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Abstract: Inspired by the natural skeletal muscles, this paper presents a novel shape memory alloy-
based artificial muscle matrix (AMM) with advantages of a large output force and displacement,
flexibility, and compactness. According to the composition of the AMM, we propose a matrix
control strategy to achieve independent control of the output force and displacement of the AMM.
Based on the kinematics simulation and experiments, we obtained the output displacement and
bearing capacity of the smart digital structure (SDS) and confirmed the effectiveness of the matrix
control strategy to achieve force and displacement output independently and controllably. A bionic
mechanical ankle actuated by AMM was proposed to demonstrate the actuating capability of the
AMM. Experimental results show that the angle and force of the bionic mechanical ankle are output
independently and have a significant gradient. In addition, by using a self-sensing method (resistance
self-feedback) and PD control strategy, the output angle and force of the bionic mechanical ankle can
be maintained for a long time without overheating of the AMM.

Keywords: shape memory alloy; artificial muscle; bionic ankle; matrix control

1. Introduction

Skeletal muscles are the driving power of the human motion system with abilities of
actuating, self-sensing, exploding and energy-storing [1]. In recent decades, a large number
of scholars have conducted, and are still conducting, research on imitating the form and
function of skeletal muscles. Different types of actuators have been put forth and extensively
studied for their potential applications as “artificial muscles” [2], including traditional
actuator devices (such as electric motors [3,4], hydraulic actuators [5–8] and pneumatic
actuators [9–12]) and smart materials (such as electroactive polymers [13–16], high-strength
polymer fibers [17], magnetostrictive alloys [16] and shape memory alloys [1,2,18–20]).

Electric motors are limited to imitate skeletal muscles as they usually need to work
with complex transmission mechanisms and gear systems that can significantly increase
mass and reduce energy density. Similarly, hydraulic actuators also suffer from low energy
density and additional hydraulic pumps and valves will complicate the entire system and
simultaneously bring a variety of sealing problems. Pneumatic artificial muscles, such
as the “McKibben Muscles”, in particular are intrinsically compliant and can thus mimic
some of the properties of natural muscles. However, these systems require air compressors
that are neither light nor small. In addition, the actuators mentioned above will generate
noise during working and cannot imitate the self-sensing capability of skeletal muscles
without additional sensors [16]. Recently, electroactive polymers (EAPs) are attractive for
a wide range of applications as artificial muscles for reasons such as their large active
strains, no acoustic noise, and self-sensing ability. Unfortunately, the generated force of an
EAP artificial muscle is small and the input voltage is too high (>1000 V) to be of practical
use [15,21,22]. High-strength polymer fibers have the advantages of fast speed, large dis-
placement, and the ability to withstand a greater load, which has a wide range of potential
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applications. However, low energy density is a common issue for high-strength polymer
fibers. In addition, due to the fact that high-strength polymer fibers usually require complex
deformation such as bending, stretching, or twisting, fatigue failure may occur during
long-time use. This means that the fibers may break down over time [17]. Magnetostrictive
alloys (MAs) have some excellent properties such as large magnetostrictive strain, high
energy density and strong propelling force. However, the magnetostrictive effect exhibits
notable nonlinear characteristic and frequency-dependent hysteresis. Moreover, the devices
made with MAs usually work in an alternating magnetic field, which can cause mechanical
energy loss, thus reducing the energy conversion efficiency of MAs during operation [23].

Comparing with the actuators mentioned above, shape memory alloys (SMAs) act
like a natural muscle because of their high energy density, strong load capacity, quick
response, silent operation, flexibility and self-sensing abilities [1,2,18,24]. Moreover, SMAs
can be actuated using resistive heating by low voltage, which is easier to achieve. These
capabilities make the SMAs promptly devote to soft wearable robots [20], morphing aircraft
structures [25] and bionic soft robots [26–28].

Natural skeletal muscles are composed of numerous contraction-capable muscle cells
(also called muscle fibers) which are covered and maintained by connective tissues. The
muscle fibers contain a number of continuously arranged sarcomeres that are the basic
structural units of skeletal muscle contraction [29]. The number of sarcomeres determines
the ability of muscle contraction and the number of muscle fibers determines the strength of
the muscle. Inspired by the composition of natural skeletal muscles, this paper proposed an
artificial muscle matrix (AMM) using SMA wires as the muscle fibers. The AMM contains
a number of smart digital structures (SDSs) in series which are exactly imitation of the
sarcomeres in natural muscles. The SDSs are wrapped by silicone (Ecoflex 00-30) that plays
the role of protection and maintenance just like the connective tissues in natural muscles.
And in each SDS, there are many SMA wires arranged in parallel, which is similar to the
constitution mechanism of natural skeletal muscles. The number of SDS, m, determines
the contraction displacement of the AMM and the number of SMA wires in each SDS,
n, determines the output force of the AMM. Any combination of m and n will result in
different force/displacement output of the AMM. Obviously, the greater of m and n, the
more situations (m × n) of the force/displacement output.

