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Abstract: This paper proposes a novel intelligent approach to swarm robotics, drawing inspiration
from the collective foraging behavior exhibited by fish schools. A bio-inspired neural network
(BINN) and a self-organizing map (SOM) algorithm are used to enable the swarm to emulate fish-like
behaviors such as collision-free navigation and dynamic sub-group formation. The swarm robots
are designed to adaptively reconfigure their movements in response to environmental changes,
mimicking the flexibility and robustness of fish foraging patterns. The simulation results show
that the proposed approach demonstrates improved cooperation, efficiency, and adaptability in
various scenarios. The proposed approach shows significant strides in the field of swarm robotics
by successfully implementing fish-inspired foraging strategies. The integration of neurodynamic
models with swarm intelligence not only enhances the autonomous capabilities of individual robots,
but also improves the collective efficiency of the swarm robots.

Keywords: swarm robots; bio-inspired algorithms; foraging behaviors; fish-inspired algorithm;
neurodynamic models

1. Introduction

The collective behavior exhibited by fish schools is a remarkable example of biological
organization in natural environments [1]. Fish schools are usually made up of hundreds
or thousands of individual fish, which show a high degree of coordination in their move-
ments [2]. Collective behavior helps to make foraging efficient, offers protection against
predators, and helps to navigate complex environments, as shown in Figure 1. Furthermore,
dynamic changes in the shape and direction of schools are implemented by simple local
interactions between individual fish, which has inspired many researchers to develop
algorithms and systems that govern similar efficient collective movement [3].

Recently, there has been a trend to develop new systems, algorithms, and robotic
strategies inspired by the behavior and intelligence of fish [4,5]. Chen et al. [6] proposed an
innovative design in the realm of robotic fish, which incorporated a high-frequency oscilla-
tion mechanism paired with a compliant and passive system. The proposed robotic system
showed rapid swimming capabilities and closely mimicked the learning patterns of the fish.
Weber et al. [7] introduced the optimal placement of the sensor in artificial swimmers, that
demonstrated that the follower distribution is similar to the neuromast distribution in fish.
Hannard et al. [8] introduced novel robotic materials based on inspiration from mechanical
modeling and testing of fish fins, which are capable of achieving significant morphing
amplitudes and robust grasping forces. By mimicking intelligent schools of fish, swarm
robots can perform complex tasks collectively without central control. The designed swarm
robots collaborate with each other based on local interactions, responding instantly to their
neighbors [9]. Cioarga et al. [10] introduced collision-free fountain maneuvers and flash
expansion variations for mobile robots. Similarly, Berlinger et al. [11] adapted the fountain
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maneuver model to an underwater robotic platform, ensuring a consistently visible angle
for predators. Novák et al. [12] presented an animal-inspired and rapid escape technique
that allows swarm robots to avoid dynamic obstacles. Min and Wang [13] introduced a
fish-inspired escape algorithm that enables rapid predator evasion and obstacle avoidance.
Li [14] proposed a self-adaptive collective escape approach inspired by the group escape be-
havior of fish. The potential applications of these fish-inspired robotic systems are vast [15].
For instance, fish-inspired systems can be used in deep-sea exploration in extreme pressure
environments [16]. In addition, fish-inspired systems can finish emergency search and
rescue missions to guarantee the safety of human life [17]. Moreover, fish-inspired systems
can also achieve cooperative transportation in underwater environments [18].

Figure 1. The group behavior of fish schools (credit: iStock).

