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Abstract: The Aquila Optimizer (AO) is a metaheuristic algorithm that is inspired by the hunting
behavior of the Aquila bird. The AO approach has been proven to perform effectively on a range of
benchmark optimization issues. However, the AO algorithm may suffer from limited exploration
ability in specific situations. To increase the exploration ability of the AO algorithm, this work offers
a hybrid approach that employs the alpha position of the Grey Wolf Optimizer (GWO) to drive
the search process of the AO algorithm. At the same time, we applied the quasi-opposition-based
learning (QOBL) strategy in each phase of the Aquila Optimizer algorithm. This strategy develops
quasi-oppositional solutions to current solutions. The quasi-oppositional solutions are then utilized
to direct the search phase of the AO algorithm. The GWO method is also notable for its resistance
to noise. This means that it can perform effectively even when the objective function is noisy. The
AO algorithm, on the other hand, may be sensitive to noise. By integrating the GWO approach into
the AO algorithm, we can strengthen its robustness to noise, and hence, improve its performance
in real-world issues. In order to evaluate the effectiveness of the technique, the algorithm was
benchmarked on 23 well-known test functions and CEC2017 test functions and compared with other
popular metaheuristic algorithms. The findings demonstrate that our proposed method has excellent
efficacy. Finally, it was applied to five practical engineering issues, and the results showed that the
technique is suitable for tough problems with uncertain search spaces.

Keywords: Aquila Optimizer; grey wolf optimization; quasi-opposition-based learning; real-world
engineering problems

1. Introduction

In order to maximize profit, productivity, and efficiency, optimization is carried out,
which is basically the process of identifying the best possible solution among all viable
options for a particular situation [1–3]. In recent decades, as human culture and contem-
porary science have advanced, the intricacy of the number of optimization issues in the
actual world has been rising significantly, placing more demands on optimization strate-
gies’ dependability and efficacy [4]. In general, deterministic algorithms and metaheuristic
algorithms (MAs) are two categories of existing optimization technologies that are used.
Using the same starting parameters for a deterministic method, possible solutions are pro-
duced in accordance with mechanical convergence to the global optimum without regard
to the analytical features of problems or anything arbitrary [5]. The conjugate gradient
and the Newton–Raphson technique are two typical deterministic techniques. While this
kind of method can solve some nonlinear problems satisfactorily, it often falls into local
optima when met with multimodal, large-scale, and sub-optimal search space constraints.
It also requires the problem’s derivative information. Lately, as a perfect substitute for
deterministic algorithms, MAs are gaining popularity among academics worldwide as

Biomimetics 2024, 9, 54. https://doi.org/10.3390/biomimetics9010054 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics9010054
https://doi.org/10.3390/biomimetics9010054
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0000-0002-4837-1850
https://orcid.org/0000-0002-6515-1569
https://doi.org/10.3390/biomimetics9010054
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics9010054?type=check_update&version=1


Biomimetics 2024, 9, 54 2 of 32

a great substitute for deterministic algorithms because of their straightforward designs,
minimal processing overheads, ability to avoid gradient information, and strong local
optimal avoidance capability [6].

Metaheuristic algorithms [7] are influenced by nature [8]. Based on their sources
of inspiration, these algorithms can be grouped into four categories [9,10], including
Evolution-based Algorithms (EAs) [11], Swarm-based Intelligence (SI) [12], Physics-based
Techniques (PTs) [13], and Human-based Behaviors (HBs) [14], as indicated in Table 1.
They usually model physical or biological phenomena in nature and create mathematical
frameworks to solve optimization problems [15,16]. These algorithms offer the features of
self-organization, self-adaptation, and self-learning, and they have been widely applied
in various domains, such as biology [17,18], feature selection [19], optimization comput-
ing [20], image classification [21], and artificial intelligence [22,23].

Table 1. Classification of algorithms.

Evolution-Inspired

Genetic Algorithm (GA) [24]
Differential Evolution (DE) [25]

Bat Algorithm (BA) [26]
Bacterial Foraging Optimization (BFO) [27]

Artificial Immune System (AIS) [28]

Swarm-Inspired

Aquila Optimizer (AO) [29]
Grey Wolf Optimizer (GWO) [30]

Whale Optimization Algorithm (WOA) [31]
Reptile Search Algorithm (RSA) [32]

Particle Swarm Optimization (PSO) [33]
Salp Swarm Algorithm (SSA) [34]
Sine Cosine Algorithm (SCA) [35]

Dynamic Harris Hawks Optimization (DHHO) [36]

Physics-Inspired
Gravitational Search Algorithm (GSA) [37]

Wind Driven Optimization (WDO) [38]
Atom Search Optimization (ASO) [39]

Human-Inspired Teaching–Learning-Based Optimization (TLBO) [40]
Poor and Rich Optimization (PRO) [41]

Despite Metaheuristic Algorithms’ (MAs’) success in many areas of computational
research, they may nevertheless experience a poor convergence speed, a propensity to
converge too early, and a tendency to fall into local optima [42].

The No-Free-Lunch (NFL) theorem [43] states that no single algorithm can solve all
optimization problems. Because of this theorem, many academics devote their time to
creating new MAs or improving old ones. In addition to adding certain efficient search
techniques, it has recently been fashionable to combine the two fundamental MAs for a
more effective overall performance when enhancing existing algorithms. As opposed to
a single algorithm, a hybrid algorithm encourages diversity and spreads more helpful
information throughout its population, giving it a stronger search power.

In this study, we concentrate on the two most recent swarm-based MAs, namely the
Aquila Optimizer and Grey Wolf Optimizer. Concurrently, the improved initialization
approach employs the quasi-oppositional-based learning (QOBL) [44] strategy to produce
an opposing solution that guides the AO algorithm’s search phase.

The Aquila Optimizer (AO) was first proposed in 2021 [29]. It can find solutions with
a certain level of precision at a cheap computational cost, it is easy to implement, and
it requires little fine-tuning of its parameters. Thus, it has excellent research potential.
For people who are new to metaheuristic optimization, this makes it a good option. The
Aquila Optimizer has undergone numerous improvements to make it more potent at
resolving challenging real-world optimization issues; some of the recent improvements
are hybridization NIOAs [45,46], opposition-based learning (OBL) [47], quasi-oppositional-
based learning (QOBL) [48], Chaotic Sequence [49], Levy-flight-based strategy [50], Gauss
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map and crisscross operator [51], random learning mechanism and Nelder–Mead simplex
search [52], wavelet mutation [53], weighted adaptive searching technique [54], binary
AO [55], etc. A fine literature examination of the AO algorithm and its application is
offered in reference [56]. From these sources, it may be inferred that AO has a propensity
to converge too soon and undergo local stagnation.

The other method concerned in this paper, the GWO, was created in 2014 [30]. The
Grey Wolf Optimizer (GWO) was developed in response to the social hunting behavior
of grey wolves and has inspired other academics to use it to tackle practical optimization
issues. Grey wolves have a rigid social structure with an alpha wolf at the top, and they
live in packs. The alpha wolf is in charge of steering the pack and making choices, and the
other wolves adhere to its instructions [57]. The top solution thus far has been identified to
be the alpha position of the GWO. So, we may force the AO to search through fresh regions
of the search space and prevent local stagnation by adding the alpha position of the GWO
into the AO.

Opposition-based learning (OBL) [58] is a novel area of study that has generated
noteworthy attention within the past 10 years. By making use of the OBL concept, numerous
soft computing methods have been improved. To boost the solution quality, the quasi-
opposition-based learning (QOBL) technique [59] is applied. The QOBL indicates that,
when solving an optimization issue, it is more effective to employ a quasi-opposite number
than an opposite number. The fittest population in QOBL is made up of the current nominee
population as well as its opposite population and quasi-opposite population. The QOBL
strategy can be applied in integrating NIOAs, in the optimal design of PI/PD dual-mode
controllers [60], and in the parameter identification of permanent magnet synchronous
motors [61].

In light of the above discussion, to increase the exploration ability of the AO algorithm,
this work offers a hybrid approach that employs the alpha position of the GWO to drive
the search process of the AO algorithm. At the same time, we applied the QOBL strategy in
each phase of the Aquila Optimizer. This strategy develops quasi-oppositional solutions to
the current solutions. The quasi-oppositional solutions are then utilized to direct the search
phase of the AO algorithm. We call this enhanced algorithm the GAOA. By comparing the
application results of 10 swarm intelligence algorithms based on 23 classical benchmark
functions [29,30] and 29 CEC2017 benchmark functions [62], it is proven that the approach
suggested in this research can speed up the convergence speed, enhance the convergence
accuracy, and identify the global optimum instead of the local optimum. The application of
four engineering challenges also indicates that our suggested approach has considerable
advantages in solving genuine situations.

The important contributions of this study are summarized as follows:

• Based on the Grey Wolf alpha position, the Aquila Optimizer has been improved, so
that its exploration ability is increased.

• Then, the quasi-oppositional-based learning strategy is used in each phase of the
Aquila Optimizer to direct the search process of the AO algorithm.

• The performance of our method on 23 classical functions and 29 CEC2017 functions
is examined and compared with the performances of the other 10 algorithms while
considering different dimensions.

• Four engineering design challenges are utilized to evaluate the effectiveness of our
proposed method to solve practical situations.

The following chapters of this article are organized as follows: Section 2 introduces the
background of the Aquila Optimizer, Grey Wolf Optimizer, and opposition-based learning
strategy. Section 3 introduces the developed algorithm. In Section 4, we carry out the
corresponding experiment. Also, four traditional engineering problems are discussed in
Section 5. Finally, Section 6 provides a summary and the future prospects.
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2. Background
2.1. Aquila Optimizer

The metaheuristic optimization method, known as the Aquila Optimizer (AO) [29],
was motivated by the Aquila bird’s hunting style. The Aquila bird uses four primary
prey hunting techniques, which AO imitates: Using its height advantage, the Aquila bird
swoops down vertically to take down floating prey. By hovering in a contour-like pattern
close to the ground, the Aquila bird performs swift glide-like assaults to pursue seabirds.
The Aquila bird uses this technique to hunt foxes and other prey that move slowly. The
Aquila bird employs this method to directly capture prey while walking on the ground.

2.1.1. Expanded Exploration

The Aquila Optimizer algorithm’s expanded exploration u1 reflects that it achieves
great heights, and then descends rapidly, which is the hunting method observed in Aquila
birds. This tactic involves the bird soaring at great heights, allowing it to thoroughly
examine the search area, spot prospective prey, and choose the best hunting location.
Ref. [29] contains a mathematical representation of this tactic, as shown in Equation (1).

u(h+1)
1 = u(h)

best ×
(

1 − h
H

)
+

(
u(h)

M − rand × u(h)
best

)
(1)

The maximum number of iterations in the method is symbolized as H whereas h
stands for the present iteration. The initial search in the candidate solution population (u1)

yields the answer for the following iteration, denoted as
(

u(h+1)
1

)
. The expression

(
u(h)

best

)
denotes the best result up to the hth iteration. Through the equation

(
1 − h

H

)
, to adjust

the depth of the search space, a count of iterations is used. Furthermore, N denotes the
population size and dimension size, D, and the average value of the locations of connected
existing solutions at the hth iteration is calculated using Equation (2), indicated as u(h)

M .

u(h)
M =

1
N ∑N

i=1 ui(h), for all j = 1, 2, . . . , D (2)

2.1.2. Narrowed Exploration

The Aquila Optimizer algorithm’s narrowed exploration method (u2) is in line with
how Aquila birds hunt; to pursue prey, the tactic entails flying in a contour-like pattern
with quick gliding attacks in a condensed investigation area. The main objective of this
approach, which is mathematically described in Equation (3), is to find a solution

(
u(h+1)

2

)
for the following iterations, denoted as h.

u(h+1)
2 = u(h)

best × Levy(D) + u(h)
R + (v − u)× rand (3)

The Levy flying distribution for dimension space, D, is referred to as Levy(D) in the
Aquila optimization method. In the range [1, N], where N denotes population size, the
random solution

(
u(h)

R

)
is discovered at the hth iteration. Typically set to 0.01, the fixed

constant value s is used to determine the Levy flight distribution along with randomly
chosen parameters, u and v, that range from 0 to 1. Equation (4) provides the mathematical
expression for this calculation.