The goal of this research is to develop a novel SMA-based AMM which can be applied
into various bionic joints. The AMM not only has the abilities of the large force and displace-
ment, flexibility, light, silence, and compactness, but also can achieve the synchronization
control of the output force and displacement easily. Furthermore, the self-sensing capability
is achieved by exploiting the variation in the electrical resistance of the SMAs during
actuation to control the temperature of the SMA wires and hence prevent their overheating,
and hence enhanced the performance of the AMM. In this paper, we made a demo version
(both m and n are 4) of the AMM and applied the AMM to a homemade bionic mechanical
ankle to demonstrate the AMM actuating capability. Experimental results demonstrate
that the angle and force of the bionic mechanical ankle are output independently and have
a significant gradient, which means that the independent control of the angle and force
can be achieved. In addition, by a using self-sensing method (resistance self-feedback)
and PD control strategy, the output angle and force of the bionic mechanical ankle can be
maintained for a long time without overheating of the AMM.

2. Design and Fabrication of the Smart Digital Structure (SDS)

The SDS includes a digital actuator skeleton and a soft body made of ecoflex 00-30 that
is a softer-than-skin silicone rubber with high strength and stretch. As shown in Figure 1a,
the digital actuator skeleton is composed of two fixed plates and four sets of SMA wires
(diameter 0.15 mm and transition temperature 70 ◦C, produced by DYNALLOY Inc., Irvine,
CA, USA) with respect to four channels CH1, CH2, CH3 and CH4, respectively. And all the
channels share the poles E. The mold casting process was used to fabricate the SDS whose
mold was produced by 3D printer, as shown in Figure 1b. The purpose of the boss in the
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middle of the mold is to reduce the hindrance of the excess silicone rubber to the linear
contraction of the SDS. Figure 1c shows the procedure of the casting technology. Firstly,
the digital actuator skeleton was placed in the casting mold. Then, casting the ecoflex
mixture (mixing ratio 1A:1B by weight or volume) into the mold to totally encapsulate the
digital skeleton. It is worth noting that the liquid silicone mixture before and after pouring
needs to be put into a vacuum pump to remove the bubbles. After solidification at room
temperature for two hours, the SDS is obtained.
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Figure 1. Design and fabrication of the SDS. (a) The digital actuator skeleton composed of the
SMA wires and PCBs. (b) Mold with special boss. (c) Procedure of the casting technology. (d) The
unmolded SDS.

We used ecoflex 00-30, which plays a role in insulation and protection as the soft
underlying body of the SDS and printed circuit boards (PCBs) to be the fix plates. The
effective length of the SDS is 80 mm, as L shows in Figure 1a. The totally length and width
of the SDS are 95 mm and 25 mm, respectively. The height of the SDS is variable and can be
regulated by redesigning the molds. In this paper, all the SDSs applied a height of 2.4 mm.

3. Method
3.1. Modeling of the SDS

A model is developed to obtained the shrink ability of the SDS. The simulation model
is a traditional SMA-based bias spring actuator [30]. And the parameters of the model are
listed in Table A1.

As for the bias spring actuator, when the SDS shrinks under contracting force Fsma, it
will satisfy the external force balance equation:

n1 · Fsma = kL0(εr − εsma) (1)

where n1 is the number of the SMA wires of the SDS, k represents the stiffness of the bias
spring, L0 is the length of each SMA wire, εr is the maximum residual strain of the SMA
wire and εsma is the strain of the SMA wire.
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In addition, each SMA wires follows the equilibrium state equation:

Fsma = σsma Asma − F0 (2)

where σsma is the stress in the SMA wire, Asma is the cross-sectional area of the SMA wire
and F0 is the initial tension of the SMA wire.

