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Abstract: Subsoiling practice is an essential tillage practice in modern agriculture. Tillage forces and
energy consumption during subsoiling are extremely high, which reduces the economic benefits
of subsoiling technology. In this paper, a cicada-inspired biomimetic subsoiling tool (CIST) was
designed to reduce the draught force during subsoiling. A soil–tool interaction model was developed
using EDEM and validated using lab soil bin tests with sandy loam soil. The validated model was
used to optimize the CIST and evaluate its performance by comparing it with a conventional chisel
subsoiling tool (CCST) at various working depths (250–350 mm) and speeds (0.5–2.5 ms−1). Results
showed that both simulated draught force and soil disturbance behaviors agreed well with those
from lab soil bin tests, as indicated by relative errors of <6.1%. Compared with the CCST, the draught
forces of the CIST can be reduced by 17.7% at various working depths and speeds; the design of the
CIST obviously outperforms some previous biomimetic designs with largest draught force reduction
of 7.29–12.8%. Soil surface flatness after subsoiling using the CIST was smoother at various depths
than using the CCST. Soil loosening efficiencies of the CIST can be raised by 17.37% at various
working speeds. Results from this study implied that the developed cicada-inspired subsoiling
tool outperforms the conventional chisel subsoiling tool on aspects of soil disturbance behaviors,
draught forces, and soil loosening efficiencies. This study can have implications for designing high-
performance subsoiling tools with reduced draught forces and energy requirements, especially for
the subsoiling tools working under sandy loam soil.

Keywords: biomimetic method; draught force; energy consumption; soil disturbance; subsoiling

1. Introduction

Energy requirements for crop production gradually increase because of the increas-
ing population, which brings various heavier pieces of machinery to farmland [1]. The
application of a conventional tillage system and frequent operations using different heavy
agricultural machinery on farms generally results in soil compaction, which is an important
issue in agricultural mechanization for the sustainable production of food [2–6]. Subsoiling
practice is generally used to loosen the compacted soil, improve the growing conditions of
roots, and restore yields of crops [7–12]. The practice mainly includes biological, natural,
mechanical, and chemical methods [3,4,13]. Both natural soil recovery and biological meth-
ods need to experience a long period of time, and crop yields could be negatively affected
during this period. Crop growth is not significantly affected by the chemical method.
Moreover, the environment may be polluted by additional application of fertilization. By
contrast, the mechanical method is widely used and can loosen soil and eliminate soil
compaction within a short-term process [4]. The method could restore soil structure and
improve soil properties [3,14]. However, draught forces and consumed energies during the
subsoiling process are generally three to five times those of harvesting tools and seeders [15],
which seriously reduces the economic benefits of subsoiling technology.
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Bionics is the science of applying the characteristics of various creatures (animals, plants,
and microbes) to modern technical equipment and creating new technologies [3,16–18].
Recently, various biomimetic methods have been substantially employed in the design of
different agricultural soil-engaging tools because of the good structures of some creatures
with lower tillage forces [19–22]. Bai et al. (2016) designed a new subsoiling tool with
a badger claw-inspired shank; results showed that the draught forces were reduced by
3.01–7.29% compared with the conventional subsoiling tool with an arc-shaped shank
(CSTA) [23]. In the study by Guo (2019), a biomimetic shank was developed based on
the claw curve of the oryctolagus cuniculus, and draught forces were 6.4–8.2% lower
than the CSTA [19]. A study by Li (2016) found that the design of a bear claw-inspired
subsoiling tool reduced draught forces of the CSTA by 7.8–12.8% due to the decrease in
soil disturbance [20]. The draught forces of biomimetic subsoiling tools were more or less
reduced compared with conventional subsoiling tools. However, only the organ shapes
of various animals were used as bionic prototypes in the design of subsoiling tools in the
existing studies [19,20,23]. The movement modes of animals’ organs, which are essential in
loosening the soil for animals, have rarely been considered in accordance with our previous
review [5]. This hinders further decrease in draught forces and consumed energies of
biomimetic subsoiling tools [5].