Levy(D) = s × u × σ

|v|
1
α

(4)

Equation (5) determines the value s, which is derived using a certain constant parame-
ter a set at 1.5.
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σ =

 γ(1 + a)× sin
(

πa
2
)

γ
(
(1+a)

2

)
× a × 2(

a−1
2 )

 (5)

The spiral shapes within the search range, designated by v and u, respectively, are
represented by Equations (6) and (7). These spiral shapes are specified in Equation (3).

v = r1 + UD1 cos
(
−ωD1 +

(
3π

2

))
(6)

u = r1 + UD1 sin
(
−ωD1 +

(
3π

2

))
(7)

Over a predetermined number of search iterations, the variable r1 accepts values in
the range of (1, 20). w and U have fixed values of 0.005 and 0.00565, respectively. D1 ∈ Z
has a range of 1 to the search space’s dimension, D.

2.1.3. Expanded Exploitation

The Aquila bird targets its prey with a low, slow-moving descent attack while carefully
inspecting the prey’s location during the investigation phase. Equation (8) is a mathematical
representation of this method, also known as expanded exploitation u3.

u(h+1)
3 =

(
uh

best − u(h)
M

)
× θ − rand + ((ub − lb)× rand + lb)× ρ (8)

Equation (8) results in
(

u(h+1)
3

)
, which denotes the outcome for the following iteration.

In the hth iteration,
(

u(h)
M

)
stands for the average value of the current solution determined

by Equation (2), and ubest(h) represents the currently best solution found. The tuning
parameters θ and ρ are normally given a value of 0.1 each, whereas the variable ‘rand’ is
allocated a random number in the (0, 1) range. The upper bound is shown as ub, and the
lower bound is shown as lb.

2.1.4. Narrowed Exploitation

Aquila birds use a hunting strategy in which they directly capture their targets by
exploiting the prey’s erratic movement patterns when on the ground. Equation (9), which
generates the hth iteration of the following solution, indicated as

(
u(h+1)

4

)
, uses this hunting

approach as the foundation for the restricted exploitation technique
(

u(h)
4

)
design. A

quality function known as J, which is stated in Equation (10), was proposed to guarantee a
balanced search strategy.

u(h+1)
4 = J × u(h)

best −
(

P1 × rand × u(h)
1

)
− P2 × Levy(D) + rand × P1 (9)

Equations (11) and (12) are utilized to calculate the trajectory of an attack during a
getaway, from the initial location to the terminal location (P2), and the motion pattern for
the Aquila bird’s prey tracking (P1). The calculations are performed using the current
iteration number (h) and the maximum number of iterations (H).

J(h) = h
2×rand()−1
(1−H)2 (10)

P1 = 2 × rand − 1 (11)

P2 = 2 ×
(

1 − h
H

)
(12)

The pseudocode in Algorithm 1 provides a summary of the Aquila Optimization procedure.
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Algorithm 1 Aquila Optimizer

Set Initial values of parameters (nPop, nVar, α, β , max_iter, etc.) where nPop refers to
population size, max_iter to the maximum number of iterations.
Determine the starting position at random.
While (Iteration < max_iter) do
Determine the fitness of early positions.
As ubest(h), identify the best individual with the finest fitness values.

For (i = 1: nPop)
Updated variables include u, v, P1, P2, and Levy(D)

If h ≤
(

2
3

)
× H then

If rand ≤ 0.5
Execute Expanded Exploration using Equation (1)

Else
Execute Narrowed Exploration using Equation (3)

End
Else

If rand ≤ 0.5
Execute Expanded Exploitation using Equation (8)

Else
Execute Narrowed Exploitation using Equation (9)

End If
End If

End for
End while
Record best solution (ubest)

2.2. Grey Wolf Optimizer

The GWO is a population-based metaheuristic algorithm [30] that replicates grey
wolves, considered as apex predators, which are at the top of the food chain [57]:

• The alpha wolf is regarded as the dominating wolf in the pack, and his/her orders
should be followed by the pack members.

• Beta wolves are subordinate wolves, which support the alpha wolf in decision making,
and they are considered the best prospects to be the alpha wolf.

• Delta wolves have to surrender to the alpha and beta, but they rule the omega.
• Omega wolves are regarded as the scapegoats in the pack, they are the least important

individuals in the pack, and they are only allowed to feed last.

2.2.1. Encircling the Prey

When the prey site is seized by the grey wolves, the encircling of prey is performed.
In the process of encircling, grey wolf individuals should first assess the distances between
themselves and the prey according to Equation (13) and then update their positions through
Equation (14):

→
D =

∣∣∣∣→C ·up(h)− u(h)
∣∣∣∣ (13)

u(h + 1) = up(h)−
→
A·

→
D (14)

where h denotes the current iteration,
→
A and

→
C are specified as coefficient vectors, up

represents the best solution position vector that the prey has detected so far, and u indicates

the position vector of a grey wolf.
→
D is the difference vector that chooses the movement of

the wolf either toward the neighborhood areas of the prey or opposite of them.

Both
→
A and

→
C are modified over iterations like the following:

→
C = 2

→
r 2 (15)
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→
A = 2

→
a ·→r 1 −

→
a (16)

where
→
r 1 and

→
r 2 are randomly generated stochastic vectors from the interval [0, 1].

→
C and

→
A are coefficients that are determined by Equations (15) and (16). The components of the
vector

→
a are linearly decreasing from 2 to 0 during the course of the iterations and can be

stated as Equation (17):

a = 2 − 2 × h
H

(17)

where h signifies the current iteration, and H denotes the maximum number of iterations.

2.2.2. Hunting the Prey

In the GWO, while the global optimums of an optimization problem are unknown,
the first three grey wolves, the alpha, beta, and delta, are always assumed to be the closest
solutions to the optimal value. In the hunting strategy, the placements of each search agent
(wolf) are altered based on the three best places of the alpha, beta, and delta. The following
equations are used to replicate the hunting process and to locate the better optimum in
the border space. Therefore, the remaining wolves are required to update their positions
following the leading wolves, which may be computed by Equations (18)–(20).

→
Dα =

∣∣∣∣→C1·uα(h)− u(h)
∣∣∣∣

→
Dβ =

∣∣∣∣→C1·uβ(h)− u(h)
∣∣∣∣

→
Dδ =

∣∣∣∣→C1·uδ(h)− u(h)
∣∣∣∣

(18)

u1 = uα −
→
A1·

(→
Dα

)
u2 = uβ −

→
A2·

(→
Dβ

)
u3 = uδ −

→
A3·

(→
Dδ

) (19)

u(h + 1) =
u1 + u2 + u3

3
(20)

where uα, uβ, and uδ are the three best positions of the alpha, beta, and delta;
→
Dα,

→
Dβ, and

→
Dδ are the distances of the search agents away from the three best solutions; and

→
A1,

→
A2,

and
→
A3 represent random vectors.

2.2.3. Attacking the Prey (Exploitation Phase)

Grey wolves separate from each other to look for prey and converge to attack prey.
Grey wolves will only attack the prey when they are no longer moving. This phase is
responsible for exploitation and is handled by a linear decrement in

→
a .

The linear reduction in this parameter enables grey wolves to attack the prey when it
stops moving.

2.2.4. Searching the Prey (Exploration Phase)

It is apparent that after the prey stops moving, the wolf will kill the prey and, in this
way, they finish their hunting process. Grey wolves primarily search according to the
positions of α, β, and δ [63].
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The process of the GWO can be exhibited in detail according to the pseudo-code of the
GWO’s Algorithm 2.

Algorithm 2 Grey Wolf Optimizer

Set Initial values of parameters (nPop, max_iter, ub, and lb)
Use ub and lb to generate the starting locations for the grey wolves.
Initialize a = 2, A, C
Calculate each grey wolf’s fitness level.
The grey wolf with the highest level of fitness is the uα.
The grey wolf with the second-highest fitness level is uβ.
The grey wolf with the third highest fitness is called uδ.
While (Iteration < max iteration)

for (i = 1: nPop) do
Report the current location of the grey wolf by using Equation (20)

end for
Update uα, uβ, uδ.
Calculate each search agent’s fitness.
Return uα while updating uβ, uδ.

The best answer discovered thus far in the search space is represented by the alpha
wolf. It increases the speed and efficiency of convergence by guiding the other wolves, or
candidate solutions, toward areas of potential interest. By doing this, early convergence to
possibly less-than-ideal local optima is avoided. It promotes equilibrium behavior between
exploration and exploitation. Compared to certain other metaheuristics, the algorithm
is comparatively simple to develop and comprehend due to the simplicity of the alpha
position notion. Therefore, for better performance, the alpha position can be combined
with other optimization strategies to create flexible hybrid algorithms [64].

2.3. Opposition-Based Learning and Quasi-Opposition-Based Learning

Tizhoosh first proposed opposition-based learning (OBL) in 2005 [58]. By contrasting
the current solution with the opposition-based learning solution, OBL’s primary goal is
to select the best solution for the following iteration. Numerous metaheuristic algorithms
have effectively employed the OBL approach to increase their ability to overcome the
stagnation of local optima [65,66]. The following is the mathematical equation:

uOBL(h + 1) = lb + ub − u(h)

A better OBL variant is quasi-opposition-based learning (QOBL) [48], which uses
quasi-opposite points rather than opposite points. QOBL points are more likely to represent
challenging problems that have not yet been solved by existing methods. The QOBL
mathematical equation is as follows:

uQOBL(h + 1) =

{
CS + r9 × (MP − CS), if MP > CS

MP + r9 × (CS − MP), otherwise,

CS =
lb + ub

2
MP = lb + ub − u(h)

Below is the pseudo-code of implementing QOBL in population initialization, denoted
as Algorithm 3.
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Algorithm 3 Quasi-Oppositional-Based Learning

Set Initial values of parameters (nPop, nVar, initial population u, lb, ub)
For i = 1: nPop

For j = 1: nVar
uo

i,j = lbj + ubj − ui,j %Inverting the current population

Di,j =
lbj+ubj

2

If
(

ui,j < Di,j

)
%Creating Quasi Opposite of Population

uqo
i,j = Di,j +

(
uo

i,j − Di,j

)
× rand()

Else

uqo
i,j = ui,j +

(
Di,j − uo

i,j

)
× rand()

End
End

End

3. Proposed Framework

In this section, the general framework of the developed algorithm is described in
Algorithm 4.

Using the GWO method to populate the AO algorithm’s initial population will boost
its exploratory capabilities. To carry this out, a population of solutions can first be generated
using the GWO algorithm.