According to Equations (1) and (2), the resulting stress of the SMA wire can be
expressed by

σsma = kt(εr − εsma) + σ0 (3)

where σ0 = F0/Asma and kt = kL0/n1 Asma.
When the temperature of the SMA wire heated by voltage is higher than austenite

transformation start temperature TA
s , the SMA wire starts to transfer from the martensite

phase to the austenite phase and generates the contraction force. The basic governing
equation from Liang-Rogers’ model is used to describe the behavior of the SMA wire as

.
σsma = E(ξ)

.
εsma + θ

.
T + Ω(ξ)

.
ξ (4)

where E(ξ) is the Young’s modulus of the SMA wire, θ is the thermoelastic tensor of the
SMA wire and is assumed to be negligible, T is the temperature of the SMA wire, Ω(ξ)
is the phase transformation tensor and ξ is the martensite fraction of the SMA wire. It is
generally assumed that E(ξ) is in a linear relationship with the martensite fraction, namely,
E(ξ) = EA + ξ(EM − EA), where EM and EA are Young’s modulus when martensite is
100% and austenite is 100%, respectively. Ω(ξ) is related to E(ξ) and can be expressed as
Ω(ξ) = −εrE(ξ). Therefore, the basic governing equation can be simplified as

.
σsma = E(ξ)

( .
εsma − εr

.
ξ
)

(5)

During the transformation process of the SMA wire from martensite phase to the
austenite phase, the martensite fraction can be expressed by

ξ =
ξ0

2
cos

[
aA

(
T − TA

s

)
+ bAσsma

]
+

ξ0

2
,
(

TA
s +

σsma

CA

)
≤ T ≤

(
TA

f +
σsma

CA

)
(6)

where aA = π/TA
f − TA

s and bA = −aA/CA. ξ0 is the initial martensite fraction of the SMA
wire, CA represents the effect of stress on the austenite temperature of the SMA wire and it
is a constant.

When the SMA wire is heated by voltage, its thermal model can be expressed as

ρsmacsmaVsma
.
T = i2smaRsma − hSsma(T − T0) + ρsmaVsma H

.
ξ (7)

where ρsma is the density of the SMA wire, csma is the specific heat capacity, Vsma is the
volume of the SMA wire, isma is the supply current, Rsma is the resistance of the SMA wire
at room temperature, h is the heat transfer coefficient, Ssma is the surface area of the SMA
wire, T0 is the ambient temperature, H is the latent heat of transformation of the SMA wire.

The following equations are derived from Equations (3)–(7).


.
ξ
.
T
.
ε

 =


λT

i2sma Rsma−hSsma(T−T0)
ρsmaVsmacsma

1+λσktεr
E(ξ)

E(ξ)+kt
−λT

H
csma

i2smaRsma−hSsma(T−T0)
ρsmaVsmacsma

+ H
.
ξ

csma
E(ξ)ξr

E(ξ)+kt

.
ξ

,
(

TA
s +

σsma

CA

)
≤ T ≤

(
TA

f +
σsma

CA

)
(8)

where λT = −aA
ξ0
2 sin

[
aA

(
T − TA

s
)
+ bAσsma

]
, λσ = −bA

ξ0
2 sin

[
aA

(
T − TA

s
)
+ bAσsma

]
.

The simulation and experimental results that are the curves of shrinkage displacement
over time are showed in Figure 2a,b, respectively. It is easy to see that the simulation results
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are in good agreement with the experimental results, which confirms the effectiveness of
the simulation model. The output displacement of the SDS is about 4 mm which means
that the deformation of the SDS is about 5% due to the effective length of SDS is 80 mm.
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Figure 2. Simulation and experimental results. (a) Curves of shrinkage displacement and strain over
time in simulation. (b) Curves of shrinkage displacement over time of 5 experiments.

3.2. Shrinkage Performance under Constant Loads

In order to obtain the shrinkage displacement performance of SMA wires under
different constant loads, the electro-thermomechanical experiments were carried out, as
shown in Figure 3. The SMA wires with diameter of 0.15 mm and length of 80 mm were
arranged in parallel (three SMA wires) or in series (four sections) and connected to different
constant loads. A leaser displacement sensor with resolution 0.001 mm was used to measure
the SMA wires length change. We applied inner heating method by using resistive heating
with free convection. The heating current generated from control circuit board which is
actually the current amplifier and metal oxide semiconductor switching was used to drive
the SMA wires. A computer equipped with a data acquisition card (PIC-1741U) was used
to store and process all the measured data.

