.6418 405.7307 402.8584 403.3799 403.6201 498.7167 407.9005 400.1039

Worst 400 1104.07 409.1497 1760.71 411.9996 674.1198 426.6833 410.3496 414.603 407.151 713.2278 411.7909 469.1877
Std 0 204.0081 3.31691 422.7467 5.124688 102.6733 10.46654 3.59682 5.216529 1.981138 93.99366 1.725242 34.87123

Median 400 914.0825 405.2932 1300.566 407.2368 559.6364 407.6068 405.6784 406.4375 405.2862 617.2802 409.1402 405.2941

C17-F4

Rank 1 12 3 13 5 10 8 4 6 2 11 7 9

C17-F5

Mean 501.2464 561.909 543.0492 570.3636 513.4648 562.3384 513.5991 514.2683 517.4738 517.9574 529.0633 533.5634 527.7224
Best 500.9951 547.5217 526.9607 555.91 508.5995 543.3011 508.5861 510.1615 512.195 514.5008 519.2719 527.6244 511.0772

Worst 501.9917 570.3438 561.9262 585.6405 518.5725 592.2042 520.7717 517.8512 522.4134 521.9358 541.1436 537.1694 551.4064
Std 0.522698 11.04339 19.14307 17.23184 5.815881 23.14391 5.492417 4.336286 5.549772 3.400253 11.51121 4.627727 19.5741

Median 500.9993 564.8853 541.655 569.9518 513.3437 556.9241 512.5192 514.5302 517.6433 517.6965 527.9188 534.7298 524.2029
Rank 1 11 10 13 2 12 3 4 5 6 8 9 7
Mean 600 631.2476 616.8356 639.1331 601.4607 623.9964 601.397 602.1618 602.9351 603.8761 611.6091 606.8656 607.4064
Best 600 627.3127 615.7521 636.0102 600.8105 614.5053 600.8308 601.3224 601.7229 603.1373 609.0681 604.6699 601.3504

Worst 600 634.131 619.2083 642.9987 603.1224 638.5972 601.9612 603.9859 605.5767 604.9986 616.0634 610.5068 619.1985
Std 0 3.305217 1.686946 3.432936 1.171408 10.83277 0.549504 1.316626 1.912893 0.905984 3.231394 2.819375 8.516125

Median 600 631.7734 616.1909 638.7618 600.955 621.4415 601.398 601.6695 602.2204 603.6842 610.6524 606.1428 604.5383

C17-F6

Rank 1 12 10 13 3 11 2 4 5 6 9 7 8

C17-F7

Mean 711.1267 799.8043 763.968 800.9678 724.9498 823.9647 726.2615 726.252 729.6364 731.7253 742.712 751.0914 732.6781
Best 710.6726 780.3107 743.0682 788.1026 720.9932 785.4855 718.1642 723.984 727.3951 729.0775 738.5639 746.5242 725.5384

Worst 711.7995 816.1562 790.5001 813.545 728.9161 864.0148 742.7212 728.6154 733.1142 734.773 749.4638 759.339 744.2048
Std 0.538751 15.89892 23.05212 12.5471 3.619511 35.90389 11.9049 2.287687 2.824638 2.697238 5.23572 6.055654 8.957916

Median 711.0174 801.3751 761.1518 801.1118 724.9449 823.1792 722.0802 726.2044 729.0182 731.5253 741.4101 749.2512 730.4845
Rank 1 11 10 12 2 13 4 3 5 6 8 9 7
Mean 801.4928 847.368 830.689 852.2232 813.0826 847.0627 816.1175 814.5802 817.6934 817.3872 823.3427 836.9731 822.7208
Best 800.995 839.9264 820.163 841.7367 809.2484 831.8296 810.8479 813.4555 816.3749 815.8313 821.7669 830.0727 815.66

Worst 801.9912 855.1817 845.4663 857.0366 815.4123 865.287 820.5682 817.0288 820.7097 819.2567 826.6415 844.4105 829.1593
Std 0.604721 7.476443 11.16894 7.438301 2.867818 15.79139 4.31119 1.732891 2.128168 1.740719 2.340614 7.688001 7.036328

Median 801.4926 847.182 828.5632 855.0598 813.8348 845.5672 816.5269 813.9183 816.8444 817.2305 822.4812 836.7047 823.0318

C17-F8

Rank 1 12 9 13 2 11 4 3 6 5 8 10 7

C17-F9

Mean 900 1399.012 1175.026 1441.344 905.1431 1358.747 911.5695 904.9645 905.8344 936.0052 1025.904 911.4671 904.2313
Best 900 1262.075 951.2954 1350.309 900.3551 1155.798 900.5895 901.8209 902.4042 908.0793 1006.621 906.9387 900.897

Worst 900 1533.658 1626.152 1572.35 912.7679 1633.582 931.6466 908.4465 908.8868 989.7544 1057.233 919.6198 912.2878
Std 0 128.106 328.8354 99.49603 5.777535 217.3993 15.20639 2.852761 2.828695 39.22887 23.05723 5.878449 5.721816

Median 900 1400.157 1061.328 1421.359 903.7246 1322.804 907.021 904.7952 906.0233 923.0936 1019.88 909.6549 901.8702
Rank 1 12 10 13 4 11 7 3 5 8 9 6 2
Mean 1006.179 2272.674 1775.365 2531.984 1528.608 2016.237 1725.841 1517.585 1630.457 1557.721 1809.69 2147.981 1934.218
Best 1000.284 2023.195 1480.899 2368.324 1393.692 1773.52 1533.16 1368.113 1438.83 1389.851 1638.212 1762.198 1553.546

Worst 1012.668 2447.536 2374.322 2873.26 1616.944 2238.049 1995.308 1624.587 1775.287 1643.554 1931.07 2437.728 2335.345
Std 7.002135 197.3598 436.2218 244.329 107.0706 266.5065 205.4292 117.2316 151.6732 120.6617 148.1346 301.1232 337.7875

Median 1005.882 2309.983 1623.12 2443.176 1551.898 2026.69 1687.449 1538.821 1653.855 1598.741 1834.739 2195.999 1923.991