In Algorithm 4, once the population of the AO algorithm has been initialized, the AO
algorithm can be utilized to optimize the issue. The alpha position of the GWO population
can be utilized to steer the search process of the AO algorithm. This can be achieved by
updating the positions of the solutions in the AO population based on the alpha position.
To create an improved harmony between diversity and amplification and to make sure
that the optimal result was found, the QOBL was reimplemented for each phase of the AO.
Up until the termination criteria were satisfied, this process was repeated. We named this
hybrid algorithm the Grey Wolf Aquila Synergistic Algorithm (GAOA).

Algorithm 4 GAOA

Set Initial values of parameters (nPop, max_iter, ub, and lb, nVar, α, β)
Initialize Population Randomly
While (Iteration < Max iterations) do
Determine the fitness of each wolf.
Evaluate the alpha position by using the GWO algorithm

If h ≤
(

2
3

)
× H

If rand ≤ 0.5
Execute Expanded Exploration by using alpha position in Equation (1)
Execute QOBL

Else
Execute Narrowed Exploration by using alpha position in Equation (3)
Execute QOBL

End If
Else

If rand ≤ 0.5
Execute Expanded Exploitation by using alpha position in Equation (8)
Execute QOBL

Else
Execute Narrowed Exploitation by using the alpha position in Equation (9)
Execute QOBL

End If
End If

End while
Record best solution (ubest)
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The performance of the AO algorithm can be enhanced by initializing the population
of the AO algorithm with the GWO algorithm and directing the search process using the
alpha position of the AO population.

This is due to the AO algorithm’s potential to increase the likelihood of obtaining the
global optimum, expand the search space under consideration, and decrease the likelihood
of early convergence. Additionally, the harmony between diversity and intensification can
be enhanced by including the quasi-oppositional-based learning (QOBL) technique in each
stage of the AO algorithm. This may help the AO algorithm to perform even better. Its
flowchart is given in Figure 1 for a clear visualization of the process.
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Overall, the suggested method, the Grey Wolf Aquila Synergistic Algorithm (GAOA),
is a promising strategy to enhance the AO algorithm’s performance in a variety of opti-
mization tasks. It has been demonstrated to be successful at enhancing the performance
of the AO method in a number of benchmark optimization tasks whilst being very easy
to implement.

The general computational complexity of the GAOA is also shown in this section.
Three rules are usually used to determine the computational complexity of the GAOA:
initializing the solutions, calculating the fitness functions, and updating the solutions.

Let N be the number of solutions and let O(N) be the computing complexity of
the initialization procedures of the solutions. The updating processes for the solutions
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have a computational complexity of O(N × D) + O(G × (N × D + N × D)), where G is
the total number of iterations and D is the problem’s dimension size. These processes
involve searching for the best positions and updating each solution’s position. As a result,
the suggested GAOA’s (Grey Wolf Aquila Synergistic Algorithm) overall computational
complexity is O(N × D) + O(G × (N × D + N × D)) = O(ND(1 + 2G)).

4. Experimental Results and Analysis
4.1. Experimental Settings

The performance of the suggested approach is examined in this work by utiliz-
ing benchmark functions from the IEEE Congress on Evolutionary Computation 2017
(CEC2017) and 23 classical benchmark functions. The test suite for the IEEE CEC2017 has
30 functions, although F2 is excluded due to instability. There are two unimodal functions
(F1 and F3), seven basic multimodal functions (F4–F10), ten hybrid functions (F11–F20),
and ten composition functions (F21–F30) among the twenty-nine benchmark functions.

The population size (N) was fixed at 100 in each experiment. The [−100, 100] range
was chosen for the search. On each function, each algorithm was executed 51 times. In the
tables that follow, the best results across all comparing algorithms are highlighted in bold.
On a computer with an IntelI CoITM) i7-9750H processor running at 2.60 GHz and 16 GB
of RAM, all algorithms were implemented in MATLAB R2021b.

The following four factors are used to assess GAOA’s (Grey Wolf Aquila Synergistic
Algorithm) performance:

• The average and standard deviation of the optimization errors between the obtained
and known real optimal values are used. All objective functions are minimization
issues; hence, the best values, or minimum mean values, are denoted in bold.

• Non-parametric statistical tests, such as the Wilcoxon rank-sum test, are used to
compare the p-value and the significance level (0.05) between the suggested algorithm
and the compared method [67,68]. There is a substantial difference between the two
algorithms when the p-value is less than 0.05. W/T/L denotes the number of wins,
ties, and losses the given algorithm has experienced in comparison to its rival.

• Another non-parametric statistical test that is employed is the Friedman test [69]. As
test data, the average optimization error values are employed. The algorithm performs
better when the Friedman rank value is lower. The minimum value is bolded to draw
attention to it.

• By exhibiting the pairwise variations in the ranks for each method at each dimension,
the Bonferroni–Dunn diagram demonstrates the discrepancies between the rankings
achieved for each algorithm at dimensions of 30, 50, and 100. By deducting the
rank of one algorithm from the rank of another algorithm, the pairwise differences
in the rankings are determined. Each bar in the Bonferroni–Dunn image represents
the average pairwise difference in ranks for a particular algorithm at a particular
dimension. Usually, the bars are color-coded to represent various algorithms.

• Convergence graphs are used to provide a simple visual representation of the algo-
rithm’s accuracy and speed of convergence. It explains if the enhanced algorithm
breaks away from the local solution.

4.2. Competitive Algorithms Comparison

Seven competing algorithms are compared to gauge the GAOA’s efficacy and search
performance: the MAO (Modified Aquila Optimizer) [70], AO (Aquila Optimizer), GWO
(Grey Wolf Optimizer), SCA (Sine–Cosine Algorithm), RSA (Reptile Search Algorithm),
WOA (Whale Optimization Algorithm), SSA (Salp Swarm Algorithm). The comparison is
made on 29 benchmark functions from IEEE CEC2017 with dimensions of 30, 50, and 100.

Table 2 displays the parameter settings [71] for various methods. Tables 3–6 show the
findings of a comparative experiment.
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Table 2. Parameter settings for GAOA and other algorithms.

Algorithm Parameters

GAOA a : 2 → 0, U = 0.00565, r = 10, ω = 0.05, α = 0.1, δ = 0.1, P1 ∈ [−1, 1], P2 = [2, 0]
MAO U = 0.00565, r = 10, ω = 0.05, α = 0.1, δ = 0.1, P1 ∈ [−1, 1], P2 = [2, 0]
AO U = 0.00565, r = 10, ω = 0.05, α = 0.1, δ = 0.1, P1 ∈ [−1, 1], P2 = [2, 0]

GWO a : 2 → 0
SCA a = [2, 0]
RSA α = 0.1, β = 0.005

WOA w1 = [2, 0], w2 = [−1,−2], v = 1
SSA s1 = [1, 0], s2 ∈ [0.1], s3 ∈ [0, 1]

Table 3. GAOA and seven competing algorithms’ experimental and statistical data on the benchmark
functions with 30 dimensions from IEEE CEC2017.

Function GAOA MAO AO GWO SCA RSA WOA SSA

F1 Mean
STD

2.512 × 103

3.401 × 103
3.641 × 103

4.381 × 103
1.511 × 109

7.720 × 109
9.328 × 108

8.157 × 108
1.661 × 107

8.017 × 107
5.384 × 10
9.292 × 109

2.826 × 107

1.911 × 107
2.410 × 103

2.501 × 103

F3 Mean
STD

5.501 × 101

4.013 × 101
4.823 × 100

1.101 × 101
5.731 × 104

3.812 × 104
2.803 × 104

8.092 × 103
2.429 × 103

4.748 × 103
7.423 × 104

5.505 × 104
1.642 × 104

6.126 × 105
3.001 × 101

1.710 × 102

F4 Mean
STD

3.103 × 101

3.571 × 101
4.579 × 101

3.631 × 101
6.081 × 102

1.433 × 103
1.442 × 102

3.276 × 101
4.581 × 102

3.170 × 102
1.455 × 104

4.561 × 103
1.588 × 102

4.127 × 101
9.495 × 101

2.001 × 101

F5 Mean
STD

6.071 × 101

1.581 × 101
1.642 × 102

4.233 × 101
2.911 × 102

8.777 × 101
9.191 × 101

2.354 × 101
1.457 × 102

4.729 × 101
3.891 × 102

3.309 × 101
2.743 × 102

5.211 × 101
2.038 × 102

4.101 × 101

F6 Mean
STD

2.091 × 100

3.030 × 10−1
1.871 × 101

1.102 × 101
6.241 × 101

1.873 × 101
4.693 × 100

3.004 × 100
2.502 × 101

8.602 × 100
8.634 × 101

7.461 × 100
6.627 × 101

9.812 × 100
5.316 × 101

6.414 × 100

F7 Mean
STD

1.100 × 102

2.710 × 101
2.611 × 102

7.001 × 101
4.799 × 102

1.533 × 102
1.474 × 102

3.596 × 101
2.569 × 102

5.750 × 101
6.725 × 102

6.730 × 101
5.470 × 102

9.151 × 101
5.110 × 102

1.011 × 102

F8 Mean
STD

6.812 × 101

2.251 × 101
1.190 × 102

3.460 × 101
2.122 × 102

8.900 × 101
8.182 × 101

2.299 × 101
1.273 × 102

2.980 × 101
3.116 × 102

2.206 × 101
2.031 × 102

5.167 × 101
1.451 × 102

3.211 × 101

F9 Mean
STD

4.485 × 101

4.790 × 101
2.304 × 103

1.152 × 103
7.801 × 103

3.310 × 103
4.242 × 102

2.347 × 102
3.154 × 103

1.325 × 103
8.533 × 103

1.196 × 103
6.089 × 103

2.090 × 103
3.411 × 103

6.754 × 102

F10 Mean
STD

3.430 × 103

5.75 × 102
3.660 × 103

6.391 × 102
6.411 × 103

1.734 × 103
2.909 × 103

7.536 × 102
3.524 × 103

7.312 × 102
7.021 × 103

3.593 × 102
5.121 × 103

8.401 × 102
4.211 × 103

6.081 × 102

F11 Mean
STD

6.901 × 101

2.791 × 101
8.771 × 101

3.543 × 101
2.031 × 103

2.331 × 103
3.375 × 102

3.685 × 102
3.566 × 102

2.507 × 102
7.770 × 103

2.806 × 103
4.111 × 102

1.331 × 102
1.378 × 102

4.511 × 101

F12 Mean
STD

4.531 × 104

2.510 × 104
6.078 × 104

2.860 × 104
3.713 × 108

9.301 × 108
3.088 × 107

5.277 × 107
8.585 × 107

1.659 × 108
1.703 × 1010

4.663 × 109
3.911 × 107

3.199 × 107
1.614 × 106

8.094 × 105

F13 Mean
STD

7.900 × 103

8.512 × 103
1.311 × 104

1.431 × 104
4.823 × 108

1.011 × 109
6.233 × 105

3.575 × 106
1.201 × 107

4.615 × 107
1.187 × 1010

4.906 × 109
1.297 × 105

1.194 × 105
5.216 × 104

2.340 × 104

F14 Mean
STD

1.463 × 103

1.501 × 103
2.810 × 103

3.311 × 103
6.001 × 105

6.399 × 105
1.484 × 105

2.439 × 105
1.356 × 105

2.768 × 105
3.074 × 106

3.588 × 106
7.001 × 105

6.901 × 105
4.170 × 103

3.152 × 103

F15 Mean
STD

2.911 × 103

3.221 × 103
7.241 × 103

9.211 × 103
2.412 × 107

5.101 × 107
9.164 × 104

2.899 × 105
2.104 × 105

1.366 × 106
6.736 × 108

5.747 × 108
7.581 × 104

5.291 × 104
3.112 × 104

2.122 × 104

F16 Mean
STD

7.605 × 102

2.751 × 102
9.101 × 102

2.300 × 102
2.092 × 103

8.831 × 102
7.493 × 102

2.635 × 102
1.328 × 103

3.729 × 102
3.898 × 103

6.862 × 102
2.005 × 103

4.610 × 102
1.504 × 103

3.314 × 102

F17 Mean
STD

1.742 × 102

1.100 × 102
4.563 × 102

2.204 × 102
9.123 × 102

4.001 × 102
2.779 × 102

1.651 × 102
5.103 × 102

2.027 × 102
5.306 × 103

6.866 × 103
7.780 × 102

2.780 × 102
8.120 × 102

2.401 × 102

F18 Mean
STD

8.014 × 104

4.841 × 104
8.612 × 104

3.800 × 104
6.833 × 106

9.212 × 106
6.210 × 105

5.727 × 105
6.259 × 105

2.004 × 106
3.277 × 107

3.071 × 107
2.940 × 106

2.656 × 106
1.120 × 105

1.001 × 105
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Table 3. Cont.