In the past few years, the discrete element method (DEM) has been utilized to inves-
tigate soil–tool interactions, which allows results to be obtained efficiently, such as the
simulation of a cutting blade [24–26], the simulation of a sweep [27–29], the simulation
of a harvesting tool [30,31], and the simulation of a subsoiler [6,32,33]. The above studies
have proven that DEM is an effective and emerging advanced technology to evaluate tool
performance in a timely manner.

It seems impossible that designing a soil-engaging tool inspired by only organ shape
will give the lowest draught force, as the movement behaviors of some creatures’ organs
(e.g., head, skin) are very essential in moving through the soil with small tillage forces.
However, the combined effects of the organs’ shape and motion have rarely been included
in designing a biomimetic subsoiling tool in previous research [5]. Therefore, the objectives
of this study were to (1) design a biomimetic subsoiling tool bioinspired by both the
profile and motion of the cicada head, (2) develop a soil–subsoiling tool interaction model
by EDEM (Experts in Discrete Element Modeling) software and validate it using both
measured draught force and soil disturbance behaviors, and (3) optimize the cicada-inspired
subsoiling tool (CIST) and evaluate its performance by comparing it with a conventional
chisel subsoiling tool (CCST) at various working depths and speeds in sandy loam soil.

2. Methodology
2.1. Biomimetic Design of the Cutting Share of the Subsoiling Tool

A conventional subsoiling tool generally includes a shank and a cutting share in
accordance with the Chinese Standard (JB/T 9788-1999) (Figure 1a). The cutting share of
a subsoiling tool generally moves forward linearly and is employed to break the soil and
force the soil to fail. The draught force of the cutting share is the main source of the draught
force of a subsoiling tool [14], and the structure of the cutting share has a significant impact
on the tool’s draught force and soil disturbance [18,32,34]. The cicada is a soil animal that
optimizes itself constantly over a long period of evolution. Thus, it gradually adapts to the
soil environment and can freely move through the soil. The head shape of a cicada plays a
key role in breaking soil during movement (Figure 1b). Moreover, the linear movement of
the cicada head in the soil is very similar to the cutting share of a subsoiling tool during
subsoiling operations. Thus, a cicada head was used as the prototype in the design of
biomimetic cutting share.

The lateral boundary curve of the cicada’s head was extracted using the following
method: (1) marking two random points on the lateral profile of the cicada’s head (i.e., P1
and P2) and measuring the real distance between the two points using a vernier caliper
(i.e., Da) (Figure 1b); (2) taking an image in the direction perpendicular to the plane
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where the lateral profile of the cicada’s head was located; (3) importing the image into
the AutoCAD software and measuring the distance between the two marked points (Db)
using the dimensioning tool of the software; and (4) scaling the image proportionally using
the zoom function of AutoCAD2016 (zoom ratio = Da/Db) to obtain the image with real
dimensions. The coordinates of the lateral boundary curve of the cicada’s head were then
collected and fitted using a parabola with an R2 (coefficient of determination) of >0.995
(Figure 1c). Similar methods have been reported in earlier studies, which determined the
lateral boundary curve of the soil cone by collecting the coordinates of soil particles on
the profile of the soil cone [35,36]. The fitted curve was then scaled proportionally and
extended laterally to produce a bionic curved plane of biomimetic cutting share (Figure 1d);
moreover, the zoom ratio was determined based on the length of standard cutting share
(Chinese Standard JB/T 9788—1999) (Figure 1a). The tip curve of the cicada’s head can be
described by two arcs. To reduce the wear rate of cutting share, the tip curve of cutting
share was designed by three sections of arcs; i.e., one arc with a radius of R1 and two arcs
with a radius of R2. The cicada-inspired subsoiling tool with a conventional arc-shaped
shank and a biomimetic cutting share is shown in Figure 1d.
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Figure 1. The (a) structure of a conventional chisel subsoiling tool, (b) prototypes of biomimetic
cutting share, (c) fitting curve of prototype one, and (d) axonometric drawing and top view of a
subsoiling tool with biomimetic cutting share (BC stands for biomimetic curve; L1 = 30 mm, shank
width; L2 = 80 mm, shank thickness; L3 = 165 mm, share length; L4 = 40 mm, share width; α = 23◦,
share rake angle; R0 = 320 mm, shank curvature; R1 = 4 mm, radius of biomimetic share curve one;
R2 = 40 mm, radius of biomimetic share curve two).