C17-F10

Rank 1 12 7 13 3 10 6 2 5 4 8 11 9

C17-F11

Mean 1100 3706.841 1147.646 3823.904 1127.395 5216.321 1154.034 1124.996 1130.054 1127.69 1740.549 1149.919 1142.951
Best 1100 2532.404 1118.884 1439.991 1114.214 5075.943 1122.162 1116.939 1121.208 1120.79 1195.462 1137.25 1131.823

Worst 1100 4840.894 1197.819 6177.695 1158.269 5292.963 1223.95 1142.362 1148.311 1136.876 2267.18 1169.998 1164.161
Std 0 1091.707 36.77475 2240.039 22.00052 101.5156 50.03127 12.30356 13.03865 8.484187 511.199 14.76569 15.3188

Median 1100 3727.033 1136.941 3838.966 1118.549 5248.19 1135.013 1120.341 1125.348 1126.546 1749.777 1146.215 1137.909
Rank 1 11 7 12 3 13 9 2 5 4 10 8 6
Mean 1352.959 3.34E+08 1,041,840 6.67E+08 537,442.3 984,200.6 1,339,676 1,119,517 1,391,129 1,447,652 1.52E+08 4,781,626 8018.164
Best 1318.646 74,974,042 337,122.5 1.48E+08 19,273.83 510,668.3 43,473.74 545,184.3 617,787.2 614,496.8 33,669,030 1,279,648 2505.361

Worst 1438.176 5.84E+08 1,889,187 1.17E+09 841,127.5 120,7984 2,097,033 1,919,043 2,399,960 2,461,224 2.65E+08 8,464,893 13,785.05
Std 60.27339 2.71E+08 763,715.2 5.42E+08 380,785.4 345,933.8 952,033.6 661,001.8 879,737.4 953,977.1 1.23E+08 4,003,531 5405.839

Median 1327.506 3.39E+08 970,525.5 6.77E+08 644,684 1,109,075 1,609,099 1,006,920 1,273,385 1,357,444 1.54E+08 4,690,982 7891.125

C17-F12

Rank 1 12 5 13 3 4 7 6 8 9 11 10 2

C17-F13

Mean 1305.324 16,270,434 17,645.32 32530469 5441.239 12351.58 10,044.19 6291.857 7405.297 8219.529 7,388,048 16,125.5 6564.175
Best 1303.114 1,357,783 2693.02 2700954 3735.496 7913.531 6372.143 5115.949 6074.468 6835.592 615,922 15,108.72 2367.428

Worst 1308.508 54,003,827 29,936.8 1.08E+08 6879.06 19310 13,730 7769.705 9547.435 10,480.91 24,516,110 18,714.84 16,549.6
Std 2.390774 26,518,937 14,969.87 53036127 1535.233 5258.8 3196.376 1212.391 1609.972 1827.786 12,037,713 1826.012 7080.253

Median 1304.837 4,860,063 18,975.73 9,713,262 5575.2 11,091.4 10,037.31 6140.887 6999.642 7780.809 2,210,080 15,339.21 3669.834
Rank 1 12 10 13 2 8 7 3 5 6 11 9 4
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Table 4. Cont.

hPSO-
TLBO WSO AVOA RSA MPA TSA GWO hPT2 hPT1 ITLBO IPSO TLBO PSO

Mean 1400.746 3925.288 2057.876 5207.557 1980.469 3350.637 2365.338 1807.086 1903.042 1740.355 2937.621 1649.611 2980.369
Best 1400 3067.479 1697.619 4645.47 1434.591 1489.137 1470.095 1453.804 1467.202 1498.386 2195.607 1515.859 1432.215

Worst 1400.995 5224.087 2758.654 6608.887 2857.453 5364.252 4808.816 2285.551 2338.789 2124.347 4045.413 1833.038 6791.638
Std 0.523309 1056.743 519.5787 986.0415 713.9192 2220.777 1716.878 441.5361 528.3317 288.3858 834.9858 140.3634 2694.358

Median 1400.995 3704.793 1887.614 4787.935 1814.917 3274.581 1591.22 1744.495 1903.088 1669.343 2754.732 1624.773 1848.812

C17-F14

Rank 1 12 7 13 6 11 8 4 5 3 9 2 10

C17-F15

Mean 1500.331 10,141.39 5420.887 13544.47 4168.477 7035.452 5909.892 3267.633 3681.831 3018.033 7377.044 2021.457 8924.747
Best 1500.001 3199.972 2428.092 2943.897 3518.151 2551.255 3846.725 2857.078 2946.817 2337.027 4624.808 1842.257 2858.362

Worst 1500.5 17,211.28 12098.81 28,895.1 5286.274 12348.58 6956.217 4051.452 4770.569 3748.602 9747.737 2152.946 14665.88
Std 0.247648 6166.653 4733.27 11904.67 828.5131 4366.529 1487.545 574.9909 815.2069 631.9577 2486.011 136.7122 5191.053

Median 1500.413 10077.16 3578.324 11169.44 3934.741 6620.985 6418.313 3081.001 3504.969 2993.251 7567.815 2045.312 9087.371
Rank 1 12 7 13 6 9 8 4 5 3 10 2 11
Mean 1600.76 2004.613 1812.435 2008.33 1693.73 2037.573 1735.653 1675.247 1696.691 1675.458 1821.143 1686.788 1920.464
Best 1600.356 1942.809 1650.286 1817.989 1654.67 1863.642 1630.12 1653.19 1675.794 1668.794 1761.02 1660.138 1820.271

Worst 1601.12 2147.237 1924.089 2263.297 1719.019 2207.992 1823.788 1695.833 1716.189 1682.292 1862.547 1734.499 2078.647
Std 0.332314 100.9265 121.8302 196.52 31.24997 162.9157 83.92401 20.85885 23.36918 6.773129 47.08525 34.94773 125.8979

Median 1600.781 1964.204 1837.683 1976.017 1700.616 2039.328 1744.351 1675.982 1697.39 1675.374 1830.503 1676.257 1891.469