Foraging behaviors are highly efficient strategies that exploit food resources through
collective search patterns and local interactions. However, translating efficient foraging
behaviors into robotic systems is a significant challenge. Song et al. [19] proposed a foraging
approach of swarm robots based on virtual pheromones through the dynamics of neural
networks. Pang et al. [20] proposed a foraging approach based on the dynamic calculation
of the food stimulus and the number of resting robots, and on obstacle avoidance in the last
foraging task. Lee et al. [21] proposed a self-organizing allocation method of swarm robots
for sequential foraging tasks based on the response threshold model. Research inspired
by the foraging behavior of fish schools is notably scarce [22]. Li et al. [23] proposed an
artificial fish swarm algorithm (AFSA) to use the local searches of individual fish for finding
the global optimum solution. Foraging behavior is one of the simulated behaviors in the
AFSA. The AFSA and many hybrid models have been studied to solve real-world problems,
such as data clustering, image segmentation, and parameter optimization [24]. However,
most AFSA-based approaches are used to solve optimization problems. Foraging behavior
is merely one optimization strategy, instead of the collective control of robots. Connor
et al. [25] proposed a fish-inspired robotic algorithm (FIRA) to mimic foraging behavior,
inspired by schooling fish. However, their method does not consider the scenario where
fish schools can be divided into different sub-groups, leading to lower efficiency in multi-
target problems. Berlinger et al. [26] developed a potential-field-based model to emulate
collective behavior in underwater robots within three-dimensional spaces. However, they
only considered collision-free scenarios, which might not accomplish complex tasks in the
real-world environment. Compared to traditional foraging methods, the collective behavior
of fish schools is characterized by the following:

(1) The foraging behavior of fish schools is implemented based on interactions between
individuals, rather than global pheromones or propagation [1,11,26];
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(2) During the foraging process, fish schools maintain appropriate distances between
individuals and shape formation [13,26];

(3) Fish schools exhibit adaptive behavior to accommodate changes in complex environ-
ments [1,2].

The purpose of this paper is to enable swarm robots with several characteristics of
fish foraging behavior. In traditional foraging approaches, the foraging behavior of fish
schools is implemented based on global communications. In addition, robotic systems
typically lack the ability to adapt to environmental changes. Furthermore, robotic systems
do not consider the sub-group scenario, where fish schools can be divided into different
small groups during the foraging process. In the proposed approach, a bio-inspired neural
network (BINN) is proposed to generate virtual forces, and a neurodynamic model is
incorporated to enhance the self-adaptive ability of swarm robots. In addition, a self-
organizing map (SOM) is proposed to facilitate sub-group behavior within the swarm
robots, which enables the robotic swarm to mimic the natural division and regrouping
of fish schools during foraging. The simulation results show the efficacy of the proposed
approach in ensuring safe, efficient, and self-adaptive cooperation among autonomous
robots in many environments.

The main contributions of this paper are summarized as follows:

(1) A novel collective foraging approach is proposed for swarm robots in changing
environments. The proposed approach takes inspiration from the locally interactive
group behavior of fish.

(2) A novel approach to collision-free virtual forces is proposed to guide swarm robots
based on a neurodynamics model. During the foraging process, the swarm robots
have self-adaptive ability to accommodate changes in complex environments.

(3) An SOM algorithm is proposed to enable the sub-group behavior of the swarm robots,
which enables the swarm robots to dynamically adjust their shape in complex environments.

This paper is organized as follows. Section 2 gives the description of the problem.
Section 3 describes the proposed approaches. Section 4 shows the simulation results.
Section 5 discusses the characteristics of the neurodynamic model. In Section 6, the results
are briefly summarized.

2. Problem Description

For a swarm of m robots, their location in the 2D Cartesian workspace W, can be
uniquely determined by the spatial position pi = (xi, yi), i = 1, . . . , m. The maximum
speed the robot can achieve during the foraging process is denoted by Vmax > 0. It is
assumed that each robot functions as an omnidirectional entity and is capable of altering
its movement direction instantaneously without delay. The next location of the i-th robot at
time instant t + 1 can be given as

(xi)t+1 = (xi)t + vi∆t cos(θi)t (1)

(yi)t+1 = (yi)t + vi∆t sin(θi)t (2)

where vi ≤ Vmax is the current speed of the robot; θi is the moving direction of the robot;
and ∆t is the unit time interval. In addition, there is a sequence of obstacles in W. Let
O be an obstacle scenario. The collision-free area pertaining to O can be defined as
Ofree :=

{
(x, y) ∈ R2 : Γ > 1

}
, where

Γ =
(x − xo)

2 + (y − yo)
2

λo
(3)

where (xo, yo) is the center of the obstacle, and λo is the size of the obstacle. The regions
meeting Γ = 1, Γ > 1, or Γ < 1 denote the surface, exterior, and interior of the obstacle,
respectively. The position of the target can be denoted by Th = (xh, yh), h = 1, . . . , q. The



Biomimetics 2024, 9, 16 4 of 15

position of target Th is known to the robots. The target is foraged by the robot if the distance
between the target and the robot is less than the capture distance d f > 0.