Function GAOA MAO AO GWO SCA RSA WOA SSA

F19 Mean
STD

5.611 × 103

6.400 × 103
8.194 × 103

9.885 × 103
3.514 × 107

7.989 × 107
8.827 × 105

1.949 × 106
1.493 × 104

1.536 × 104
2.323 × 109

1.694 × 109
2.747 × 106

2.061 × 106
1.301 × 105

5.361 × 104

F20 Mean
STD

2.100 × 102

8.214 × 101
4.501 × 102

1.824 × 102
7.711 × 102

1.981 × 102
3.404 × 102

1.337 × 102
6.274 × 102

2.118 × 102
8.636 × 102

1.426 × 102
7.130 × 102

2.025 × 102
7.219 × 102

2.015 × 102

F21 Mean
STD

2.462 × 102

1.610 × 101
3.101 × 102

3.341 × 101
4.612 × 102

1.154 × 102
2.834 × 102

2.986 × 101
3.351 × 102

4.075 × 101
6.431 × 102

4.269 × 101
4.510 × 102

5.431 × 101
4.004 × 102

4.051 × 101

F22 Mean
STD

1.010 × 102

6.702 × 10−1
1.114 × 102

1.113 × 100
5.511 × 102

1.304 × 103
1.762 × 103

1.485 × 103
2.591 × 103

2.065 × 103
5.253 × 103

1.008 × 103
4.401 × 103

2.103 × 103
4.001 × 103

1.701 × 103

F23 Mean
STD

4.214 × 102

2.750 × 101
4.923 × 102

3.701 × 101
8.330 × 102

1.502 × 102
4.321 × 102

2.277 × 101
6.291 × 102

1.227 × 102
1.039 × 103

1.089 × 102
7.206 × 102

9.760 × 101
9.991 × 102

1.013 × 102

F24 Mean
STD

5.016 × 102

3.011 × 101
5.712 × 102

5.281 × 101
8.700 × 102

1.711 × 102
5.032 × 102

4.536 × 101
7.538 × 102

1.073 × 102
1.177 × 103

2.453 × 102
7.810 × 102

8.921 × 101
1.004 × 103

9.711 × 101

F25 Mean
STD

3.212 × 102

2.310 × 100
4.011 × 102

1.910 × 101
6.799 × 102

5.582 × 102
4.570 × 102

2.613 × 101
5.397 × 102

1.008 × 102
2.224 × 103

8.605 × 102
4.500 × 102

3.001 × 101
4.101 × 102

9.110 × 100

F26 Mean
STD

1.302 × 103

9.812 × 102
2.041 × 103

1.511 × 103
3.341 × 103

2.261 × 103
1.837 × 103

3.100 × 102
3.121 × 103

1.143 × 103
7.933 × 103

1.124 × 103
4.912 × 103

9.810 × 102
5.832 × 103

1.112 × 103

F27 Mean
STD

5.322 × 102

1.876 × 101
5.711 × 102

2.821 × 101
9.114 × 102

1.990 × 102
5.326 × 102

1.520 × 101
8.132 × 102

9.760 × 101
9.409 × 102

2.313 × 102
6.499 × 102

6.500 × 101
1.204 × 103

2.510 × 102

F28 Mean
STD

3.120 × 102

4.670 × 101
3.406 × 102

5.676 × 101
7.651 × 102

8.041 × 102
5.472 × 102

5.758 × 101
7.495 × 102

2.564 × 102
3.985 × 103

8.850 × 102
5.001 × 102

3.121 × 101
3.854 × 102

5.120 × 101

F29 Mean
STD

6.821 × 102

1.512 × 102
9.094 × 102

2.071 × 102
2.041 × 103

6.110 × 102
7.531 × 102

1.339 × 102
1.322 × 103

4.000 × 102
4.146 × 103

1.609 × 103
2.001 × 103

4.100 × 102
1.520 × 103

3.701 × 102

F30 Mean
STD

4.811 × 103

2.123 × 103
6.001 × 103

2.612 × 103
5.601 × 107

8.344 × 107
5.504 × 106

5.643 × 106
1.681 × 106

4.255 × 106
2.239 × 109

9.259 × 108
9.787 × 106

6.828 × 106
5.371 × 105

3.104 × 105

(W/L/T)
Average

Rank

-/-/-
1.17

28/1/0
2.62

29/0/0
6.55

27/2/0
3.28

29/0/0
4.41

29/0/0
7.97

29/0/0
5.52

27/2/0
4.48

Table 4. GAOA and seven competing algorithms’ experimental and statistical data on the benchmark
functions with 50 dimensions from IEEE CEC2017.

Function GAOA MAO AO GWO SCA RSA WOA SSA

F1 Mean
STD

3.667 × 103

4.401 × 103
5.365 × 103

5.327 × 103
7.360 × 109

2.171 × 1010
4.493 × 109

2.326 × 109
9.919 × 108

3.411 × 109
9.635 × 1010

9.884 × 109
8.668 × 106

8.653 × 106
6.232 × 103

5.212 × 103

F3 Mean
STD

2.912 × 104

5.334 × 103
1.624 × 104

4.453 × 103
2.041 × 105

4.305 × 104
7.261 × 104

1.523 × 104
4.166 × 104

5.777 × 104
1.487 × 105

1.042 × 104
6.664 × 104

3.301 × 104
5.412 × 102

7.890 × 102

F4 Mean
STD

9.332 × 101

5.876 × 101
9.010 × 101

5.124 × 101
1.528 × 103

4.977 × 103
4.341 × 102

1.771 × 102
3.289 × 103

1.935 × 103
2.710 × 104

6.760 × 103
3.101 × 102

7.122 × 101
1.711 × 102

4.724 × 101

F5 Mean
STD

1.621 × 102

3.990 × 101
3.304 × 102

3.742 × 101
4.251 × 102

1.586 × 102
1.922 × 102

5.205 × 101
3.091 × 102

6.603 × 101
6.336 × 102

2.898 × 101
4.235 × 102

8.622 × 101
3.266 × 102

4.253 × 101

F6 Mean
STD

4.359 × 100

4.566 × 100
3.900 × 101

1.127 × 101
8.072 × 101

1.928 × 101
1.019 × 101

3.623 × 100
3.588 × 101

8.211 × 100
9.827 × 101

4.680 × 100
7.823 × 101

1.124 × 101
6.011 × 101

4.134 × 100

F7 Mean
STD

2.481 × 102

5.343 × 101
6.432 × 102

1.432 × 102
9.171 × 102

1.878 × 102
3.037 × 102

6.764 × 101
6.691 × 102

1.175 × 102
1.302 × 103

5.902 × 101
1.110 × 103

9.324 × 101
1.142 × 103

1.421 × 102

F8 Mean
STD

1.678 × 102

4.734 × 101
3.352 × 102

5.221 × 101
5.012 × 102

1.882 × 102
1.852 × 102

3.069 × 101
3.035 × 102

6.896 × 101
6.791 × 102

2.650 × 101
4.424 × 102

9.601 × 101
3.422 × 102

4.754 × 101
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Table 4. Cont.