C17-F16

Rank 1 11 8 12 5 13 7 2 6 3 9 4 10

C17-F17

Mean 1700.099 1814.266 1750.562 1814.408 1736.121 1799.078 1767.188 1731.472 1737.416 1733.435 1753.892 1757.577 1751.874
Best 1700.02 1805.452 1734.572 1798.473 1723.307 1784.404 1725.151 1722.744 1728.511 1725.121 1749.079 1748.26 1745.29

Worst 1700.332 1819.514 1792.558 1823.434 1773.326 1809.306 1864.923 1753.753 1760.192 1750.076 1763.547 1766.912 1758.499
Std 0.163219 6.467607 29.52981 11.56531 26.09862 11.31541 68.90608 15.67995 16.06212 11.86723 7.104734 9.869326 5.942316

Median 1700.022 1816.048 1737.558 1817.862 1723.925 1801.301 1739.339 1724.696 1730.481 1729.272 1751.471 1757.569 1751.853
Rank 1 12 6 13 4 11 10 2 5 3 8 9 7
Mean 1805.36 2,700,242 12,164.85 5,383,877 11,402.61 12,356.16 19,768.51 12,292.58 14,853.55 12,788.06 1,232,709 28,836.63 21,629.9
Best 1800.003 138,517.9 4723.003 266,622.3 4264.898 7199.645 6310.461 6928.172 8412.253 8741.04 66,373.95 23,000.7 2867.661

Worst 1820.451 7,824,444 16,330.68 15,627,891 17,201.99 15,723.79 31,879.1 16,355.13 19,819.87 15,990.6 3,564,332 36,637.14 40,262.56
Std 10.58584 3,744,655 5510.427 7,486,898 5844.873 3889.499 13,653.75 4139.17 5194.742 3184.802 1,705,209 6740.655 20,306.86

Median 1800.492 1,419,003 13,802.86 2,820,497 12,071.78 13,250.6 20,442.24 12,943.52 15,591.04 13,210.29 650,064.1 27,854.34 21,694.7

C17-F18

Rank 1 12 3 13 2 5 8 4 7 6 11 10 9

C17-F19

Mean 1900.445 375,744.6 7433.981 666,091.6 6385.277 119,677.3 6182.604 5568.259 6953.678 4601.691 16,1041.9 5533.399 24,663.69
Best 1900.039 23,791.01 2314.747 43,418.54 2448.01 2024.057 2198.753 2410.486 2462.793 3059.651 11,808.98 2168.611 2615.743

Worst 1901.559 791,564.4 13,172.51 1,428,796 12,225.8 240,192.4 13,706.12 9972.915 14,000.35 5757.046 32,7034.9 12,057.43 75,964.03
Std 0.783273 347,977.3 4854.412 656805.8 4951.454 142,642.6 5427.918 3428.423 5249.274 1234.592 145,239.8 4793.22 36,380.59

Median 1900.09 343,811.5 7124.333 596075.7 5433.649 118,246.3 4412.77 4944.818 5675.786 4795.034 152,661.8 3953.779 10,037.49
Rank 1 12 8 13 6 10 5 4 7 2 11 3 9
Mean 2000.312 2210.424 2168.398 2217.963 2094.49 2203.182 2167.789 2070.211 2083.096 2073.4 2131.918 2075.291 2166.904
Best 2000.312 2157.425 2035.901 2161.66 2077.367 2108.709 2132.315 2059.651 2073.652 2068.536 2110.495 2066.244 2143.076

Worst 2000.312 2278.136 2286.855 2269.353 2122.343 2311.801 2238.703 2085.805 2097.633 2076.984 2146.375 2084.098 2198.36
Std 0 52.6401 118.8435 55.96682 20.40431 90.57678 50.6873 11.6748 10.75655 4.049637 17.75158 7.780774 28.90349

Median 2000.312 2203.068 2175.419 2220.419 2089.124 2196.11 2150.068 2067.693 2080.549 2074.04 2135.401 2075.411 2163.091

C17-F20

Rank 1 12 10 13 6 11 9 2 5 3 7 4 8

C17-F21

Mean 2200 2293.113 2218.166 2268.57 2259.186 2323.447 2312.219 2253.103 2264.824 2247.422 2271.055 2299.357 2317.423
Best 2200 2248.137 2209.252 2228.085 2256.486 2224.969 2307.894 2238.417 2245.395 2229.816 2264.436 2208.954 2309.456

Worst 2200 2317.485 2242.32 2291.427 2261.821 2368.166 2317.154 2258.256 2271.644 2253.95 2276.721 2335.586 2324.888
Std 0 34.11594 16.97517 29.54726 2.42295 70.30435 4.009014 10.30393 13.62872 12.38228 5.441208 63.82541 7.984688

Median 2200 2303.416 2210.546 2277.384 2259.219 2350.326 2311.915 2257.869 2271.129 2252.961 2271.532 2326.444 2317.675
Rank 1 9 2 7 5 13 11 4 6 3 8 10 12
Mean 2300.073 2713.841 2309.071 2883.186 2305.307 2692.102 2308.709 2306.569 2308.325 2307.335 2438.143 2319.089 2313.126
Best 2300 2594.706 2304.299 2685.119 2300.92 2441.121 2301.226 2302.865 2303.674 2304.701 2389.617 2312.725 2300.631

Worst 2300.29 2845.002 2311.883 3027.823 2309.028 2888.349 2321.372 2310.282 2312.188 2311.213 2469.466 2329.793 2344.973
Std 0.152615 121.8081 3.496248 152.0155 3.871741 210.3358 9.356375 3.681474 4.734889 3.042804 37.56147 8.270263 22.38123

Median 2300 2707.829 2310.05 2909.901 2305.639 2719.468 2306.119 2306.565 2308.718 2306.713 2446.746 2316.919 2303.451

C17-F22

Rank 1 12 7 13 2 11 6 3 5 4 10 9 8

C17-F23

Mean 2600.919 2693.942 2641.835 2697.28 2615.498 2718.917 2614.945 2617.187 2621.763 2620.083 2640.702 2642.286 2643.937
Best 2600.003 2654.227 2630.609 2669.522 2612.898 2634.545 2609.025 2616.18 2620.188 2618.871 2631.633 2631.733 2636.826