On the basis of the characteristics of fish schools, the foraging of a swarm of robots
should be able to meet the following requirements.

(1) The foraging behavior is based on local interactions between individual robots.
(2) The swarm robots should be self-adaptive during the foraging process.
(3) The robots should maintain the desired distance Rd from their neighbors.

Therefore, the fish-inspired foraging studied in this paper can be described as: for a
group of m robots and given the initial positions of the robots pi(0) with i = 1, . . . , m, since
the h-th target exists in W, the swarm robot begins to forage and generate collision-free
trajectories, that is, P ∈ Ofree , until any robots achieve a foraging distance d f to all targets
in Th. During the foraging process, the swarm robots are required to maintain the desired
distance Rd from the neighboring robots and to be self-adaptive to adapt to changing
environments.

3. Proposed Approaches

In this section, a fish-inspired system is introduced for the foraging behavior of robots
and a sub-groups mechanism based on the SOM algorithm is proposed. In addition, a
neural network structure is proposed to generate collision-free virtual forces and improve
the self-adaptive ability to swam robots.

3.1. Fish-Inspired Foraging Behavior

Fish schools exhibit highly efficient group behavior through simple individual in-
teractions. In this paper, the foraging behavior is modeled as a mode-transition process.
Each robot has two modes: foraging mode and pilot mode. The behavior of the robot
is determined by the current mode. Once targets exist in the environment, the foraging
process begins. The foraging process can be summarized as follows:

(1) Based on the number of targets, swarm robots are divided into different subdivision
groups using the SOM algorithm. Within each subdivision group, one robot is selected
for pilot mode, while the other robots switch to foraging mode;

(2) The pilot robot requests the coordinates and status of all the foraging robots in the
subdivision group;

(3) After the group of swarm robots is constructed, all the robots in the same subdivision
group begin to move cooperatively to the target.

Note that the fish organization was considered an egalitarian organization in the past
several decades. Therefore, traditional fish-inspired approaches assumed that swarm
robots are an egalitarian organization [11,13,26]. However, current studies have found
that hierarchical organization might exist in some species of fish [1]. The purpose of
this paper is to use new ideas to design fish-inspired swarm robots. In addition, every
robot can be designated as a temporary pilot robot, which means the system operates in a
decentralized manner.

3.2. Sub-Group Mechanism Based on SOM

When a target is placed within the environment, the foraging process begins. In
scenarios where a single target is present, the robots bypass the implementation of group
division. In scenarios with multiple targets, it requires the strategic organization of swarm
robots into distinct groups. As shown in Figure 2, the SOM neural network is made up of
two layers. The input layer consists of two neurons, which represent the coordinates of
the targets Th = (xh, yh). The output layer is assigned to map the locations of the robots
pi = (xi, yi). The connection weights between the neurons of the input layer and the output
layer are determined by a weight vector Vhi, which is initially calibrated according to the
coordinates of the robots.
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Input layer

Output layer

Robot positions

Target positions

pi=(xi,yi)

Th=(xh,yh)

Vhi

Figure 2. Structure of SOM neural network.