Function GAOA MAO AO GWO SCA RSA WOA SSA

F9 Mean
STD

8.113 × 102

6.756 × 102
8.370 × 103

2.628 × 103
3.127 × 104

1.240 × 104
3.551 × 103

2.143 × 103
1.151 × 104

3.209 × 103
3.204 × 104

2.580 × 103
2.012 × 104

4.745 × 103
1.143 × 104

1.324 × 103

F10 Mean
STD

6.212 × 103

1.012 × 103
6.646 × 103

8.435 × 102
1.173 × 104

3.014 × 103
3.551 × 103

2.143 × 103
5.973 × 103

1.019 × 103
1.315 × 104

4.800 × 102
8.650 × 103

1.342 × 103
7.251 × 103

8.125 × 102

F11 Mean
STD

1.365 × 102

3.434 × 101
1.657 × 102

3.951 × 101
6.883 × 103

8.539 × 103
1.789 × 103

1.152 × 103
4.105 × 103

4.079 × 103
1.682 × 104

2.846 × 103
5.012 × 102

1.126 × 102
2.131 × 102

4.236 × 101

F12 Mean
STD

5.465 × 105

3.254 × 105
7.611 × 105

4.842 × 105
4.109 × 109

1.312 × 1010
5.809 × 108

6.600 × 108
1.296 × 109

2.252 × 109
7.667 × 1010

1.708 × 1010
2.112 × 108

1.145 × 108
1.375 × 107

7.012 × 106

F13 Mean
STD

2.633 × 103

3.555 × 103
4.113 × 103

5.001 × 103
1.521 × 109

3.723 × 109
1.168 × 108

1.135 × 108
2.332 × 106

1.638 × 107
4.590 × 1010

1.270 × 1010
2.724 × 105

2.241 × 105
6.153 × 104

3.245 × 104

F14 Mean
STD

2.234 × 104

1.454 × 104
2.101 × 104

2.122 × 104
6.639 × 106

7.101 × 106
3.512 × 105

3.476 × 105
4.044 × 106

6.734 × 106
3.605 × 107

2.864 × 107
6.745 × 105

4.243 × 105
3.121 × 104

2.553 × 104

F15 Mean
STD

4.465 × 103

4.219 × 103
7.128 × 103

6.524 × 103
3.622 × 108

6.853 × 108
4.375 × 106

9.979 × 106
3.162 × 105

1.642 × 106
6.628 × 109

4.800 × 109
7.646 × 104

5.112 × 104
2.745 × 104

1.210 × 104

F16 Mean
STD

1.267 × 103

4.343 × 102
1.757 × 103

4.703 × 102
3.691 × 103

1.479 × 103
1.280 × 103

3.636 × 102
2.631 × 103

7.796 × 102
7.172 × 103

1.378 × 103
3.123 × 103

6.645 × 102
2.321 × 103

5.354 × 102

F17 Mean
STD

1.121 × 103

2.988 × 102
1.251 × 103

3.423 × 102
2.407 × 103

6.650 × 102
9.308 × 102

2.273 × 102
1.516 × 103

3.538 × 102
1.819 × 104

3.409 × 104
2.382 × 103

4.546 × 102
2.011 × 103

4.024 × 102

F18 Mean
STD

2.121 × 105

1.233 × 105
1.572 × 105

8.769 × 104
2.837 × 107

3.638 × 107
4.024 × 106

4.810 × 106
1.048 × 107

1.422 × 107
9.345 × 107

5.237 × 107
5.124 × 106

4.163 × 106
2.512 × 105

1.110 × 105

F19 Mean
STD

1.478 × 104

8.260 × 103
1.545 × 104

1.231 × 104
1.635 × 108

3.962 × 108
1.429 × 106

2.421 × 106
1.283 × 104

1.670 × 104
6.888 × 109

2.802 × 109
1.901 × 106

1.232 × 106
4.882 × 105

2.534 × 105

F20 Mean
STD

8.364 × 102

2.834 × 102
1.119 × 103

3.662 × 102
1.797 × 103

4.564 × 102
7.867 × 102

3.287 × 102
1.230 × 103

3.499 × 102
1.825 × 103

1.962 × 102
1.721 × 103

3.121 × 102
1.421 × 103

3.012 × 102

F21 Mean
STD

3.387 × 102

2.322 × 101
4.599 × 102

5.285 × 101
6.837 × 102

1.790 × 102
3.815 × 102

2.742 × 101
5.105 × 102

8.051 × 101
1.032 × 103

9.733 × 101
7.631 × 102

1.172 × 102
6.470 × 102

6.612 × 101

F22 Mean
STD

9.125 × 102

2.343 × 103
7.036 × 103

1.692 × 103
1.255 × 104

3.307 × 103
6.136 × 103

1.341 × 103
7.477 × 103

1.474 × 103
1.408 × 104

5.151 × 102
9.101 × 103

1.231 × 103
8.325 × 103

8.670 × 102

F23 Mean
STD

6.235 × 102

5.421 × 101
7.943 × 102

9.845 × 101
1.463 × 103

2.659 × 102
6.181 × 102

5.885 × 101
1.078 × 103

2.207 × 102
1.654 × 103

1.582 × 102
1.342 × 103

1.244 × 102
1.720 × 103

2.150 × 102

F24 Mean
STD

6.642 × 102

4.964 × 101
8.741 × 102

9.613 × 101
1.548 × 103

2.956 × 102
7.142 × 102

9.997 × 101
1.423 × 103

3.037 × 102
2.022 × 103

4.130 × 102
1.346 × 103

1.623 × 102
1.732 × 103

2.121 × 102

F25 Mean
STD

5.625 × 102

3.253 × 101
5.634 × 102

3.725 × 101
1.465 × 103

2.862 × 103
8.599 × 102

1.553 × 102
2.082 × 103

7.709 × 102
1.031 × 104

1.269 × 103
6.512 × 102

3.453 × 101
5.654 × 102

3.430 × 101

F26 Mean
STD

2.250 × 103

2.437 × 103
3.888 × 103

3.801 × 103
7.648 × 103

4.114 × 103
3.201 × 103

5.942 × 102
7.099 × 103

1.543 × 103
1.341 × 104

1.036 × 103
1.112 × 104

1.434 × 103
1.151 × 104

8.041 × 102

F27 Mean
STD

7.865 × 102

9.353 × 101
9.120 × 102

1.554 × 102
7.648 × 103

4.114 × 103
7.910 × 102

7.505 × 101
2.078 × 103

3.871 × 102
1.905 × 103

3.265 × 102
1.232 × 103

3.432 × 102
2.630 × 103

4.821 × 102

F28 Mean
STD

4.994 × 102

2.865 × 101
5.011 × 102

3.343 × 101
1.290 × 103

1.762 × 103
1.032 × 103

2.321 × 102
2.944 × 103

8.029 × 102
8.950 × 103

1.133 × 103
6.341 × 102

5.243 × 101
5.036 × 102

3.097 × 101

F29 Mean
STD

1.122 × 103

3.287 × 102
1.543 × 103

3.122 × 102
4.766 × 103

3.884 × 103
1.316 × 103

2.674 × 102
3.052 × 103

8.637 × 102
6.189 × 104

4.451 × 104
4.240 × 103

9.363 × 102
2.712 × 103

4.751 × 102

F30 Mean
STD

8.824 × 105

1.674 × 105
9.655 × 105

2.112 × 105
4.685 × 108

9.958 × 108
7.309 × 107

3.310 × 107
9.298 × 107

6.349 × 107
8.605 × 109

2.718 × 109
8.642 × 107

3.010 × 107
1.491 × 107

1.961 × 106

(W/L/T)
Average

Rank

-/-/-
1.40

21/3/4
2.64

29/0/1
6.72

25/4/0
3.24

29/0/0
4.69

29/0/0
7.83

29/0/0
5.17

28/1/0
4.31
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Table 5. GAOA and seven competing algorithms’ experimental and statistical data on the benchmark
functions with 100 dimensions from IEEE CEC2017.

Function GAOA MAO AO GWO SCA RSA WOA SSA

F1 Mean
STD

7.001 × 103

1.120 × 104
4.734 × 103

7.011 × 103
3.011 × 1010

8.314 × 1010
3.186 × 1010

6.811 × 109
9.611 × 109

2.720 × 1010
2.435 × 1011

9.446 × 109
4.001 × 107

1.812 × 107
4.701 × 106

1.312 × 106

F3 Mean
STD

1.323 × 105

1.790 × 104
8.843 × 104

1.441 × 104
4.011 × 105

1.210 × 105
2.030 × 105

2.311 × 104
1.290 × 105

1.210 × 105
3.155 × 105

1.683 × 104
5.615 × 105

1.841 × 105
2.361 × 104

2.008 × 104

F4 Mean
STD

2.342 × 102

4.712 × 101
2.440 × 102

4.551 × 101
3.251 × 103

1.145 × 104
2.435 × 103

6.471 × 102
2.441 × 104

9.190 × 103
7.517 × 104

9.738 × 103
6.120 × 102

9.421 × 101
2.811 × 102

5.710 × 101

F5 Mean
STD

5.011 × 102

9.03 × 101
7.942 × 102

5.412 × 101
1.113 × 103

4.001 × 102
5.431 × 102

5.612 × 101
7.912 × 102

1.214 × 102
1.483 × 103

4.743 × 101
9.251 × 102

9.322 × 101
8.110 × 102

7.812 × 101

F6 Mean
STD

2.331 × 101

1.103 × 101
5.307 × 101

6.542 × 100
9.401 × 101

2.321 × 101
3.001 × 101

4.712 × 100
4.601 × 101

5.731 × 100
1.072 × 102

3.562 × 100
8.010 × 101

9.513 × 100
6.432 × 101

3.411 × 100

F7 Mean
STD

8.017 × 102

1.741 × 102
2.032 × 103

3.743 × 102
2.641 × 103

4.910 × 102
1.040 × 103

1.151 × 102
2.523 × 103

3.511 × 102
3.361 × 103

1.066 × 102
2.509 × 103

1.821 × 102
2.590 × 103

2.751 × 102

F8 Mean
STD

4.843 × 102

8.631 × 101
8.804 × 102

9.712 × 101
1.344 × 103

3.904 × 102
5.511 × 102

4.812 × 101
8.310 × 102

1.441 × 102
1.636 × 103

4.052 × 101
1.100 × 103

1.325 × 102
9.041 × 102

7.798 × 101

F9 Mean
STD

7.812 × 103

3.312 × 103
2.104 × 104

1.411 × 103
6.370 × 104

2.721 × 104
2.251 × 104

9.361 × 103
2.640 × 104

4.711 × 103
7.459 × 104

6.599 × 103
3.711 × 104

9.731 × 103
2.751 × 104

3.010 × 103

F10 Mean
STD

1.410 × 104

1.401 × 103
1.301 × 104

1.142 × 103
2.541 × 104

6.663 × 103
1.456 × 104

3.201 × 103
1.511 × 104

4.112 × 103
2.976 × 104

7.076 × 102
2.012 × 104

2.860 × 103
1.451 × 104

1.410 × 103

F11 Mean
STD

5.411 × 102

1.211 × 102
5.804 × 102

9.863 × 101
2.033 × 105

8.152 × 104
3.434 × 104

1.171 × 104
1.341 × 105

5.410 × 104
1.577 × 105

2.500 × 104
6.911 × 103

2.350 × 103
1.131 × 103

1.413 × 102

F12 Mean
STD

9.131 × 105

3.332 × 105
1.123 × 106

5.042 × 105
7.822 × 109

2.906 × 1010
4.843 × 109

2.611 × 109
2.910 × 1010

1.981 × 1010
1.670 × 1011

2.323 × 1010
6.101 × 108

1.723 × 108
7.390 × 107

1.500 × 107

F13 Mean
STD

9.231 × 105

3.332 × 105
5.215 × 103

5.513 × 103
1.561 × 109

5.901 × 109
4.001 × 108

3.543 × 108
9.361 × 107

5.611 × 108
4.117 × 1010

8.719 × 109
8.864 × 104

3.324 × 104
4.111 × 104

1.123 × 104

F14 Mean
STD

1.621 × 105

8.052 × 104
1.201 × 105

6.043 × 104
1.841 × 107

3.121 × 107
3.601 × 106

2.442 × 106
5.700 × 106

7.410 × 106
6.200 × 107

2.371 × 107
1.811 × 106

6.901 × 105
3.022 × 105

1.213 × 105

F15 Mean
STD

1.876 × 103

2.132 × 103
2.623 × 103

3.070 × 103
4.201 × 108

2.224 × 109
9.174 × 107

2.223 × 108
5.981 × 107

1.911 × 108
2.296 × 1010

6.884 × 109
1.411 × 105

3.511 × 105
3.110 × 104

1.290 × 104

F16 Mean
STD

3.712 × 103

7.621 × 102
4.041 × 103

6.451 × 102
1.031 × 104

4.431 × 103
3.712 × 103

5.610 × 102
8.244 × 103

2.001 × 103
1.972 × 104

3.328 × 103
7.881 × 103

1.443 × 103
5.512 × 103

7.831 × 102

F17 Mean
STD

2.731 × 103

5.431 × 102
3.070 × 103

6.050 × 102
3.523 × 104

1.242 × 105
2.710 × 103

5.250 × 102
3.810 × 103

1.236 × 103
6.727 × 106

5.873 × 106
5.512 × 103

1.010 × 103
3.871 × 103

4.901 × 102

F18 Mean
STD

4.512 × 105

2.016 × 105
3.050 × 105

1.321 × 105
2.132 × 107

4.402 × 107
3.235 × 106

2.531 × 106
1.313 × 107

3.361 × 107
9.293 × 107

3.879 × 107
2.221 × 106

1.106 × 106
4.712 × 105

1.900 × 105

F19 Mean
STD

3.015 × 103

4.011 × 103
4.350 × 103

5.914 × 103
5.711 × 108

2.313 × 109
1.151 × 108

1.810 × 108
1.751 × 108

7.121 × 108
2.305 × 1010

7.182 × 109
1.444 × 107

6.840 × 106
2.567 × 106

1.341 × 106

F20 Mean
STD

3.373 × 103

4.613 × 102
3.112 × 103

5.765 × 102
5.212 × 103

9.601 × 102
2.413 × 103

7.013 × 102
3.411 × 103

7.805 × 102
5.128 × 103

2.153 × 102
4.351 × 103

7.180 × 102
3.689 × 103

5.041 × 102

F21 Mean
STD

6.244 × 102

8.113 × 101
9.613 × 102

1.131 × 102
1.712 × 103

4.604 × 102
7.341 × 102

5.556 × 101
1.110 × 103

3.261 × 102
3.014 × 103

2.490 × 102
1.821 × 103

2.001 × 102
1.799 × 103

2.234 × 102

F22 Mean
STD

1.311 × 104

7.820 × 103
1.721 × 104

1.824 × 103
2.744 × 104

5.470 × 103
1.576 × 104

2.430 × 103
1.770 × 104

4.489 × 103
3.130 × 104

5.639 × 102
2.031 × 104

2.332 × 103
1.810 × 104

1.382 × 103

F23 Mean
STD

1.033 × 103

8.311 × 101
1.411 × 103

1.312 × 102
3.140 × 103

8.060 × 102
1.111 × 103

7.743 × 101
2.974 × 103

4.487 × 102
2.962 × 103

1.560 × 102
2.511 × 103

2.121 × 102
3.159 × 103

3.412 × 102

F24 Mean
STD

1.662 × 103

1.812 × 102
2.235 × 103

2.511 × 102
5.141 × 103

1.203 × 103
1.435 × 103

8.043 × 101
5.056 × 103

8.685 × 102
6.766 × 103

2.287 × 103
3.511 × 103

3.812 × 102
3.700 × 103

6.561 × 102
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Table 5. Cont.