Worst 2602.87 2716.599 2658.423 2735.505 2617.81 2761.529 2621.062 2618.675 2623.595 2620.645 2648.436 2650.816 2655.745
Std 1.388886 30.84248 13.79002 32.48161 2.349835 60.1772 6.381254 1.199337 1.496877 0.865276 8.465968 8.871236 9.013826

Median 2600.403 2702.471 2639.155 2692.047 2615.641 2739.797 2614.846 2616.947 2621.635 2620.408 2641.369 2643.297 2641.588
Rank 1 11 8 12 3 13 2 4 6 5 7 9 10
Mean 2630.488 2775.69 2766.263 2844.242 2636.472 2672.139 2748.42 2658.064 2672.069 2672.271 2721.323 2755.106 2764.326
Best 2516.677 2723.653 2734.285 2820.922 2622.02 2537.506 2724.236 2620.287 2645.719 2637.937 2695.625 2742.434 2755.438

Worst 2732.32 2853.529 2786.472 2904.605 2643.687 2810.158 2761.841 2687.9 2692.953 2703.001 2756.65 2767.175 2785.859
Std 122.5498 66.25804 26.01061 42.42327 10.52639 153.1914 18.113 36.73978 24.59657 36.41109 28.98253 12.15716 15.28211

Median 2636.477 2762.789 2772.148 2825.721 2640.09 2670.446 2753.801 2662.034 2674.802 2674.073 2716.509 2755.407 2758.003

C17-F24

Rank 1 12 11 13 2 5 8 3 4 6 7 9 10

C17-F25

Mean 2932.639 3147.52 2914.105 3258.12 2918.278 3122.551 2937.974 2924.361 2923.909 2924.435 2998.858 2933.081 2923.428
Best 2898.047 3060.682 2899.066 3194.189 2915.276 2907.931 2922.626 2910.753 2911.757 2909.85 2994.502 2915.173 2898.661

Worst 2945.793 3340.747 2948.83 3328.696 2924.512 3617.385 2945.848 2933.713 2934.162 2936.692 3003.784 2950.078 2946.546
Std 24.28873 136.745 24.50997 58.41904 4.545926 350.9255 10.96339 10.4474 9.942083 12.25131 4.891705 20.20376 27.48149

Median 2943.359 3094.325 2904.261 3254.798 2916.663 2982.444 2941.711 2926.489 2924.858 2925.599 2998.573 2933.536 2924.253
Rank 7 12 1 13 2 11 9 5 4 6 10 8 3
Mean 2900 3564.329 2975.83 3711.483 3005.965 3583.082 3246.291 3009.708 3026.412 3022.556 3121.487 3190.688 2904.021
Best 2900 3234.171 2811.89 3400.454 2897.241 3136.09 2970.3 2917.262 2917.91 2904.846 3091.367 2911.421 2807.879

Worst 2900 3796.619 3140.237 4030.65 3268.876 4197.64 3850.233 3263.987 3311.448 3306.742 3165.835 3820.463 3008.206
Std 3.91E-13 283.394 199.1308 284.9489 185.0471 548.1546 427.1786 178.4936 200.1559 200.2849 33.22064 444.7674 86.1682

Median 2900 3613.263 2975.597 3707.413 2928.871 3499.298 3082.316 2928.793 2938.146 2939.317 3114.373 3015.434 2900

C17-F26

Rank 1 11 3 13 4 12 10 5 7 6 8 9 2

C17-F27

Mean 3089.518 3204.167 3120.41 3225.692 3105.902 3176.807 3116.721 3104.304 3108.182 3104.823 3139.886 3115.756 3135.637
Best 3089.518 3156.248 3097.214 3125.56 3092.427 3103.962 3094.506 3092.667 3093.499 3093.73 3100.949 3097.288 3097.024

Worst 3089.518 3273.898 3180.171 3407.879 3135.533 3216.28 3176.245 3119.472 3124.883 3119.855 3180.549 3168.415 3182.511
Std 2.76E-13 52.2364 41.98196 131.1143 21.01533 54.05908 41.81935 12.40577 14.58567 13.29019 37.02128 36.95224 37.81668

Median 3089.518 3193.26 3102.127 3184.664 3097.825 3193.493 3098.068 3102.539 3107.174 3102.853 3139.023 3098.661 3131.506
Rank 1 12 8 13 4 11 7 2 5 3 10 6 9
Mean 3100 3603.64 3237.661 3751.609 3221.039 3569.029 3340.651 3210.964 3234.096 3213.894 3350.357 3321.862 3303.482
Best 3100 3559.755 3103.322 3668.181 3175.855 3407.301 3202.125 3198.356 3221.507 3193.392 3293.056 3215.875 3176.295

Worst 3100 3638.239 3387.263 3810.552 3243.76 3761.461 3403.302 3222.506 3247.961 3224.092 3390.265 3387.482 3387.467
Std 0 34.63407 131.9717 69.78185 33.67228 193.5914 97.91534 11.64192 11.86854 14.86709 44.26733 83.67492 100.7125

Median 3100 3608.284 3230.029 3763.852 3232.269 3553.676 3378.588 3211.497 3233.458 3219.045 3359.054 3342.046 3325.084

C17-F28

Rank 1 12 6 13 4 11 9 2 5 3 10 8 7

C17-F29

Mean 3132.241 3323.772 3282.346 3368.261 3205.185 3236.586 3264.015 3190.529 3202.051 3196.414 3250.557 3214.224 3264.841
Best 3130.076 3306.05 3207.841 3296.377 3165.729 3173.711 3194.377 3165.16 3171.76 3172.48 3191.255 3171.844 3167.558

Worst 3134.841 3340.313 3362.494 3434.075 3242.993 3298.718 3370.766 3215.251 3225.83 3225.81 3285.27 3238.474 3346.938
Std 2.611232 18.67158 81.30356 72.1697 35.30926 53.97501 89.62088 21.55151 23.57208 24.3712 43.08385 32.07396 85.65981