The SOM decomposes the entire issue into sub-problems. In each iteration, with
a specified target input, the process encompasses three stages. Initially, the winner is
identified. The second is the determination of its neighboring neurons. The third stage
involves altering the weights of both the winner and its neighbors. This sequence is
reiterated until a stabilization of all weights is observed. Therefore, swarm robots gradually
form distinct groups and align themselves based on the evolving weight changes relative
to the location of targets. For a given robot as an input, the output neurons compete to be
the winner according to a specified criterion, described as [27]

Ni ⇐ min{Dhi, h = 1, . . . , q; i = 1, . . . , m} (4)

where Dhi = |Th − pi| is the weighted distance and Ni denotes that the i-th neuron is the
winner neuron from the h input neurons. Once the winner is identified, the subsequent
phase involves designing the neighborhood function. The neighborhood function denotes
the impact of the robot location on the winner and adjacent neurons, which dictates the
attraction strength. The influence exerted by the winner is strongest and progressively
diminishes with the decreasing proximity of other neurons, whereas it does not affect those
outside the designated neighborhood. The neighborhood function is characterized as

f
(
dj, G

)
=

{
e−d2

j /G2(t), if dj < r
0, otherwise

(5)

where dj = ||j − Ni||, j = 1, 2, ..., J represents the distance between the j-th neuron and the
winner neuron Ni and r defines the neighborhood range. Function G(t) = (1 − α)tG0 is
a nonlinear function, where t denotes the iteration count, and α is the change rate that
influences the computation time.

After the selection of the winner neuron and its neighbors, the ensuing step involves
adjusting the weights of the winner neuron with neighboring neurons. The update rule is
described as

pi(t + 1) =
{

Th(t), if Dhi ≤ d f
pi(t) + γ f

(
dj, G

)
× (Th(t)− pi(t)), otherwise

(6)

where γ is the learning rate and η is a small constant. The introduction of d f can significantly
reduce the computational duration of the algorithm [27]. The adjustment of weights is
influenced not solely by the initial distance between the winner, its neighbors, and the
input target neuron, but also by the neighborhood function and the learning rate. Upon
stabilization of the weight vectors Vhi, the swarm of robots is then divided into distinct
groups based on the target. Within each group, one robot is randomly selected to serve as
the pilot mode, while the remaining robots change to foraging mode.
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3.3. Virtual Force Generation Based on BINN

After the sub-groups of swarm robots are constructed, all the robots in the sub-
group begin to forage the same target. The foraging behavior can be considered a unique
form of robot path planning that necessitates the cooperative movement of all robots in a
group towards a common target. In this paper, a neural network architecture is proposed
for representing the environment. Environmental positions are mapped one-to-one to
corresponding neuronal positions, as shown in Figure 3a. Note that each neuron has only
local lateral connection to its neighboring neurons and responds only to the stimulus within
its receptive field with a radius of r0. In the proposed BINN, the dynamics of neural activity
in the neural network is characterized by a shunting equation.

（a）

（b）

−

Excitatory input

Inhibitory input

−

（b）

Figure 3. Examples of the bio-inspired neural network: (a) Structure of the neural network with only
local connections. (b) The dynamic landscape of neural activity for a 35 × 35 neural network.

The shunting equation was developed by Grossberg [28] based on Hodgkin and
Huxley’s model [29]. The shunting equation can be written as

dζk
dt

= −Aζk + (B − ζk)Se
k − (D + ζk)Si

k (7)

where ζk represents the neural activity of the k-th neuron; Se
k and Si

k denote the excitatory
and inhibitory inputs, respectively; A refers to the passive decay rate; B and D are the upper
and lower bounds of neural activity, respectively. This concept has been foundational in the
development of various robotic navigation and control algorithms based on the shunting
model [30,31]. The neural activity for the k-th neuron is written as

dζk
dt

= −Aζk + (B − ζk)

(
[Ik]

+ +
n

∑
l=1

wkl [ζl ]
+

)

− (D + ζk))

(
[Ik]