Function GAOA MAO AO GWO SCA RSA WOA SSA

F25 Mean
STD

7.863 × 102

6.035 × 101
7.723 × 102

7.001 × 101
3.512 × 103

6.413 × 103
2.832 × 103

5.142 × 102
9.653 × 103

3.146 × 103
2.205 × 104

2.229 × 103
1.011 × 103

7.381 × 101
8.001 × 102

4.141 × 101

F26 Mean
STD

1.215 × 104

6.028 × 103
1.511 × 104

7.743 × 103
2.361 × 104

1.221 × 104
9.812 × 103

9.010 × 102
2.842 × 104

6.302 × 103
4.470 × 104

3.909 × 103
2.911 × 104

3.781 × 103
2.630 × 104

2.115 × 103

F27 Mean
STD

9.741 × 102

1.136 × 102
1.131 × 103

2.152 × 102
5.140 × 103

1.911 × 103
1.131 × 103

8.511 × 101
4.830 × 103

1.014 × 103
6.058 × 103

1.730 × 103
2.601 × 103

7.779 × 102
4.343 × 103

1.370 × 103

F28 Mean
STD

5.630 × 102

2.432 × 101
5.733 × 102

3.131 × 101
4.644 × 103

9.001 × 103
4.130 × 103

1.143 × 103
1.558 × 104

3.032 × 103
2.727 × 104

2.445 × 103
9.170 × 102

6.911 × 101
6.101 × 102

3.767 × 101

F29 Mean
STD

3.478 × 103

5.491 × 102
3.690 × 103

5.141 × 102
1.881 × 104

2.721 × 104
4.180 × 103

5.211 × 102
9.212 × 103

2.101 × 103
5.596 × 105

4.382 × 105
1.111 × 104

1.623 × 103
6.142 × 103

6.787 × 102

F30 Mean
STD

6.001 × 103

2.756 × 103
7.911 × 103

4.044 × 103
1.901 × 109

5.231 × 109
4.901 × 108

4.002 × 108
8.556 × 108

1.422 × 109
3.889 × 1010

6.251 × 109
1.826 × 108

8.101 × 107
1.216 × 107

3.001 × 106

(W/L/T)
Rank

-/-/-
1.57

21/8/0
2.29

29/0/0
6.72

24/4/1
3.48

28/1/0
5.17

29/0/0
7.76

28/1/0
4.97

27/2/0
4.03

Table 6. GAOA and six competing algorithms’ experimental and statistical data on the benchmark
functions with 30 dimensions from classical benchmark functions.

Function GAOA MAO AO SSA GWO WOA SCA

F1 Mean
STD

0.00 × 100

0.00 × 100
4.34 × 10−13

3.06 × 10−13
1.27 × 10−48

8.45 × 10−49
4.12 × 10−07

3.36 × 10−07
4.96 × 10−06

2.16 × 10−06
3.02 × 10−74

1.65 × 10−73
2.20 × 102

3.43 × 102

F2 Mean
STD

7.77 × 10−252

2.02 × 10−34
1.29 × 10−66

8.09 × 10−66
1.84 × 10−29

5.61 × 10−30
1.97 × 100

1.41 × 100
2.01 × 10−03

1.91 × 10−03
3.17 × 10−50

1.66 × 10−49
2.64 × 10−02

2.93 × 10−02

F3 Mean
STD

0.00 × 100

0.00 × 100
1.10 × 10−13

2.36 × 10−13
8.67 × 10−52

2.39 × 10−52
2.45 × 103

1.78 × 102
9.65 × 10−04

8.19 × 10−04
4.33 × 104

1.69 × 104
8.07 × 103

4.74 × 103

F4 Mean
STD

4.45 × 10−246

2.33 × 10−56
4.29 × 10−67

2.86 × 10−66
4.06 × 10−28

6.15 × 10−29
1.17 × 101

4.06 × 100
1.77 × 10−02

1.14 × 10−02
5.23 × 101

2.85 × 101
3.49 × 101

1.35 × 101

F5 Mean
STD

0.002
1.76 × 10−01

0.339
2.78 × 10−02

0.087
0.0209

1.11 × 103

1.49 × 102
2.79 × 101

2.03 × 10−01
2.32 × 102

4.31 × 10−02
7.18 × 104

1.28 × 105

F6 Mean
STD

4.13 × 10−05

4.86 × 10−05
4.72 × 10−04

8.44 × 10−04
2.20 × 10−03

5.51 × 10−04
1.38 × 10−05

1.53 × 10−05
3.01 × 100

2.23 × 10−02
3.61 × 10−02

2.42 × 10−02
2.54 × 102

9.78 × 100

F7 Mean
STD

6.43 × 10−05

6.15 × 10−04
1.38 × 10−04

1.01 × 10−04
7.85 × 10−05

1.31 × 10−04
1.63 × 10−01

6.25 × 10−02
1.06 × 10−04

1.01 × 10−04
3.12 × 10−03

3.67 × 10−05
1.36 × 10−01

2.89 × 102

F8 Mean
STD

−4.31 × 103

2.34 × 10−02
−2.80 × 103

483.5646
−4.11 × 103

4.03 × 103
−7.10 × 103

9.12 × 102
−3.75 × 103

3.67 × 103
−1.12 × 104

1.68 × 103
−3.76 × 103

3.89 × 102

F9 Mean
STD

0.00 × 100

0.00 × 100
0.00 × 100

0.00 × 100
0.00 × 100

0.00 × 100
5.39 × 101

1.68 × 101
1.54 × 10−06

1.08 × 10−06
0.00 × 100

0.00 × 100
3.65 × 101

3.52 × 101

F10 Mean
STD

8.88 × 10−16

0.00 × 100
8.88 × 10−16

0.00 × 100
8.88 × 10−16

0.00 × 100
2.52 × 100

6.85 × 10−01
4.25 × 10−04

1.88 × 10−04
4.32 × 10−15

2.72 × 10−15
1.45 × 101

8.34 × 101

F11 Mean
STD

0.00 × 100

0.00 × 100
0.00 × 100

0.00 × 100
0.00 × 100

0.00 × 100
2.06 × 10−05

1.48 × 10−04
5.16 × 10−04

2.69 × 10−03
1.96 × 10−02

5.48 × 10−02
9.37 × 10−01

3.36 × 10−01

F12 Mean
STD

8.16 × 10−07

5.18 × 10−05
5.92 × 10−06

1.05 × 10−05
2.71 × 10−06

3.32 × 10−06
7.19 × 100

2.73 × 100
6.87 × 10−02

2.77 × 10−02
1.78 × 10−04

1.34 × 10−02
2.52 × 102

7.02 × 103

F13 Mean
STD

2.01 × 10−05

1.54 × 10−05
1.12 × 10−05

3.66 × 10−05
2.85 × 10−06

6.54 × 10−06
1.23 × 101

1.22 × 100
2.96 × 100

2.05 × 10−02
5.15 × 10−01

2.32 × 10−01
1.87 × 105

4.38 × 105

F14 Mean
STD

9.78 × 10−01

5.02 × 10−01
7.301945
1.996747

1.411677
1.467424

1.22 × 100

6.72 × 10−01
2.01 × 102

4.01 × 101
3.01 × 100

3.22 × 100
1.79 × 100

9.88 × 10−01
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Table 6. Cont.

Function GAOA MAO AO SSA GWO WOA SCA

F15 Mean
STD

3.82 × 10−04

1.03 × 10−04
9.51 × 10−04

3.87 × 10−04
5.44 × 10−04

1.79 × 10−04
2.83 × 10−03

5.95 × 10−03
7.57 × 10−03

1.86 × 10−02
8.46 × 10−04

6.56 × 10−04
1.05 × 10−03

3.84 × 10−03

F16 Mean
STD

−1.03 × 100

1.55 × 10−13
−1.03083

6.33 × 10−04
−1.0315

1.77 × 10−04
−1.03 × 101

2.33 × 10−12
−1.12 × 101

3.00 × 10−14
−1.03 × 101

1.11 × 10−09
−1.11 × 101

4.20 × 10−05

F17 Mean
STD

3.97 × 10−01

2.56 × 10−12
0.421134

1.96 × 10−02
0.397935

6.46 × 10−05
3.97 × 10−01

1.34 × 10−10
4.12 × 10−01

1.32 × 10−04
3.97 × 10−01

6.94 × 10−06
3.99 × 10−01

1.22 × 10−03

F18 Mean
STD

3.00 × 100

4.65 × 100
3.969585
1.156593

3.007461
0.00734

3.00 × 100

1.50 × 10−13
1.30 × 101

2.18 × 101
3.01 × 101

1.59 × 10−03
3.00 × 100

9.12 × 10−05

F19 Mean
STD

−3.85 × 100

4.80 × 100
−3.765. 68
0.055039

−3.86073
0.002118

−3.86 × 100

1.46 × 10−10
−3.74 × 100

5.36 × 10−01
−3.91 × 100

5.88 × 10−03
−3.92 × 101

8.94 × 10−03

F20 Mean
STD

−3.32 × 100

4.12 × 10−11
−2.7442
0.2411

−3.1204
0.0972

−3.22 × 100

3.99 × 10−02
−3.29 × 100

6.34 × 10−02
−3.19 × 100

1.28 × 10−01
−2.92 × 100

3.76 × 10−01

F21 Mean
STD

−10.15 × 100

5.60 × 10−02
−9.5941
0.4674

−10.1402
0.0263

−6.30 × 100

3.52 × 100
−7.54 × 100

3.21 × 100
−8.87 × 101

2.56 × 102
−2.42 × 101

2.03 × 101

F22 Mean
STD

−10.40 × 101

1.03 × 10−07
−9.7427

6275
−10.3868

0.0186
−7.83 × 100

3.49 × 100
−7.34 × 100

3.23 × 100
−7.66 × 100

3.43 × 100
−3.42 × 100

1.79 × 100

F23 Mean
STD

−10.53 × 101

1.65 × 10−07
−9.84755
0.512047

−10.5163
0.0257

−9.42 × 100

2.56 × 100
−7.96 × 100

3.52 × 100
−7.24 × 100

3.22 × 100
−3.66 × 100

1.82 × 100

Mean
Ranking

1.03 × 100

1
1.05 × 100

2
1.30 × 100

3
8.84 × 100

5
1.01 × 101

7
4.61 × 100

4
8.92 × 100

6

In Table 3, the GAOA, MAO, AO, GWO, SCA, RSA, WOA, and SSA attained the best
mean values on 25, 1, 0, 2, 0, 0, 0, and 0 functions, respectively. The W/T/L metric shows
that the GAOA performs well on functions with 30 dimensions, out-performing the MAO,
AO, GWO, SCA, RSA, WOA, and SSA on 28, 29, 27, 29, 29, 29, and 27 functions, respectively.