Median 3132.023 3324.362 3279.524 3371.295 3206.009 3236.958 3245.458 3190.853 3205.307 3193.684 3262.852 3223.288 3272.434
Rank 1 12 11 13 5 7 9 2 4 3 8 6 10
Mean 3418.734 2,111,674 294,724.6 3,484,443 407,950.5 596,404.5 899,516.1 253,362 276,973.7 223,025.7 1,045,246 73,878.61 382,013.5
Best 3394.682 1,277,340 99,075.07 781,071.3 15,417.93 138,930.3 32,077.15 14,510.35 16,141.98 30,921.79 354,534.7 28,022.71 6354.214

Worst 3442.907 3,145,244 757,357.9 5,477,669 61,0461.1 122,6181 1,291,826 374,902.6 417,356.2 313,368.7 1,361,416 129,022 757,392.4
Std 29.21253 813,970 326,040.1 2,072,605 280,538.3 484,692.4 624,972.1 170,483.8 188,716.3 136,522.3 488,851.6 43,961.79 455,349.8

Median 3418.673 2,012,056 161,232.7 3,839,517 502,961.4 510,253.1 1,137,081 312,017.5 337,198.3 273,906.2 1,232,517 69,234.87 382,153.8

C17-F30

Rank 1 12 6 13 8 9 10 4 5 3 11 2 7
Sum rank 35 338 199 366 115 299 211 101 160 132 267 209 207
Mean rank 1.206897 11.65517 6.862069 12.62069 3.965517 10.31034 7.275862 3.482759 5.517241 4.551724 9.206897 7.206897 7.137931
Total rank 1 12 6 13 3 11 9 2 5 4 10 8 7
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2017 test set.

4.6. Statistical Analysis

To assess the statistical significance of the superiority of the proposed hPSO-TLBO
approach over competing algorithms, a nonparametric statistical test, namely the Wilcoxon
signed-rank test [91], was conducted in this subsection. The test examines the mean
differences between two data samples and determines whether they differ significantly.
The obtained p-values from the test were used to evaluate the significance of the differences
between hPSO-TLBO and the competing algorithms. The results of the Wilcoxon signed-
rank test, indicating the significance of the performance differences among the metaheuristic
algorithms, are presented in Table 5. The statistical analysis reveals that the proposed hPSO-
TLBO approach exhibits a significant statistical advantage over the competing algorithms
when the p-value is less than 0.05. The Wilcoxon signed-rank test notably confirms that
hPSO-TLBO outperforms all twelve competing metaheuristic algorithms with a significant
statistical advantage.
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Table 5. Wilcoxon rank sum test results.

Compared Algorithms Unimodal High-Multimodal Fixed-Multimodal CEC 2017 Test Suite
hPSO-TLBO vs. WSO 1.85E-24 1.97E-21 2.09E-34 2.02E-21

hPSO-TLBO vs. AVOA 3.02E-11 4.99E-05 1.44E-34 3.77E-19
hPSO-TLBO vs. RSA 4.25E-07 1.63E-11 1.44E-34 1.97E-21
hPSO-TLBO vs. MPA 1.01E-24 1.04E-14 2.09E-34 2.00E-18
hPSO-TLBO vs. TSA 1.01E-24 1.31E-20 1.44E-34 9.50E-21

hPSO-TLBO vs. GWO 1.01E-24 5.34E-16 1.44E-34 5.23E-21
hPSO-TLBO vs. hPT2 1.01E-24 1.51E-22 1.44E-34 5.88E-20
hPSO-TLBO vs. hPT1 1.01E-24 4.09E-17 1.44E-34 3.41E-22

hPSO-TLBO vs. ITLBO 1.01E-24 5.34E-16 1.44E-34 2.40E-22
hPSO-TLBO vs. IPSO 1.01E-24 2.46E-24 1.44E-34 1.04E-19
hPSO-TLBO vs. TLBO 1.01E-24 1.97E-21 1.44E-34 1.60E-18
hPSO-TLBO vs. PSO 1.01E-24 1.97E-21 1.44E-34 1.54E-19

5. hPSO-TLBO for Real-World Applications

In this section, we examine the effectiveness of the proposed hPSO-TLBO approach
in addressing four engineering design problems, highlighting one of the key applications
of metaheuristic algorithms. These algorithms play a crucial role in solving optimization
problems in real-world scenarios.

5.1. Pressure Vessel Design Problem

The design of a pressure vessel poses a significant engineering challenge, requiring
careful consideration and analysis. The primary objective of this design is to achieve the
minimum construction cost while meeting all necessary specifications and requirements. To
provide a visual representation, Figure 4 depicts the schematic of the pressure vessel design,
aiding in understanding its structural elements and overall layout. The mathematical
model governing the pressure vessel design is presented below. This model encapsulates
the equations and parameters that define the behavior and characteristics of the pressure
vessel [92]:
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Consider:
X = [x1, x2, x3, x4] = [Ts, Th, R, L].

Minimize:

f (x) = 0.6224x1x3x4 + 1.778x2x2
3 + 3.1661x2

1x4 + 19.84x2
1x3.

Subject to:
g1(x) = −x1 + 0.0193x3 ≤ 0,

g2(x) = −x2 + 0.00954x3 ≤ 0,
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g3(x) = −πx2
3x4 −

4
3

πx3
3 + 1296000 ≤ 0,

g4(x) = x4 − 240 ≤ 0.

with
0 ≤ x1, x2 ≤ 100 and 10 ≤ x3, x4 ≤ 200.

The results of employing hPSO-TLBO and competing algorithms to optimize pressure
vessel design are presented in Tables 6 and 7. The results obtained from the analysis indicate
that the hPSO-TLBO algorithm successfully achieved the optimal design solution for the pres-
sure vessel. The design variables were determined as (0.7780271, 0.3845792, 40.312284, 200),
with the objective function value of 5882.9013. Furthermore, a comprehensive evaluation of
the simulation results reveals that the hPSO-TLBO algorithm outperforms other competing
algorithms regarding statistical indicators for the pressure vessel design problem. This
superiority is demonstrated by the ability of hPSO-TLBO to deliver more favorable results.
To visualize the convergence of the hPSO-TLBO algorithm towards the optimal design,
Figure 5 illustrates the convergence curve associated with achieving the optimal solution
for the pressure vessel.