− +
n

∑
l=1

vkl [ζl − σ]−
) (8)

where ζl represents the neural activity of neighboring neurons to the k-th neuron; n
represents the amount of neighboring neurons to the k-th neuron; [a]+ is defined as
[a]+ = max{a, 0}; [a]− is defined as [a]− = max{−a, 0}; and σ is the threshold of the
inhibitory lateral neural connections. The connection weights, wkl and vkl , are defined as

wkl = f (|kl|) =
{

µ/|kl|, 0 < |kl| ≤ r0

0, |kl| > r0
(9)

and
vkl = βwkl , (10)

respectively, where β is a positive constant, β ∈ [0, 1]; |kl| represents the Euclidean distance
between the k-th neuron and the l-th neuron; and µ is a positive constant. The excitatory
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signal Se
k promotes positive neural activity, with the term ∑n

l=1 wkl [ζl ]
+ facilitating the

propagation of neural activity throughout the network. Conversely, the inhibitory signal Si
k

induces negative neural activity, and the term ∑n
l=1 vkl [ζl − σ]− confines neural activity to

a localized region due to the threshold σ. As a result, while Se
k exerts a global influence on

the entire neural network, Si
k impacts only a limited area, as shown in Figure 3b. As shown

in Algorithm 1, the key factors here are the size of the environment and the computations
performed for each neuron. The overall computational complexity of the algorithm can
be estimated as O(Nx × Ny × (2r0 + 1)2). This means the complexity of the algorithm is
linearly related to the size of the environment grid and quadratically related to the choice of
the radius r0 defining the neighborhood. If r0 is a small constant, then the complexity can
be approximated as O(Nx × Ny), linear to the size of the environment grid. In this study,
the value of r0 is a constant value (r0 =

√
2). Therefore, the computational complexity is

O(Nx × Ny), which can be approximated as O(N2).

Algorithm 1: Computing Dynamic Landscape of Neural Activity
Input: Environment information and size Nx × Ny, positions of target Tc
Output: Dynamic neural activity of neural network ζ

1 while forage tasks not finished do
2 for xi = 1 to Nx do
3 for yi = 1 to Ny do
4 Set targets as the excitatory input Se

k
5 Set obstacles as the inhibitory input Si

k
6 for x − r0 to x + r0 do
7 for y − r0 to y + r0 do
8 if ζ(x, y) ≥ 0 then
9 Se

k = Se
k + wkl ∗ ζ(x, y)

10 else
11 Si

k = Si
k + vkl ∗ ζ(x, y)

12 Compute neural activity ζ by (2)

13 return ζ

In this paper, attractive and repulsive forces are generated though the dynamics of
neural activity. The external input Ik fluctuates in accordance with the generation of force.
When generating attractive force, the external input is Iatt. Based on the modeling of the
fish-inspired behavior, foraging robots need to track the pilot robot. Thus, the external input
Iatt is defined as

Iatt =


E, if it is a Pilot robot

− E, if it is an obstacle

0, otherwise

(11)

where E is a positive constant. When the corresponding position aligns with a pilot robot, its
external input assumes a significantly positive value. Conversely, if the position correlates
with an obstacle, the external input takes on a substantially negative value. The command
neuron for the attractive force can be defined as

Patt ⇐ ζPatt = max{ζl , l = 1, 2, ..., n} (12)

where Patt denotes the command neuron of the attractive force within the neural network;
xPatt represents the neural activity of this command neuron. According to (12), the robot
continuously searches for the maximum neural activity among its neighboring positions.
As the robot moves to a new location, this location becomes its current position. The
attractive force, denoted as fA(k, l), is defined as

fA(k, l) = CA
Patt − Pc

∥Patt − Pc∥
(13)
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where CA represents a positive constant; and Pc indicates the robot’s current position. Given
the neuron representing an obstacle possesses a negative activity value, the robot can avoid
selecting the obstacle neuron as its next position. When generating a repulsive force, the
external input is Irep. Based on the modeling of fish-inspired behavior, swarm robots are
required to maintain the desired distance Rd from each other. Thus, the external input Irep
is defined as

Irep =


E, if it is a neighbor robot

− E, if it is an obstacle

0, otherwise.