In Table 4, it can be seen that the GAOA earned the best mean values on 21, 3, 0, 2, 0, 0,
and 1 function, respectively. The W/T/L metric shows that the GAOA performs well on
functions with 50 dimensions, outperforming the MAO, AO, GWO, SCA, RSA, WOA, and
SSA on 21, 29, 25, 29, 29, 29, and 28 functions, respectively.

In Table 5, it can be seen that the GAOA earned the best mean values on 19, 5, 0, 4, 0,
0, and 1 function, respectively. The W/T/L metric shows that the GAOA performs well
on functions with 100 dimensions, outperforming the MAO, AO, GWO, SCA, RSA, WOA,
and SSA on 21, 29, 24, 28, 29, 28, and 27 functions, respectively.

To test the exploration, exploitation, and stagnation process avoidance abilities of the
GAOA, a set of 23 benchmark test functions is employed. As seen in Table 6, the GAOA
outperforms the SMA, SSA, and other metaheuristic algorithms by a significant margin.
With the exception of F6, the GAOA, in particular, routinely beats the other algorithms.
Notably, for all unimodal functions other than F5, the GAOA has the least mean value and
standard deviations and achieves the theoretical optimum for F1–F4. These results show
good precision and stability, emphasizing the excellent applicability of the suggested GAOA
algorithm. The results for functions F8–F23 shown in Table 6 show that the GAOA also
performs exceptionally well in exploration. The theoretical optimum is notably achieved
by the GAOA in F8, F10, F14–F17, and F19–F23, highlighting its outstanding exploration
capacity. These results demonstrate the strength of the GAOA in navigating the search
space and locating the best answers.

Table 7’s Friedman test findings further demonstrate the GAOA’s better performance.
The table shows that the IEEE CEC2017 functions with 30, 50, and 100 dimensions are the
ones where the GAOA works best.
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Table 7. Friedman ranks of GAOA and seven competitive algorithms from IEEE CEC2017.

Algorithms Dim = 30 Dim = 50 Dim = 100

GAOA 1.17 1.40 1.57
MAO 2.62 2.64 2.29
AO 6.55 6.72 6.72

GWO 3.28 3.24 3.48
SCA 4.41 4.69 5.17
RSA 7.97 7.83 7.76

WOA 5.52 5.17 4.97
SSA 4.48 4.31 4.03

The statistical findings for each of the nine functions (F1, F3, F5, F6, F7, F9, F11, F12,
and F13) are shown in Table 8 for each parameter setting. It is evident from these findings
that, out of all the functions evaluated, the parameters of α = 0.1 and δ = 0.1 generally
perform better in different circumstances, followed by α = 0.1 and δ = 0.5; α = 0.1 and
δ = 0.9; α = 0.5 and δ = 0.1; and α = 0.9 and δ = 0.9, which assigned ranks 2, 3, 5, and 4,
respectively. But the AO performs similarly in each of these instances at F1, F3, F9, and F11.

Table 8. The influence of the parameters (α and δ) tested on various classical test functions using the
GAOA algorithm.

Function α = 0.1, δ = 0.1 α = 0.1,δ = 0.5 α = 0.1, δ = 0.9 α = 0.5,δ = 0.1 α = 0.9,δ = 0.9

F1 Mean
STD

0.00 × 100

0.00 × 100
0.00 × 100

0.00 × 100
0.00 × 100

0.00 × 100
0.00 × 100

0.00 × 100
0.00 × 100

0.00 × 100

F3 Mean
STD

0.00 × 100

0.00 × 100
0.00 × 100

0.00 × 100
0.00 × 100

0.00 × 100
0.00 × 100

0.00 × 100
0.00 × 100

0.00 × 100

F5 Mean
STD

2.03 × 10−03

1.76 × 10−01
2.23 × 10−03

1.22 × 10−01
3.35 × 10−02

1.11 × 10−02
5.24 × 10−02

2.24 × 10−01
4.27 × 10−02

1.22 × 10−02

F6 Mean
STD

4.13 × 10−05

4.86 × 10−05
4.18 × 10−05

2.21 × 10−01
4.55 × 10−05

5.22 × 10−01
4.47 × 10−05

1.11 × 10−02
4.90 × 10−05

3.22 × 10−04

F7 Mean
STD

6.43 × 10−05

6.15 × 10−04
2.71 × 10−05

1.11 × 10−04
2.96 × 10−05

1.25 × 10−02
2.81 × 10−05

1.25 × 10−04
4.14 × 10−05

3.15 × 10−05

F9 Mean
STD

0.00 × 100

0.00 × 100
0.00 × 100

0.00 × 100
0.00 × 100

0.00 × 100
0.00 × 100

0.00 × 100
0.00 × 100

0.00 × 100

F11 Mean
STD

0.00 × 100

0.00 × 100
0.00 × 100

0.00 × 100
0.00 × 100

0.00 × 100
0.00 × 100

0.00 × 100
0.00 × 100

0.00 × 100

F12 Mean
STD

8.16 × 10−07

5.18 × 10−05
1.17 × 10−06

1.00 × 10−06
3.12 × 10−06

2.28 × 10−06
1.35 × 10−06

1.22 × 10−06
3.27 × 10−06

2.33 × 10−06

F13 Mean
STD

2.01 × 10−05

1.54 × 10−05
3.65 × 10−05

1.45 × 10−02
8.76 × 10−05

1.11 × 10−01
6.63 × 10−05

1.27 × 10−05
6.14 × 10−05

1.57 × 10−05

Mean
Ranking

4.33 × 10−04

1
4.67 × 10−04

2
6.73 × 10−03

3
1.05 × 10−02

5
8.57 × 10−03

4

The convergence graphs of the average optimizations produced by eight algorithms
on the IEEE CEC2017 functions with 30, 50, and 100 dimensions are shown in Figures 2–4.
The log value of the average optimizations is represented by the vertical axis, and the log
value of iterations is represented by the horizontal axis. It is evident from Figures 2–4 that
the GAOA curves are the lowest and that the convergence speed is quick. The GAOA can
identify a better solution, exit local optimization, prevent premature convergence, enhance
the quality of the solution, and has a high optimization efficiency when compared to the
original AO in the convergence graphs. This unequivocally proves the efficacy of the revised
methodology presented in this research and the improvement in the population diversity.
Unimodal functions do not entirely reflect the benefits of the GAOA. The GAOA may



Biomimetics 2024, 9, 54 19 of 32

search for smaller values and converge quickly on increasingly complicated multimodal,
hybrid, and composition functions, demonstrating excellent competitiveness.
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The convergence graphs of the average optimizations produced by eight algorithms 
on the IEEE CEC2017 functions with 30, 50, and 100 dimensions are shown in Figures 2–
4. The log value of the average optimizations is represented by the vertical axis, and the 
log value of iterations is represented by the horizontal axis. It is evident from Figures 2–4 
that the GAOA curves are the lowest and that the convergence speed is quick. The GAOA 
can identify a better solution, exit local optimization, prevent premature convergence, en-
hance the quality of the solution, and has a high optimization efficiency when compared 
to the original AO in the convergence graphs. This unequivocally proves the efficacy of 
the revised methodology presented in this research and the improvement in the popula-
tion diversity. Unimodal functions do not entirely reflect the benefits of the GAOA. The 
GAOA may search for smaller values and converge quickly on increasingly complicated 
multimodal, hybrid, and composition functions, demonstrating excellent competitive-
ness. 
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4.3. Complexity of the Algorithm

The proposed algorithm’s usability and functionality are confirmed by the algorithm’s
complexity. Due to their high computing cost, algorithms with high computational com-
plexity are rarely investigated. Thus, for an algorithm to be effective, it must have strong
optimization capabilities quick convergence and a minimal computational cost. In this
section, we present the CPU running time used by all algorithms that were evaluated
using IEEE CEC2017 functions with 30, 50, and 100 dimensions. We also address how the
enhanced technique presented in this research affects the algorithm complexity of AO.

For each algorithm, the maximum number of function evaluations is fixed to be the
same. Table 9 displays the findings for the CPU running time. The table shows that the
WOA takes the least amount of time to compute. The GAOA and MAO require extremely
little time to compute, and they have similar processing times. On the other hand, the RSA
is the most difficult and time-consuming algorithm.
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Table 9. CPU running times of all algorithms tested on CEC2017 functions with 30, 50, and 100 dimensions.

Algorithms Dim = 30 Dim = 50 Dim = 100

GAOA 2.21 × 104 1.43 × 104 2.61 × 105

MAO 2.11 × 104 1.13 × 104 2.60 × 105

AO 1.34 × 104 3.01 × 104 1.54 × 105

GWO 3.00 × 104 5.71 × 104 2.25 × 105

SCA 2.22 × 104 6.60 × 104 2.85 × 105

RSA 5.55 × 104 1.61 × 104 7.90 × 105

WOA 4.01 × 103 1.00 × 104 6.50 × 104

SSA 1.43 × 104 3.11 × 104 8.91 × 104

In Tables 10–12 Wilcoxon rank sum test is performed for the Tables 3–5 respectively to
compare the p-values. And results shows that GAOA performs really good.
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Table 10. Results of Wilcoxon rank-sum test obtained for Table 3.

Algorithms ΣR+ ΣR− z-Value p-Value

GAOA vs.

MAO 428 7 −4.552 0.0001
AO 435 0 −4.703 0.0001

GWO 412 23 −4.206 0.0001
SCA 435 0 −4.703 0.0001
RSA 435 0 −4.703 0.0001

WOA 435 0 −4.703 0.0001
SSA 426 9 −4.508 0.0001

Table 11. Results of Wilcoxon rank-sum test obtained for Table 4.

Algorithms ΣR+ ΣR− z-Value p-Value

GAOA vs.

MAO 335 71 3.006 0.003
AO 435 0 4.703 0.0001

GWO 395 40 3.838 0.0001
SCA 415 20 4.271 0.0001
RSA 435 0 4.703 0.0001

WOA 435 0 4.703 0.0001
SSA 411 24 4.184 0.0001

Table 12. Results of Wilcoxon rank-sum test obtained for Table 5.

Algorithms ΣR+ ΣR− z-Value p-Value

GAOA vs.