Table 6. Performance of optimization algorithms on pressure vessel design problem.

Algorithm
Optimum Variables Optimum

CostTs Th R L

hPSO-TLBO 0.778027 0.384579 40.31228 200 5882.901
WSO 0.778027 0.384579 40.31228 200 5882.901

AVOA 0.778031 0.384581 40.31251 199.9969 5882.909
RSA 1.266864 0.684455 64.03621 21.84755 8083.221
MPA 0.778027 0.384579 40.31228 200 5882.901
TSA 0.779753 0.386033 40.39931 200 5913.936

GWO 0.778534 0.386025 40.32206 199.9583 5891.47
hPT1 0.863331 0.551663 43.82355 178.1357 7423.859
hPT2 0.909754 0.612768 45.4607 170.1978 8203.294

ITLBO 1.007644 0.429869 44.41372 164.2482 7173.881
IPSO 0.971381 0.574936 45.31477 185.8739 8924.884
TLBO 1.697384 0.497968 48.96822 111.6649 11,655.86
PSO 1.683083 0.664227 67.07266 23.90255 10,707.79

Table 7. Statistical results of optimization algorithms on pressure vessel design problem.

Algorithm Mean Best Worst Std Median Rank

hPSO-TLBO 5882.895451 5882.895451 5882.895451 2.06E-12 5882.895451 1
WSO 5892.660121 5882.901051 5979.188336 28.7049213 5882.901464 3

AVOA 6277.54171 5882.908511 7246.78008 455.2164111 6076.08962 5
RSA 13,534.14797 8083.221035 22,422.75871 4039.895167 12,354.52124 9
MPA 5882.901057 5882.901052 5882.901064 4.76E-06 5882.901055 2
TSA 6338.024708 5913.936056 7131.963127 430.4115812 6188.536588 6

GWO 6034.674549 5891.469631 6806.784466 309.2651669 5901.245264 4
hPT1 11,215.46634 7423.857014 16,642.53656 2954.126869 11,038.72283 8
hPT2 13,923.19832 8203.292711 21,021.48088 4224.527187 13,968.72996 10

ITLBO 11,172.03452 7173.87948 18,660.95934 3548.614934 10,397.25346 7
IPSO 15,785.03122 8924.882242 22,541.58427 5160.561356 16,389.87266 11
TLBO 32,131.25646 11,655.86208 69,689.83545 17,822.77646 28,265.18798 12
PSO 33,789.17406 10,707.79023 58,436.51582 16,685.46389 37,331.59553 13
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5.2. Speed Reducer Design Problem

The speed reducer design is a real-world application in engineering to minimize speed
reducer weight. The speed reducer design schematic is shown in Figure 6. As expressed
in [93,94], the mathematical model for the design of the speed reducer is given by the
following equation and constraints:
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Consider:
X = [x1,x2, x3, x4, x5, x6, x7] = [b, m, p, l1, l2, d1, d2].

Minimize:

f (x) = 0.7854x1x2
2

(
3.3333x2

3 + 14.9334x3 − 43.0934
)
− 1.508x1

(
x2

6 + x2
7

)
+ 7.4777

(
x3

6 + x3
7

)
+ 0.7854

(
x4x2

6 + x5x2
7

)
.

Subject to:

g1(x) =
27

x1x2
2x3
− 1 ≤ 0, g2(x) =

397.5
x1x2

2x3
− 1 ≤ 0,

g3(x) =
1.93x3

4
x2x3x4

6
− 1 ≤ 0, g4(x) =

1.93x3
5

x2x3x4
7
− 1 ≤ 0,

g5(x) =
1

110x3
6

√(
745x4

x2x3

)2
+ 16.9·106 − 1 ≤ 0,

g6(x) =
1

85x3
7

√(
745x5

x2x3

)2
+ 157.5·106 − 1 ≤ 0,



Biomimetics 2024, 9, 8 21 of 30

g7(x) =
x2x3

40
− 1 ≤ 0, g8(x) =

5x2

x1
− 1 ≤ 0,

g9(x) =
x1

12x2
− 1 ≤ 0,

g10(x) =
1.5x6 + 1.9

x4
− 1 ≤ 0,

g11(x) =
1.1x7 + 1.9

x5
− 1 ≤ 0.

with
2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28,

7.3 ≤ x4 ≤ 8.3, 7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9,

and
5 ≤ x7 ≤ 5.5.

Tables 8 and 9 display the outcomes obtained by applying the hPSO-TLBO algo-
rithm and other competing algorithms to optimize the design of the speed reducer. The
obtained results demonstrate that the hPSO-TLBO algorithm successfully generated the
optimal design solution for the speed reducer. The model variables were determined
as (3.5, 0.7, 17, 7.3, 7.8, 3.3502147, 5.2866832), resulting in an objective function value of
2996.3482. The simulation results clearly indicate that hPSO-TLBO performs better than
other competing methods in tackling the speed reducer design problem. Furthermore, it
consistently produces better outcomes and achieves improved results. Figure 7 portrays
the convergence curve of the hPSO-TLBO algorithm as it progresses toward attaining the
optimal design for the speed reducer, providing a visual representation of its successful
performance.

Table 8. Performance of optimization algorithms on speed reducer design problem.

Algorithm
Optimum Variables Optimum

Costb M p l1 l2 d1 d2

hPSO-TLBO 3.5 0.7 17 7.3 7.8 3.350215 5.286683 2996.348
WSO 3.5 0.7 17 7.30001 7.8 3.350215 5.286683 2996.348

AVOA 3.5 0.7 17 7.300001 7.8 3.350215 5.286683 2996.348
RSA 3.595192 0.7 17 8.25192 8.27596 3.355842 5.489744 3188.946
MPA 3.5 0.7 17 7.3 7.8 3.350215 5.286683 2996.348
TSA 3.513321 0.7 17 7.3 8.27596 3.350551 5.290332 3014.45

GWO 3.500662 0.7 17 7.305312 7.8 3.364398 5.28888 3001.683
hPT1 3.501176 0.700321 17.46705 7.397422 7.849971 3.382102 5.297636 2.33E+10
hPT2 3.50256 0.700562 17.62741 7.461131 7.866856 3.397713 5.307414 3.86E+10

ITLBO 3.511587 0.700826 18.92588 7.46553 7.871304 3.414912 5.297564 3466.045
IPSO 3.521574 0.700022 17.33948 7.52107 7.91627 3.530869 5.345062 3161.188
TLBO 3.557936 0.704128 26.62939 8.12765 8.156521 3.673703 5.341085 5344.833
PSO 3.508452 0.700074 18.13159 7.402286 7.870261 3.603493 5.345904 3312.579



Biomimetics 2024, 9, 8 22 of 30

Table 9. Statistical results of optimization algorithms on speed reducer design problem.