Experiments of one SMA wire in one section were firstly carried out to obtain the
relationship between shrinkage displacement and different loads. From the results, we
can see that the shrinkage displacement of the SMA wire varies little when the load is not
greater than 12 N, as shown in Figure 4a. And, under this condition, the length of the SMA
wire is compared before and after heating and cooling, it is found that the length of the SMA
wire before and after motion also varies little, that is, the SMA wire is recoverable, as shown
in Figure 4b. However, when the load exceeds 12 N, the shrinkage capacity decreases
significantly and the SMA wire length before and after motion has a larger difference which
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is unrecoverable under the influence of the excessive loads. In order to further explore the
shrinkage performance under different constant loads, experiments of different number
of SMA wires in different number of sections were followed. As shown in Figure 5, the
trend of each curve of different situations is similar to the curve of one SMA wire in one
section which we have described above. In addition, the force gradient can be obtained by
driving different number of SMA wires which are arranged in parallel and the displacement
gradient can be obtained by driving different number of sections which are connected in
series. These also demonstrate the effectiveness of the matrix control method of the artificial
muscles to achieve force/displacement output independently and controllably.
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different number of sections. (in blue) and (in magenta) are cases when only one SMA is actuated
and two SMAs are actuated simultaneously, respectively.

4. Results
4.1. Experimental Setup

To demonstrate the AMM actuating capability, we applied the AMM to a bionic
mechanical ankle, as shown in Figure 6. Like the real ankle, the two artificial muscle
matrices are symmetrically distributed on both sides of the joint to achieve dorsiflexion and
plantarflexion. A rotary encoder whose model is E6B2-CWZ1X (produced by Omron with
a resolution of 1000 P/R) was used to measure the angle of the bionic mechanical ankle. A
miniature pressure sensor that is JLBS-M2 (range: 50 kg, sensitivity: 1~2 mV/V, produced
by Bengbu Sensor Systems Engineering Co., Ltd, Bengbu, China) was used to measure the
force and thus the output torque obtained. The resistance at room temperature of each set
of SMA wires is 11.5 Ω. The current heating and data processing methods are similar to the
previous experiments.

4.2. Angle of the Bionic Mechanical Ankle

As we mentioned above, the AMM has four SDSs which are arranged in series. To
explore the dorsiflexion angle θ1 and plantarflexion angle θ2 which are shown in Figure 6a,
experiments of the bionic mechanical ankle actuated by different number of SDSs were
carried out. These experiments were conducted without extra loads under a pulse input
with an invariable duration of the heating process that is 300 ms in each cycle. The
remaining time of 6 s in each cycle is the cooling time. The heating voltage was 14 V
throughout the experiments.

Figure 7 shows the output angles of the bionic mechanical ankle under the driving of
different number of SDSs. The simulation angles, dorsiflexion angles and plantarflexion
angles under the driving of different number of SDSs are shown in Table 1. Comparing
the results of the three groups, the output angles of the bionic mechanical ankle have a
similar trend in the values of dorsiflexion and plantarflexion angles. We can also see that
plantarflexion angle is slightly larger than dorsiflexion angle. This is perhaps because the
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dorsiflexion movement needs to overcome the gravity of the connecting rod that acts as the
foot plate, which the plantarflexion motion does not need.
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Table 1. Output angle under the driving of different number of SDSs.

Driving Number of
SDSs Simulation Angles Dorsiflexion Angles Plantarflexion

Angles

1 7.4◦ 8.3◦ 7.8◦

2 15.2◦ 14.4◦ 15.9◦

3 21.9◦ 22.0◦ 24.8◦

4 32.1◦ 30.4◦ 31.9◦

4.3. Torque of the Bionic Mechanical Ankle

In order to explore the torque characteristics of the bionic mechanical ankle, a series of
experiments were performed. The experiments were carried out under two conditions, one
for measuring the explosive output torque actuated by the short-time and large input cur-
rent and the other for measuring the non-explosive output torque under normal operation.
The explosive output torques were obtained under the driving of 40 V voltage with the
heating time for 50 ms. Relatively, the non-explosive output torques were obtained under
the driving of 14 V voltage with the heating time for 300 ms.