(14)

When a corresponding position matches a neighboring robot, its external input is assigned a
significantly positive value. Conversely, if the corresponding position relates to an obstacle,
the external input is set to a notably negative value. The command neuron responsible for
the repulsive force is defined as

Prep ⇐ ζPrep = min{ζl , l = 1, 2, ..., n; ζl ≥ 0} (15)

where Prep represents the command neuron of the robot; and xPrep represents the neural
activity of the command neuron of the repulsive force. The repulsive force of the foraging
robot fR(k, l) can be defined as

fR(k, l) ==

CR
Prep−Pc

∥Prep−Pc∥ if 0 < D(k, l) ≤ Rd

0, if D(k, l) > Rd

(16)

where CR is a positive constant; D(k, l) is the distance between two neighboring robots k
and l. The repulsive force exerted by a foraging robot becomes active only when the distance
to neighboring robots is less than Rd. Consequently, the robot persistently seeks the lowest
yet positive neural activity within its vicinity.

In the foraging process, swarm robots must exhibit self-adaptivity to their environ-
ments, entailing the dynamic adjustment of movement parameters in response to environ-
mental conditions. The resultant force exerted by each robot is formulated as

FRS = αA ∑
l∈N(I),hl<hk

fA(k, l) + αR ∑
l∈N(I)

fR(k, l) (17)

where αA and αR, 0 ≤ αA, αR ≤ 1, and αA + αR = 1, are the self-adaptive weights of the
attractive and repulsive forces, respectively. The self-adaptive motion is to dynamically
adjust the proper ratio of αA / αR to adapt to the environmental changes. As shown in
Algorithm 2, the dynamic neural activity is incorporated into the adjustment of the αA / αR
ratio. The stride lengths of adjustment ∆ can be defined as

∆ =


+ U, if Avr(i) +

n

∑
l=1

[ζl ]
− > Rd

− U, if Avr(i) +
n

∑
l=1

[ζl ]
− ≤ Rd

(18)

where U is a small constant. The function Avr(i) denotes the average neighboring distance
of robot i. Function [a]− = max{−a, 0} denotes the sum of neighboring negative neural
activity. If no obstacles are in proximity to the robots, the term representing the neural
activity effect, ∑n

l=1[ζl ]
−, should equate to 0. Therefore, robots adjust the ratio depending

on whether their average neighboring distance is less than or exceeds Rd. If there are
obstacles in proximity to the robots, ∑n

l=1[ζl ]
− is a large positive value. Thus, the attraction

effect continuously increases, which ensures that robots remain connected with each other
to bypass obstacles.
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Algorithm 2: Neurodynamics-based self-adaptive mechanism

Input: positions of robot pi = (xi, yi), desired distance Rd and dynamic neural
activity ζ

Output: ratios of αA / αR
1 Initialize stride lengths of adjustment ∆
2 αA → 0.5
3 αR → 0.5
4 while forage the target do
5 if 0 ≤ αA ≤ 1 and 0 ≤ αR ≤ 1 then
6 get neighboring neural activity ζl from ζ
7 if Avr(i) + ∑n

l=1[ζl ]
− > Rd then

8 increase ratio αA / αR by ∆

9 else
10 decrease ratio αA / αR by ∆

The virtual forces derived from the BINN are utilized to identify collision-free positions
for subsequent movements. Nonetheless, the timing of these movements is contingent
upon the robot’s velocity. The magnitude of FRS determines the velocity vk of the robot.
While the potential magnitude of FRS ranges from 0 to +∞, the velocity vk is confined
within a specific range, from 0 to a maximum velocity Vmax. Consequently, there is a need
to map the magnitude of FRS onto a finite velocity scale. The velocity of the robot vk is
given by

vi = arctan
(∣∣FRS

∣∣)× (2/π)× Vmax (19)

where arctan() is the trigonometric function. The above nonlinear mapping has been used
for the collective motion [32]. The velocity vi accelerates with the increase in the magnitude
of FRS until the force FRS reaches a larger magnitude.