2.2. Lab Soil Bin Tests

The soil tested in the lab soil bin was sandy loam soil. The soil moisture content,
bulk density, yield strength, and void ratio were 19% (d. b.), 1350 kg m−3, 1.15 MPa,
and 49.06%, respectively. The soil was prepared in three steps, including spraying water,
rotary tillage, and compaction (Figure 2a,b) [14,32]. After soil preparation, a conventional
chisel subsoiling tool (CCST) with an arc-shaped shank was selected based on the Chinese
Standard (JB/T 9788—1999). The geometrical parameters of the tool are shown in Figure 1a.
It was run in the soil bin at a constant speed of 1.5 m s−1 and a working depth of 300 mm in
three replicates (Figure 2c). Draught forces during subsoiling were recorded by three load
cells installed between the soil bin cart and the three-point hitch of the toolbar (accuracy:
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±0.01 N) (Figure 2c). The soil disturbance area was measured using a 1500 mm wide
profile meter that consists of 150 free-dropping wooden pins (Figure 2d). Initially, manual
excavation of the disturbed soil was carefully performed after subsoiling; the profile meter
was then placed at the top of the furrow and the pins in the profile meter automatically
adjusted their vertical locations in accordance with the contour of the furrow; finally, furrow
profiles were traced on the engineering graphic paper with a grid spacing of 1 mm, and
the soil disturbance area was determined by the grid number in the furrow profile and
the area of each grid (i.e., 1 mm2). The mean of the soil disturbance areas at three random
locations was reported. Similar methods have been used in studies by Hang et al. and
Wang et al. [14,32]. To ensure the stability of experimental data, the distance in the middle
of the travel with a constant working speed was used for the measurement. The measured
draught forces and soil disturbance behaviors in the lab soil bin were used to validate the
following DEM model.
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Figure 2. Lab soil bin test: (a) rotary tillage of the soil, (b) soil compaction, (c) subsoiling test, (d) soil
disturbance profile measurement.

2.3. DEM Simulations

The DEM is a numerical method for examining tool–granular media interactions [27,35,37].
In this study, the subsoiling tool performance was evaluated using the DEM model
developed with EDEM2021 software. The contact model between soil particles was a
Hertz–Mindlin with a JKR model, which has been successfully used in many previous
DEM studies [38–40]. Soil particles with spherical radii of 10 mm (nominal radii) were de-
termined by comprehensively considering both the accuracy and solution time of the DEM
simulations. Previous research implied that the generation of soil particles with fixed radii
was not a realistic method for both particle packing and movement; however, this could
be overcome by randomly generating soil particles in a radius range of 0.95–1.05 times the
nominal particle radius [41]. Therefore, soil particles in the size range of 9.5–10.5 radii were
generated in the DEM simulations. The DEM parameters can be grouped into material and
interaction properties, which were determined by a combination of physical measurements,
calibration, and data from other studies. The material parameters mainly consisted of
the density, Poisson’s ratio, and the shear modulus of soil and the subsoiling tool (i.e.,
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65 Mn steel). Soil density was determined by actual measurement. The density and shear
modulus of steel and the shear modulus and Poisson’s ratio of soil used in this study
were published [33,38,42]. The interaction parameters mainly consisted of the surface
energy between soil particles, the coefficient of restitution, and the coefficient of friction
between materials. The coefficients of friction and rolling friction between soil and steel
were measured by performing inclined plane tests where a tray filled with compacted and
leveled soil was tilted until a piece of steel plane (or a spherical steel ball) commenced to
move over the soil. The disturbance behaviors of sandy loam soil (e.g., angle of repose) are
not significantly affected by the coefficients of restitution between materials [35], and they
were determined by the average published data by Wang et al. and Zheng et al. [14,33].
The surface energy between soil particles was obtained from the published data in the
study by Hu [38] with the same soil category and moisture content. The coefficients of
friction and rolling friction between soil particles were calibrated by varying them until
the simulated angle of repose (AOR) reached a close match of the measured value. The
determined parameters are shown in Table 1.