As shown in Figure 8, the explosive output torques of the bionic mechanical ankle are
4.6 Nm, 9.27 Nm, 12.11 Nm and 16.18 Nm for the number of sets of SMA wires n of 1, 2, 3
and 4, respectively. The non-explosive output torques of the bionic mechanical ankle are
0.59 Nm, 0.74 Nm, 0.92 Nm and 1.09 Nm for the number of sets of SMA wires n of 1, 2, 3
and 4, respectively.
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4.4. Matrix Control of the Bionic Mechanical Ankle

During the temperature-induced phase transformation, the resistance of the SMA
wires will change accordingly. Based on this feature, we proposed the resistance self-
feedback heating strategy to adaptively regulate the heating process of the SMA wires
and hence prevent their overheating in our previous work [27]. Herein, we applied the
heating strategy to regulate the heating process of the AMM as well. In order to detect the
resistance variation of the SMA wires, a constant sampling resistor was connected with the
AMM in series. We got the instantaneous resistance by sampling the voltage across the
constant resistor.

Figure 9 shows the resistance ratio of the SMA wires and the voltage of the sampling
resistor during the 800 ms heating process under the heating voltage 12 V. The resistance
ratio represents the ratio of the instantaneous resistance of the SMA wires to their initial
resistance at room temperature. The relationship between the resistance ratio of the SMA
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wires and voltage of the sampling resistor follows the resistance partial pressure principle,
so the minimum and maximum sampling voltages correspond to the maximum and
minimum resistance ratios which are closer to the phase transformation starting point
A and finishing point B, respectively. We can use the maximum and minimum ratios to
determine when to switch of the input voltage. Based on this, the heating time in a selected
cycle can be optimized. Hence, preventing the overheating of the SMA wires.
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In order to obtain and hold different output angles of the homemade bionic mechanical
ankle under different loads, the matrix control strategy was proposed, which was based on
the step output characteristic of force and displacement of AMM. The number sequence
(n, m) of the series/parallel SMA wires needed to work in the AMM could be determined
according to the load and displacement output requirements. n in the number sequence
(n, m) of SMA wire determines the maximum output force that AMM can achieve, and
m determines the maximum displacement that AMM can output. As shown in Figure 10,
three different forms of external loads are defined in the figure, namely constant load, linear
load and nonlinear load. Taking the working condition shown at point A of constant load
as an example, the required output force can be satisfied by only one SMA wire, and the
output displacement can be satisfied by four SMA wires. Therefore, the number sequence
of SMA wires needed to control the work in the AMM can be obtained as (1,4). Similarly,
the working sequence of SMA wire under linear load B as shown in the figure is (3,3). It can
also be seen from Figure 10 that the output force is continuous but the output displacement
is segmented. It is impossible to realize the displacement output of an intermediate position
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only by controlling the SMA wire sequence. At this point, the intermediate state can be
achieved by using self-sensing method (resistance self-feedback) and PD control strategy.
So, as shown in Figure 11, according to the desired angle θd of the bionic mechanical ankle,
the designed number of sections m and the designed number of SMA wires in each section
n can be set initially. Based on m and n, the STM32 controller send heating signals to the
transistor switch whose high level (corresponding to the heating process) is variable but
the cycle time is constant. The holding heating applied a PD algorithm to regulate the duty
cycle of pulse-width modulation (PWM) wave which was used to heat the SMA wires of
the AMM. We aim to propose the holding heating strategy is to explore a smart control
method to mimic the holding motion of AMM, which can hold objects for a long time
without any harm to SMA wires. The adaptive duty cycle was produced by comparing the
desired sampling voltage to the sampling voltage of the constant sampling resistor.
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The desired sampling voltage is given by:

Vd = Vmax − ε × (Vmax − Vmin) (9)

where Vd represents the desired sampling voltage, ε is a coefficient at a range of [0,1] in the
heating strategy, Vmax and Vmin represent the maximum and minimum sampling voltages
as shown in Figure 9b, respectively.

Figure 12 exhibits the relationship between the reference value that is Vd and the
sampling voltage at the holding experiment in which the AMM kept the holding state at
a time of 10 s. Under the PD algorithm, the sampling voltage was capable of tracing the
reference value with a reasonable fluctuation. It can be seen that there is no overshoot
phenomenon of the tracing voltage which has an increasing trend, but smaller than the
reference value, and finally the interval value between them is steady. Although there is
an interval value between the tracing and reference values, the non-overshoot enables the
AMM to produce a steady holding state.
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Figure 12. The sampling voltage and reference voltage in the holding experiment based on the
PD algorithm.