MAO 279 156 −1.330 0.184
AO 435 0 −4.703 0.0001

GWO 369 37 −3.780 0.0001
SCA 425 10 −4.487 0.0001
RSA 435 0 −4.703 0.0001

WOA 412 23 −4.206 0.0001
SSA 387 48 −3.665 0.0001

The metaheuristic algorithm performance is compared using the Bonferroni–Dunn
bar chart. It is a trustworthy and dependable test that may be used to determine which
algorithm performs the best for a specific set of benchmark functions. It is evident from
Figure 5 that the GAOA outperforms the other metaheuristic methods. The eight algorithms
are represented by the horizontal axis, while the rank is represented by the vertical axis.
Future high-dimensional problems and engineering problems can benefit from the GAOA’s
low computational complexity and low computational cost.
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5. GAOA for Engineering Design Problems

The performance of the GAOA on the following five design problems is presented in
this section to assess its effectiveness: pressure vessels, tension springs, three-bar trusses,
speed reducers, and cantilever beams. A population size of 30 individuals and a maximum
iteration of 500 were used to solve these problems. The results of the GAOA were then
contrasted with other state-of-the-art algorithms that have been reported in the literature.
The parameter settings used in the evaluation are consistent with those used in prior
computational experiments.

5.1. Pressure Vessel Design Problem

The pressure vessel design challenge [29,30] seeks to reduce the overall expense of a
cylindrical pressure vessel while meeting the desired form and pressure criteria depicted
in Figure 6. As shown in Figure 6, the answer to this problem entails minimizing four
parameters: the shell’s thickness (t), head (h), cylindrical section sinner radius (r), and length
without the top (l). The following are the issue’s restrictions and a corresponding equation.
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Figure 6. Pressure vessel design problem.

Consider
s = [s1 s2 s3 s4] = [t h r l]

Minimize

f (s) = 0.6224s1s3s4 + 1.7781s2s2
3 + 3.1661s2

1s4 + 19.84s2
1s3

Subject to
g1(s) = −s1 + 0.0193s3 ≤ 0,

g2(s) = −s3 + 0.00954s3 ≤ 0,

g3(s) = −πs2
3s4 −

4
3

πs3
3 + 1,296,000 ≤ 0,

g4(s) = s4 − 240 ≤ 0.

The variable range is 
0 ≤ s1 ≤ 99,

0 ≤ s2 ≤ 99,

10 ≤ s3 ≤ 200,

10 ≤ s4 ≤ 200.

Table 13’s results show that when the GAOA is compared to the COA, AO, GWO,
ROA, RSA, WOA, and SCA, the ROA can obtain better ideal values.

Table 13. Performance comparison of GAOA and other algorithms for pressure vessel design problem.

Optimum Attributes

Algorithms t h r l Optimum
Cost

GAOA 0.7785 0.3854 40.3275 199.892 5889.2155
COA [72] 0.7437 0.3705 40.3238 199.9414 5735.2488
AO [29] 1.0540 0.1828 59.6219 38.8050 5949.2258

GWO [30] 0.8125 0.4345 42.0891 176.7587 6051.5639
ROA [73] 0.7295 0.2226 40.4323 198.5537 5311.9175
RSA [32] 0.8071 0.4426 43.6335 142.5359 6213.8317

WOA [31] 0.8125 0.4375 42.0982 76.6389 6059.7410
SCA [35] 0.8820 0.4992 45.8236 135.3623 6253.5397

Note: Bold is used to indicate the best results.

5.2. Tension Spring Design Problem

The three variables that needed to be tuned in order to optimize the design were the
number of active coils (N), the mean coil diameter (D), and the wire diameter (d) [29,30].
Figure 7 shows the structural layout of the tension spring. The following is a presentation
of the mathematical solution to this problem.
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GAOA 0.0513 0.3475 11.848 0.0126 
COA [72] 0.05 0.3744 8.5477 0.0098 
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5.3. Three-Bar Truss Design Problem 
Designing a three-bar truss is a difficult problem in structural engineering [29,30]. 

The motto of this problem is to find a truss design that minimizes the weight while meet-
ing the design constraint. Figure 8 shows the structural layout of the three-bar truss. The 
following is a presentation of the mathematical solution to this problem. 
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Figure 7. Tension spring design problem.

Consider
s = [s1 s2 s3 s4] = [d D N]

Minimize
f (s) = (s3 + 2)s2s2

1

Subject to

g1(s) = 1 −
s3

2s3

71,785s4
1
≤ 0,

g2(s) =
(4s2

2 − s1s2)

12,566(s2s3
1 − s4

1)
+

1
5108s2

1
≤ 0,

g3(s) = 1 − (140.45s1)

(s2
2s3)

≤ 0,

g4(s) =
s1 + s2

1.5
− 1 ≤ 0

The variable range is
0.05 ≤ s1 ≤ 2.00,

0.25 ≤ s2 ≤ 1.30,

2.00 ≤ s3 ≤ 15.00.

Table 14 displays the outcomes of applying the GAOA to the tension spring design
problem. The outcomes are then contrasted with those attained by a variety of other
techniques, such as the COA, AO, GSA, DE, RSA, SMA, and EROA. It is evident that the
COA produced outcomes that were superior to those of the other algorithms.

Table 14. Performance comparison of GAOA and other algorithms for tension spring design problem.

Optimum Attributes

Algorithms d D N Optimum Weight

GAOA 0.0513 0.3475 11.848 0.0126
COA [72] 0.05 0.3744 8.5477 0.0098
AO [29] 0.0502 0.3562 10.5425 0.0112

GSA [36] 0.0502 0.3236 13.5254 0.0127
DE [25] 0.0516 0.3547 11.4108 0.0126

RSA [32] 0.0525 0.4100 7.853 0.0124
SMA [74] 0.0584 0.5418 5.2613 0.0134

EROA [75] 0.0537 0.4695 5.811 0.0106
Note: Bold is used to indicate the best results.

5.3. Three-Bar Truss Design Problem

Designing a three-bar truss is a difficult problem in structural engineering [29,30]. The
motto of this problem is to find a truss design that minimizes the weight while meeting the
design constraint. Figure 8 shows the structural layout of the three-bar truss. The following
is a presentation of the mathematical solution to this problem.
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where l = 100 cm, P = 2 KN/cm2, and σ = 2 KN/cm2.
The results of using the GAOA to solve the three-bar truss design problem are shown

in Table 15. The results of these tests are then compared to those from the COA, GOA, AO,
GWO, SSA, RSA, WOA, and SCA. It is clear that the GAOA has an exceptional ability to
solve problems in a constrained environment.

Table 15. Performance comparison of GAOA and other algorithms for three-bar truss design problem.

Optimum Attributes

Algorithms s1 s2 Optimum Cost

GAOA 03661 0.7071 174.2545
GOA [76] 0.7888 0.3966 263.8684
AO [29] 0.7926 0.3966 263.8684

GWO [30] 0.7658 0.4658 263.8156
SSA [34] 0.7782 0.4436 262.9263
RSA [32] 0.7623 0.4982 265.3749

WOA [31] 0.7676 0.4352 262.896
SCA [35] 0.7315 0.4866 262.5363

Note: Bold is used to indicate the best results.

5.4. Speed Reducer Problem

By minimizing seven variables, the overall weight of the reducer in this problem [68]
is reduced. The issue is laid out in Figure 9, and the solution is represented mathematically
as follows:
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7.3 ≤ s4 ≤ 8.3,

7.8 ≤ s5 ≤ 8.3,

2.9 ≤ s6 ≤ 3.9,

5.0 ≤ s7 ≤ 5.5.

Table 16 displays the comparison findings and the benefit of using the GAOA to
achieve the smallest overall weight of the problem.

Table 16. Performance comparison of GAOA and other algorithms for speed reducer design problem.

Optimum Attributes

Algorithms s1 s2 s3 s4 s5 s6 s7 Optimum Weight

GAOA 3.4 0.7 17 7.4 7.3 3.3422 5.2843 2988.8799
COA [72] 3.498 0.7 17 7.3 7.8 3.3507 5.3604 2995.4729
AO [29] 3.5138 0.7 17 7.4146 7.8129 3.3770 5.2845 3009.9097

GWO [30] 3.4825 0.7 17 7.4687 7.787 3.3587 5.2945 3010.5893
ROA [73] 3.4976 0.7 17 7.8779 8.0940 3.3943 5.2857 3018.644
RSA [32] 3.5598 0.7 17 7.4999 8.2 3.4532 5.2851 3053.6732

WOA [31] 3.4973 0.7 17 7.8703 8.1669 3.4530 5.2745 3067.0467
SCA [35] 3.6 0.7 17 7.3 8.2 3.3793 5.3689 3152.9113

Note: Bold is used to indicate the best results.

5.5. Cantilever Beam Design

The determination of the least overall weight of cantilever beams is a specific problem
in concrete engineering. The thickness of the walls of the hollow square cross section, as
well as the dimensions of the square, can all affect the weight.

The objective of the optimization problem is to find the values of these parameters
that minimize the overall weight of the beam while still ensuring that the beam is strong
enough to withstand the applied load [29]. The design configuration associated with this
problem is depicted visually in Figure 10, and it can be represented mathematically using
the following formulation:
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The variable range is

0.01 ≤ s1, s2, s3, s4, s5 ≤ 100.

The results in Table 17 show that the GAOA achieves the minimized overall weight
faster and with a better performance than all other algorithms. In conclusion, this section
emphasizes how excellent the suggested GAOA is in comparison to other characteristics
and real-world case studies. With extremely competitive results, the GAOA displays its
capacity to outperform both the fundamental COA and ROA algorithms as well as other
well-known algorithms. These successes are a result of the GAOA’s strong exploration and
exploitation capabilities. Its outstanding success in resolving industrial engineering design
issues further highlights its potential for widespread use in practical optimization issues.

Table 17. Performance comparison of GAOA and other algorithms for cantilever beam design problem.

Optimum Attributes

Algorithms s1 s2 s3 s4 s5 Optimum Weight

GAOA 6.0184 5.3007 4.496 3.5124 2.1464 1.34
COA [72] 6.01722 5.3071 4.4912 3.5081 2.1499 1.3999
AO [29] 5.8492 5.5413 4.3778 3.5978 2.1026 1.3596

GWO [30] 5.9956 5.4121 4.5986 3.5689 2.3548 1.3586
ROA [73] 6.0156 5.1001 4.303 3.7365 2.3183 1.3456
ALO [77] 601812 5.3112 4.4887 3.4975 2.1583 1.3499
WOA [31] 5.8393 5.1582 4.9917 3.693 2.2275 1.3467
SCA [35] 5.9264 5.9285 4.5223 3.3267 1.9923 1.3581

Note: Bold is used to indicate the best results.

6. Conclusions

• This article introduces the GAOA, which is the modification of the entire Aquila
Optimizer (AO). To improve the GAOA’s capacities for exploration and exploitation, a
mutation opposition-based learning strategy is used.

• Then, 23 classical benchmark functions and the CEC 2017 benchmark test functions
are used to assess the GAOA’s performance and examine its exploration capability,
exploitation capability, and ability to avoid stagnation. The experimental results
highlight the GAOA’s better performance and competitive benefits compared to other
cutting-edge metaheuristic algorithms.

• Five engineering design challenges are successfully solved using the algorithm, further
demonstrating its superiority to previous metaheuristic algorithms. The suggested
GAOA handles complex benchmark functions and limited engineering issues with
surprising effectiveness.

• The GAOA has the potential to be used in the future for a variety of practical opti-
mization issues, such as problems in multi-objective, feature selection, multi-threshold
image segmentation, convolutional neural networks, and NP-hard issues.

7. Future Scope

The GAOA could be applied in additional real-world applications given its great
performance. Additionally, other optimization jobs, including image processing, cloud and
fog computing, and others, could use the GAOA optimization method.
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