Table 1. Major parameters used in the DEM simulations.

Parameter Unit Value Source

Poisson’s ratio of soil Dimensionless 0.3 [42]
Shear modulus of soil Pa 5 × 107 [42]
Density of steel kg m−3 7865 [33]
Poisson’s ratio of steel Dimensionless 0.3 [33]
Shear modulus of steel Pa 7.9 × 1010 [33]
Coefficient of static friction of soil–soil Dimensionless 0.7 Calibrated
Coefficient of rolling friction of soil–soil Dimensionless 0.225 Calibrated
Coefficient of restitution between materials Dimensionless 0.6 [14,33]
Coefficient of static friction of steel–soil Dimensionless 0.49 Measured
Coefficient of rolling friction of steel–soil Dimensionless 0.06 Calibrated
Surface energy J m−3 6 [38]
Rayleigh time step s 2.2802 × 10−4 Calculated
Particle radii mm 9.5–10.5 [41]

The virtual soil bin was 1.8 m long to ensure that the subsoiling tool could achieve its
steady state on aspects of draught forces; the width and depth of the virtual soil bin were
0.6 m and 0.4 m, respectively, to avoid the effects of the bin walls’ edge on the movement of
soil particles during subsoiling operations. The desired soil bulk density (i.e., bulk density
of tested soil) in the virtual soil bin was achieved by pushing down the soil surface to a
required depth. The 3D models of subsoiling tools were constructed using CATIA V5R20
software. After creating the virtual soil bin, the constructed tool model was imported into
the EDEM, as shown in Figure 3.
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2.4. Monitoring of Draught Forces and Soil Disturbance in the DEM

After the validation, the DEM model was then used to optimize the biomimetic
subsoiling tool and evaluate the performance of the optimized tool. Draught force is one
of the most important indicators for subsoiling tools as it directly determines the tractor
power requirement and energy consumption during tillage. The average draught force
of every simulation run was taken over the constant portion of the force curve, which
corresponded to the midsection (from moment t1 to moment t2) of the soil bin (Figure 4).
Moment t1 stands for the moment when the subsoiler commenced and completely entered
the soil bin and moment t2 stands for the moment when the cutting share commenced and
left the soil bin.
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Soil disturbance area significantly affects the subsoiling effects on soil water infiltration
and crop growth [13,43]. In the DEM model, soil particles with higher velocities around the
tool indicated that they were disturbed during subsoiling. The profiles of soil disturbance
around the tool during subsoiling were, therefore, obtained in accordance with the velocity
field of soil particles around the tool (blue particles represented undisturbed soil) (Figure 5a).
Better soil surface flatness is always desired for a subsoiling tool as it favors subsequent
seeding operations. Surface cross-sectional areas after subsoiling could be used to evaluate
the surface flatness, and it was defined as the sum of positive and negative surface cross-
sectional areas (Figure 5b).
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To optimize the cicada-inspired subsoiling tool (CIST), the above indicators of the
CIST at varying rake angles (from 18◦ to 38◦) were collected and analyzed. Moreover,
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to evaluate the tool performance of the new biomimetic design, draught force, surface
cross-sectional area (SCA), soil disturbance area, and soil loosening efficiency from the CIST
were compared with the conventional chisel subsoiling tool (CCST) at various working
depths and working speeds. According to the Chinese Standard (JB/T 10295—2014), the
working depth should not be less than 250 mm. The local working depth in subsoiling
practices generally is not larger than 350 mm [44–46]. Moreover, the local working speed in
subsoiling operations generally ranges from 0.5 m s−1 to 2.5 m s−1 [7,44,46]. The working
depths of 250–350 mm and speeds of 0.5–2.5 m s−1 were, therefore, determined. Soil
loosening efficiency (SLE) was calculated as follows [6].