Algorithm Mean Best Worst Std Median Rank

hPSO-TLBO 2996.348165 2996.348165 2996.348165 1.03E-12 2996.348165 1
WSO 2996.640981 2996.348305 2998.87965 0.665661946 2996.364895 3

AVOA 3001.003783 2996.348187 3011.558199 4.516285408 3000.900984 4
RSA 3285.981388 3188.946352 3346.202854 65.46309514 3301.347252 7
MPA 2996.348168 2996.348165 2996.348178 3.62E-06 2996.348166 2
TSA 3033.306292 3014.450491 3047.487651 11.54079978 3035.152884 6

GWO 3004.8929 3001.683252 3011.053403 2.85373292 3004.357996 5
hPT1 1.60763E+13 2,328,270,4326 7.95377E+13 2.14493E+13 8.15597E+12 9
hPT2 2.4969E+13 38,611,102,157 1.07078E+14 3.07571E+13 1.42599E+13 10

ITLBO 1.44E+13 3466.045209 1.04E+14 2.64E+13 5.63E+12 8
IPSO 3.18058E+13 3161.188406 1.6112E+14 4.23337E+13 2.2749E+13 11
TLBO 7.18E+13 5344.833366 5.20E+14 1.32E+14 2.81E+13 12
PSO 1.06E+14 3312.579176 5.37E+14 1.41E+14 7.58E+13 13
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5.3. Welded Beam Design

The design of welded beams holds significant importance in real-world engineering
applications. Its primary objective is to minimize the fabrication cost associated with
welded beam design. To aid in visualizing the design, Figure 8 presents the schematic
of a welded beam, illustrating its structural configuration and critical elements. The
mathematical model to analyze and optimize the welded beam design is as follows [16]:

Consider:
X = [x1, x2, x3, x4] = [h, l, t, b].

Minimize:
f (x) = 1.10471x2

1x2 + 0.04811x3x4(14.0 + x2).

Subject to:
g1(x) = τ(x)− 13600 ≤ 0,

g2(x) = σ(x)− 30000 ≤ 0,

g3(x) = x1 − x4 ≤ 0,

g4(x) = 0.10471x2
1 + 0.04811x3x4 (14 + x2)− 5.0 ≤ 0,

g5(x) = 0.125− x1 ≤ 0,

g6(x) = δ (x)− 0.25 ≤ 0,

g7(x) = 6000− pc (x) ≤ 0.
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where

τ(x) =
√
(τ′)2 + (2ττ′)

x2

2R
+ (τ′′ )2 , τ′ =

6000√
2x1x2

, τ′′ =
MR

J
,

M = 6000
(

14 +
x2

2

)
, R =

√
x2

2
4

+

(
x1 + x3

2

)2
,

J = 2
√

2x1x2

(
x2

2
12

+

(
x1 + x3

2

)2
)

, σ(x) =
504000

x4x2
3

,

δ (x) =
65856000

(30·106)x4x3
3

,

pc (x) =
4.013

(
30·106)x3x3

4
1176

(
1− x3

28

√
30·106

4(12·106)

)
.

with
0.1 ≤ x1, x4 ≤ 2 and 0.1 ≤ x2, x3 ≤ 10.
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Figure 8. Schematic of welded beam design.

The optimization results for the welded beam design, achieved by employing the pro-
posed hPSO-TLBO algorithm and other competing optimizers, are presented in
Tables 10 and 11. The proposed hPSO-TLBO algorithm yielded the optimal design for the
welded beam, as indicated by the obtained results. The design variables were determined
to have values of (0.2057296, 3.4704887, 9.0366239, 0.2057296), and the corresponding ob-
jective function value was found to be 1.7248523. The simulation outcomes demonstrate
that hPSO-TLBO outperforms competing algorithms in terms of statistical indicators and
overall effectiveness in optimizing the welded beam design. The process of achieving the
optimal design using hPSO-TLBO for the welded beam is depicted in Figure 9.
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Table 10. Performance of optimization algorithms on welded beam design problem.

Algorithm
Optimum Variables Optimum

Costh l t b

hPSO-TLBO 0.20573 3.470489 9.036624 0.20573 1.724852
WSO 0.20573 3.470489 9.036624 0.20573 1.724852

AVOA 0.20494 3.487615 9.036514 0.205735 1.725954
RSA 0.196401 3.53676 9.953681 0.218189 1.983572
MPA 0.20573 3.470489 9.036624 0.20573 1.724852
TSA 0.204146 3.496185 9.065083 0.20617 1.734136

GWO 0.205588 3.473748 9.036228 0.205801 1.725545
hPT1 0.237138 3.829949 8.522555 0.262167 2.139874
hPT2 0.243247 3.783904 9.178428 0.263847 2.384718

ITLBO 0.227451 3.687204 8.574407 0.25102 1.994317
IPSO 0.268698 3.523407 8.892821 0.293392 2.53362
TLBO 0.318796 4.452332 6.725274 0.432185 3.065577
PSO 0.377926 3.423201 7.289954 0.585841 4.097012

Table 11. Statistical results of optimization algorithms on welded beam design problem.