In order to correct the output angles to the desired angles of the bionic mechanical
ankle, an encoder was used to collect the rotation angles in real time. m and n was produced
by comparing the desired angles to the real-time angles, as shown in Figure 11. In order to
measure the output angle under different loads, we attach steel balance blocks (specification:
5–10 g) to the end of the rotating connector, and determine the applied load by calculation.
The different output angles of the bionic mechanical ankle at the loads of 0 Nm, 0.15 Nm
and 0.3 Nm are showed in Figure 13. When the load increases, the output angle will
decrease accordingly. This is because the load will change the crystal structure of the alloy
wire and affect the performance of shape memory effect, which leads to the deviation of the
output angle. Every output angle kept the holding state at a time of 10 s with a reasonable
fluctuation based on the PD control strategy. We can also see the obvious output angle
gradient of the bionic mechanical ankle which is consistent with the experimental results
in the previous chapters. Additionally, in order to verify the effectiveness of the holding
heating strategy adopted in this paper, the insulated 36AWG T-type thermocouple was
spot-welded to the SMA wire and cast into the SDS for temperature measurement, as shown
in Figure 14. Temperature variations during both heating and cooling are illustrated in
Figure 15. The orange and blue curves, respectively denote temperature changes over time
during heating and cooling. The red dashed line signifies the phase transformation finish
temperature of the SMA. Importantly, temperature remains relatively stable upon reaching
the phase transformation finish temperature, effectively averting AMM overheating.
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4.5. Bionic Joint Performance Comparison

Robot joint design is one of the important directions of robot research. There are many
researches on bionic joint, and they all have good structure and performance. This summary
summarizes the work of some existing bionic joints, whose driving bionics, maximum
output angle, and non-explosive maximum output torque are shown in Table 2.

Table 2. Parameter performance of each bionic joint.

Model Driving Mode Bidirectional
Rotation

Maximum
Output Angles

Maximum
Output Torque

Hao [31] PAM No 119.7◦ -
Cui [32] Motor Yes 125◦ 0.58 Nm

Lohse [33] SMA No 56.6◦ -
This paper SMA Yes 62.3◦ 1.09 Nm

As can be seen from the table, compared with other bionic joints, the bionic joint de-
signed in this paper adopts more advanced materials, which not only supports bidirectional
rotation, but also has great advantages in terms of output torque.

5. Conclusions

This paper develops an SMA-based artificial muscle matrix which contains a number
of SDSs in series, and each SDS is composed of many SMA wires arranged in parallel. By
controlling the number of the working SDSs and the number of the working SMA wires
in each SDS, we can obtain different a displacement and force output of the AMM. A
simple demo version of the AMM was made which comprises 4 SDSs and 4 SMA wires in
each SDS. Through the kinematics simulation and experiments, we obtained the output
displacement (approx. 4 mm) of the SDS and bearing capacity (about 12 N) of one SMA
wire and confirmed the effectiveness of the matrix control strategy to achieve force and
displacement output independently and controllably. The demo version of the AMM was
used to a bionic mechanical ankle to demonstrate the actuating capability of the AMM.
Experimental results showed that the angle and force of the bionic mechanical ankle were
output independently and had a significant gradient. In addition, by using the self-sensing
method (resistance self-feedback) which is proposed in our previous work and PD control
strategy, the output angle and force of the bionic mechanical ankle can be maintained for a
long time without overheating of the AMM.
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Appendix A

Table A1. Parameters in the model of the SDS.

Description
(Parameter)

Value
(Unit)

Description
(Parameter)

Value
(Unit)

Number of the SMA wires (n1) 8 Martensitic transformation start temperature (Ts
M) 54.5 ◦C

Diameter of the SMA wires (dsma) 0.15 mm Martensitic transformation finish temperature (Tf
M) 41.4 ◦C

Length of the SMA wires (L0) 80 mm Austenitic Young’s modulus (EA) 83 GPa

Resistance per meter (µ) 57 Ω/m Martensitic Young’s modulus (EM) 28 GPa

Density of the SMA wires (ρsma) 6.45 g/cm3 Maximum residual strain (εr) 5%

Specific heat capacity (csma) 837 J/(kg·◦C) Effect of stress on austenitic transformation (CA) 12 MPa/◦C

Latent heat of transformation (H) 24.2 × 103 J/kg Effect of stress on martensitic transformation (CM) 10 MPa/◦C

Supply current (isma) 1.2 A SMA initial martensite fraction (ξ0) 1

Austenite transformation start temperature (Ts
A) 71.5 ◦C Spring stiffness (k) 500 N/m

Austenite transformation finish temperature (Tf
A) 79.7 ◦C Ambient temperature (T0) 25 ◦C
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