SLE =
SDA

Fd
(1)

where SDA and Fd stand for soil disturbance area (mm2) and the draught force during
subsoiling (N).

3. Results and Discussion
3.1. Model Validation

The draught force of the conventional chisel subsoiling tool (CCST) over the tool
displacement in the constant portion of the subsoiling travel is shown in Figure 6a. The force
curve fluctuated over displacement, which is also the case in practice. The average draught
forces from the DEM simulation and measurement were 1189 N and 1121 N, respectively,
which gave a relative error of 6.07%. The low relative error indicated good agreement
between the simulation and the measurement. In addition, soil disturbance profiles from the
DEM simulation and experiment were basically consistent (Figure 6b); moreover, simulated
and experimental soil disturbance areas were 71,210 mm2 and 73,306 mm2, which were
also very comparable, as indicated by a relative error of <2.86%. The DEM model was
again validated. The above results implied that the developed DEM model could be used
to simulate soil–subsoiling tool interactions with good accuracy.
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3.2. Biomimetic Subsoiling Tool Performance Affected by Rake Angle

For the DEM model with the JKR contact model, the simulated results from different
repetitions did not vary, and the statistical analyses of these repeated results were, therefore,
not performed. Rake angle is an essential factor affecting both the tool’s draught force
and soil disturbance [45,47]. As shown in Figure 7a, draught forces of the cicada-inspired
subsoiling tool (CIST) initially decreased and then increased with increasing rake angles;
similar phenomena were also found in previous works [26,29,48]. Moreover, the apparently
lower draught force was associated with a rake angle of 25.5◦.

Biomimetics 2024, 9, x FOR PEER REVIEW  9  of  16 
 

 

 
(a)  (b) 

 
(c) 

Figure 7. The performance of the cicada-inspired subsoiling tool (CIST) affected by rake angle: (a) 

draught  force;  (b) surface cross-sectional area  (SCA) and soil disturbance area;  (c) soil  loosening 

efficiency. 

Both surface cross-sectional area (SCA) and soil disturbance area fluctuated with in-

creasing rake angles from 18° to 38° (Figure 7b). The nonlinear effects of the rake angle on 

soil disturbance have been reported in the literature [26,45]. Comparably smaller SCA val-

ues were  found at  rake angles of 23–33°. Larger  soil disturbance areas generally gave 

higher draught forces, as the rake angle ranged from 20.5° to 38°. For the CIST with a rake 

angle of  18°, draught  force was  relatively higher, while  the  soil disturbance  area was 

smaller compared with the CIST with rake angles of 20.5–23°. Much smaller rake angles 

would result in the formation of a soil cone and soil back edge, which could reduce the 

cutting effects of the tool on soil and raise tillage forces in accordance with the studies by 

Hang et al. and McKyes [47,49]. The above research may explain the different variation 

trends between draught force and soil disturbance area at rake angles of 18–23°. With an 

increase in rake angle, soil loosening efficiency initially increased and then decreased (Fig-

ure 7c), and the CIST had comparably higher soil loosening efficiency at rake angles of 23–

28°. The CIST with a rake angle of 25.5° would be the best choice for biomimetic design in 

terms of apparently lower draught force, comparably smaller SCA, and higher soil loos-

ening efficiency. 