Algorithm Mean Best Worst Std Median Rank

hPSO-TLBO 1.724679823 1.724679823 1.724679823 2.51E-16 1.724679823 1
WSO 1.724844362 1.724844016 1.724849731 1.42E-06 1.724844016 3

AVOA 1.762377344 1.725945958 1.846469707 0.041484186 1.748038057 6
RSA 2.19632836 1.983563906 2.555158029 0.163966432 2.170484224 7
MPA 1.724844021 1.724844017 1.724844028 3.81E-09 1.724844021 2
TSA 1.743730267 1.734127479 1.753218931 0.006376703 1.743829634 5

GWO 1.727321573 1.725537072 1.731495767 0.001550229 1.727068458 4
hPT1 7.51754E+12 2.139816676 4.96972E+13 1.39052E+13 1.47507E+11 9
hPT2 1.16016E+13 2.384677086 6.62629E+13 1.94524E+13 2.95014E+11 10

ITLBO 6.87E+12 1.994259593 6.63E+13 1.85E+13 2.548744746 8
IPSO 1.4204E+13 2.533578588 8.59849E+13 2.98947E+13 3.397180524 11
TLBO 3.43E+13 3.065568295 3.31E+14 9.23E+13 5.819237012 12
PSO 4.73E+13 4.097004136 2.87E+14 9.96E+13 6.891186011 13
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5.4. Tension/Compression Spring Design

The tension/compression spring design is an optimization problem in real-world appli-
cations to minimize the weight of a tension/compression spring. The tension/compression
spring design schematic is shown in Figure 10. The following mathematical model repre-
sents a tension/compression spring, as outlined in [16]:
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Consider:
X = [x1, x2, x3] = [d, D, P].

Minimize:
f (x) = (x3 + 2)x2x2

1.

Subject to:

g1(x) = 1−
x3

2x3

71785x4
1
≤ 0,

g2(x) =
4x2

2 − x1x2

12566
(
x2x3

1
) + 1

5108x2
1
− 1 ≤ 0,

g3(x) = 1− 140.45x1

x2
2x3

≤ 0, g4(x) =
x1 + x2

1.5
− 1 ≤ 0

with
0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3 and 2 ≤ x3 ≤ 15.

Tables 12 and 13 showcase the results obtained when employing the hPSO-TLBO
algorithm and other competing algorithms for the optimization of the tension/compression
spring design. The proposed hPSO-TLBO approach yielded the optimal design for the ten-
sion/compression spring, as evidenced by the obtained results. The design variables were
determined to have values of (0.0516891, 0.3567177, 11.288966), and the corresponding
value of the objective function was found to be 0.0126652. Simulation outcomes demon-
strate that hPSO-TLBO outperforms competing algorithms, delivering superior outcomes
in addressing the tension/compression spring problem. The convergence curve of hPSO-
TLBO, illustrating its ability to achieve the optimal design for a tension/compression spring,
is depicted in Figure 11.

Table 12. Performance of optimization algorithms on tension/compression spring design problem.

Algorithm
Optimum Variables

Optimum Cost
d D P

hPSO-TLBO 0.051689 0.356718 11.28897 0.012665
WSO 0.051687 0.356669 11.29185 0.012665

AVOA 0.051176 0.344499 12.04499 0.01267
RSA 0.050081 0.312796 14.82157 0.013174
MPA 0.051691 0.35676 11.28651 0.012665
TSA 0.050966 0.339564 12.38189 0.012682

GWO 0.051965 0.363368 10.91381 0.012671
hPT1 0.055007 0.46737 9.513398 0.013657
hPT2 0.056665 0.522698 8.628156 0.014153

ITLBO 0.054843 0.4635 9.776336 0.013664
IPSO 0.056312 0.512716 9.339243 0.014227
TLBO 0.068247 0.908916 2.446611 0.017633
PSO 0.068162 0.905704 2.446611 0.017528
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Table 13. Statistical results of optimization algorithms on tension/compression spring design problem.

Algorithm Mean Best Worst Std Median Rank

hPSO-TLBO 0.012601907 0.012601907 0.012601907 7.58E-18 0.012601907 1
WSO 0.012673576 0.012662188 0.012826009 4.02E-05 0.012662617 3

AVOA 0.013352445 0.012667288 0.014177381 0.000625752 0.013282895 7
RSA 0.013254044 0.013170803 0.013400678 7.79E-05 0.013232604 6
MPA 0.012662191 0.012662188 0.0126622 3.20E-09 0.01266219 2
TSA 0.012964934 0.012679454 0.013539129 0.000271138 0.012889919 5

GWO 0.012720992 0.012667804 0.012948444 6.20725E-05 0.012718442 4
hPT1 1.06544E+12 0.013636157 1.89059E+13 4.66181E+12 0.013724578 10
hPT2 2.13088E+12 0.014137489 3.78117E+13 9.32E+12 0.014252841 11

ITLBO 0.013814906 0.013642726 0.013994358 0.000119693 0.013805438 8
IPSO 6.39263E+12 0.014211676 1.13435E+14 2.79708E+13 0.014234198 12
TLBO 1.82E-02 0.017629673 1.88E-02 4.02E-04 0.018126014 9
PSO 2.13E+13 0.017524526 3.78E+14 9.32E+13 0.017524526 13
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6. Conclusions and Future Works

This paper presented a novel hybrid metaheuristic algorithm called hPSO-TLBO,
which combines the strengths of particle swarm optimization (PSO) and teaching–learning-
based optimization (TLBO). The integration of PSO’s exploitation capability with TLBO’s
exploration ability forms the foundation of hPSO-TLBO. The performance of hPSO-TLBO
was evaluated on a diverse set of optimization tasks, including fifty-two standard bench-
mark functions and the CEC 2017 test suite. The results showcase the favorable perfor-
mance of hPSO-TLBO across a range of benchmark functions, highlighting its capability to
balance exploration and exploitation strategies effectively. A comparative analysis with
twelve established metaheuristic algorithms further confirms the superior performance of
hPSO-TLBO, which is statistically significant according to Wilcoxon analysis. Additionally,
the successful application of hPSO-TLBO in solving four engineering design problems
showcased its efficacy in real-world scenarios.

The introduction of hPSO-TLBO opens up several avenues for future research. One
promising direction involves developing discrete or multi-objective versions of hPSO-TLBO.
Exploring the application of hPSO-TLBO in diverse real-world problem domains is another
great research prospect.
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