3.3. Comparisons between Biomimetic and Conventional Subsoiling Tools 

3.3.1. Soil Disturbance Profile and Soil Disturbance Area 

To evaluate the soil disturbance range, soil disturbance profiles of the CIST and CCST 

at various working depths and speeds were obtained, as shown  in Figs. 8a and 8b. To 

further quantify  soil disturbance  amount,  soil disturbance  areas  at various  conditions 

were calculated (Figure 8c,d). An increasing working depth from 250 mm to 350 mm or 

working speed from 0.5 m s−1 to 2.5 m s−1 gave a larger soil disturbance area for both the 

CIST and CCST; moreover, working depth was more influential on soil disturbance area 

Figure 7. The performance of the cicada-inspired subsoiling tool (CIST) affected by rake an-
gle: (a) draught force; (b) surface cross-sectional area (SCA) and soil disturbance area; (c) soil
loosening efficiency.

Both surface cross-sectional area (SCA) and soil disturbance area fluctuated with
increasing rake angles from 18◦ to 38◦ (Figure 7b). The nonlinear effects of the rake angle
on soil disturbance have been reported in the literature [26,45]. Comparably smaller SCA
values were found at rake angles of 23–33◦. Larger soil disturbance areas generally gave
higher draught forces, as the rake angle ranged from 20.5◦ to 38◦. For the CIST with a
rake angle of 18◦, draught force was relatively higher, while the soil disturbance area was
smaller compared with the CIST with rake angles of 20.5–23◦. Much smaller rake angles
would result in the formation of a soil cone and soil back edge, which could reduce the
cutting effects of the tool on soil and raise tillage forces in accordance with the studies by
Hang et al. and McKyes [47,49]. The above research may explain the different variation
trends between draught force and soil disturbance area at rake angles of 18–23◦. With
an increase in rake angle, soil loosening efficiency initially increased and then decreased
(Figure 7c), and the CIST had comparably higher soil loosening efficiency at rake angles
of 23–28◦. The CIST with a rake angle of 25.5◦ would be the best choice for biomimetic
design in terms of apparently lower draught force, comparably smaller SCA, and higher
soil loosening efficiency.
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3.3. Comparisons between Biomimetic and Conventional Subsoiling Tools
3.3.1. Soil Disturbance Profile and Soil Disturbance Area

To evaluate the soil disturbance range, soil disturbance profiles of the CIST and CCST
at various working depths and speeds were obtained, as shown in Figs. 8a and 8b. To
further quantify soil disturbance amount, soil disturbance areas at various conditions were
calculated (Figure 8c,d). An increasing working depth from 250 mm to 350 mm or working
speed from 0.5 m s−1 to 2.5 m s−1 gave a larger soil disturbance area for both the CIST
and CCST; moreover, working depth was more influential on soil disturbance area than
working speed, especially for the CCST. Compared with the CCST, the soil disturbance
areas of the CIST were 0.98–18.96% smaller at various working depths and 2.03–6.37%
smaller at various working speeds. Less soil disturbance is generally favorable for reducing
the draught force of soil-cutting tools [18,26].
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3.3.2. Draught Force

As shown in Figure 9a, both draught forces of the CIST and CCST were found to
increase quadratically with working depths and coefficients of determination larger than
0.98. Moreover, the CIST had 4.93–17.70% lower draught force at various working depths
compared with the CCST. By contrast, the effect of working speed on draught forces of the
CIST and CCST had a linear increasing trend (Figure 9b); this was basically in line with
the results by Yang et al., who reported that draught forces of a soil cutting blade were
enlarged linearly when the working speed increased from 1 to 5 m s−1 [26]. The draught
forces of the CIST were 2.82–17.70% lower than the CCST, as the working speed increased
from 0.5 m s−1 to 2.5 m s−1. It was observed that working depth was much more influential
on draught force than working speed, which agreed well with the study by Godwin [50].
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The above results indicated that the cicada-inspired subsoiling tool (CIST) can reduce
the draught force by 17.7% at various working depths and speeds; this design obviously
outperforms the biomimetic designs by Bai et al., Guo, and Li, which have the largest
draught force reductions of 7.29%, 8.2%, and 12.8%, respectively [19,20,23]. The main
reason for the above performance improvement could be due to the fact that the combined
effects of head shape and motion of cicada were considered in the biomimetic design of
the subsoiling tool in this study; by contrast, only the organs’ shape (e.g., the claw) was
considered in the above references. Therefore, the design of the CIST has a good potential
to further reduce the draught forces and energy requirements of subsoiling operations.

3.3.3. Surface Cross-Sectional Area (SCA)

Overall, increasing the working depth or working speed gave a larger surface cross-
sectional area (SCA) for both the CIST and CCST (Figure 10). SCAs for the CIST at various
working depths were smaller than the CCST in most cases (Figure 10a). By contrast, SCAs
for both the CIST and CCST were similar and quite small as the working speed increased
from 0.5 m s−1 to 1.5 m s−1 (Figure 10b). With a further increase in working speed, the SCA
increased rapidly. The above results indicated that soil surface flatness after subsoiling
using the CIST was smoother at various depths than the CCST in most cases. Additionally,
smaller working speeds (≤1.5 m s−1) are recommended to obtain a smoother soil surface
flatness for both the CIST and CCST.
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3.3.4. Soil Loosening Efficiency

The values of soil loosening efficiency (SLE) fluctuated for both the CIST and CCST
with an increase in working depth from 250 mm to 350 mm (Figure 11a), which was
supported by the study by Zeng et al. [6]. Moreover, increasing working depth gave a
lower SLE. By contrast, SLE values of both the CIST and CCST initially increased and
then decreased as the working speed increased from 0.5 m s−1 to 2.5 m s−1 (Figure 11b).
Furthermore, soil loosening efficiencies of the CIST were 0.81–17.37% higher than the CCST
at various working speeds.
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4. Conclusions

In this study, a cicada head was used as the prototype of the biomimetic cutting share
of a subsoiling tool to reduce the draught force requirement and energy consumption. A
soil–subsoiling tool interaction DEM model was developed using EDEM and validated
using the measured draught force, soil disturbance profile, and soil disturbance area of
a conventional chisel subsoiling tool (CCST). The model was then used to optimize the
cicada-inspired subsoiling tool (CIST) and evaluate its performance by comparing it with
the CCST at various working depths (250–350 mm) and speeds (0.5 m s−1 to 2.5 m s−1).
The following conclusions were drawn:

(1) The developed DEM model could be used to simulate soil–subsoiling tool interactions
with good accuracy, as indicated by relative errors of <6.1% between simulated and
measured draught forces and soil disturbance areas;

(2) Compared with the CCST, the draught forces of the CIST can be reduced by 17.7%
at a working depth of 300 mm and working speed of 1.5 m s−1; this CIST design
obviously outperforms the biomimetic designs by Bai et al. [23], Guo [19], and Li [20],
which have largest draught force reductions of 7.29–12.8%. Therefore, the CIST has
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a good potential to further reduce the draught forces and energy requirements of
subsoiling operations;

(3) Soil surface flatness after subsoiling using the CIST was smoother at various depths
than the CCST. Soil loosening efficiencies of the CIST were 0.81–17.37% higher than
the CCST at various working speeds.

Results from this study showed that the developed cicada-inspired subsoiling tool
outperforms the conventional chisel subsoiling tool on aspects of both soil disturbance
behaviors and draught forces. The tool’s performance was tested and validated only in a
given soil condition, and future work will need to consider different soil conditions (e.g.,
soil categories).
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