4. Results

This section details the testing of the proposed approach under various scenarios, uti-
lizing MATLAB R2021a for all simulation studies. The swarm robots are initially dispersed
randomly within the environment. Parameters for these simulations are set as follows:
A = 15, B = 1, D = 1, µ = 1, E = 40, σ = −0.8, r0 =

√
2, Rd = 5, and Vmax = 1.4.

The environment is represented by a neural network which has 70 × 70 neurons. In the
simulation, the position of the pilot robot and foraging robot are denoted by yellow and red
points, respectively. The obstacle position is denoted by a black square and the trajectory of
the foraging robot is shown as the blue line.

4.1. Single Target without Sub-Group Behavior

The first simulation aims to test the proposed approach considering the scenario of
a single target without sub-groups. Figure 4a shows the initial positions of the robots
with respect to the target, indicating a singular pilot robot and multiple foraging robots.
The position of the target is (11,49). The positions of the robots are (29,25), (26,16), (37,17),
(30,19), (36,24), (34,15), (44,16), (40,10), and (40,23), respectively. Furthermore, an obstacle is
located within a specified region, defined by the horizontal coordinates spanning from 20
to 50 and the vertical coordinates ranging from 30 to 31. Figure 4b shows the paths taken by
the swarm robots from their initial positions to forage the target. The results demonstrate a
collective movement pattern similar to a biological fish school. The pilot robot can effectively
navigate toward the target while the foraging robots follow, maintaining the desired distance.
Note that the swarm intelligently maneuvers around an obstacle without compromising its
formation integrity or target trajectory. The foraging behavior underscores a high degree
of spatial awareness and the capacity to plan dynamic routes within the robotic swarm.
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The adaptability of the formation in response to environmental obstacles suggests a robust
algorithmic foundation that balances individual robot autonomy with collective behavior.

(a) (b)

Target

Foraging

Pilot 
Foraging

Pilot 

Figure 4. The scenario of a single target without sub-groups: (a) The initial positions of the robots
and the target. (b) The final foraging trajectories of the swarm robots.

4.2. Multiple Targets with Sub-Group Behavior

In the next simulation, the proposed approach is tested considering the scenario of
multiple targets with sub-group behavior. The positions of robots obstacle are similar to
the previous simulation. However, there are two targets in the environment. The positions
of the targets are (11,41) and (62,41). Figure 5 illustrates the strategic deployment of a
robotic swarm in an environment with two targets based on the application of the SOM
algorithm. Figure 5a shows that the swarm robots are discerned into two distinct groups,
each led by a designated pilot robot, with the remaining robots designated as foraging robots.
Figure 5b shows the final trajectory of the swarm robots. The swarm robots are divided
into two sub-groups, each foraging a separate target. The trajectories show successful
navigation around the obstacle without disrupting the integrity of the sub-group robots
or its objective-oriented movement. The observed behavior in the simulation results is
similar to fish foraging strategies, where the school of fish disperses into smaller shoals
for effective resource exploitation. The robotic swarm exhibits an adaptive division on
moving to multiple targets based on the SOM algorithm. The capacity of the robotic swarm
to dynamically reconfigure in response to the multiplicity of targets without the loss of
efficiency is a testament to the robustness of the proposed approach.

(a) (b)

Target 1 Target 2

Pilot 1 Pilot 2 

Foraging

Pilot 

Foraging

Pilot 

Figure 5. The scenario of multiple targets with sub-group behavior: (a) Two distinct groups can be
discerned in the swarm robots. (b) The final trajectory of the swarm robots.

4.3. New Target in Sudden-Change Environments

In this simulation, the proposed approach is tested considering the scenario of a
new target in sudden-change environments. Figure 6a shows the swarm robots in the
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immediate aftermath of the successful foraging with two targets. At that time, a new
target and obstacle suddenly exist in the environment. The position of the new target
is (21,61). In addition, a sudden-change obstacle is located within a specified region,
defined by the horizontal coordinates spanning from 32 to 33 and the vertical coordinates
ranging from 31 to 50. Figure 6b shows the trajectories as the swarm robots exhibit a
reconfiguration into a consolidated group and are oriented towards the new target. The
proposed approach enables swarm robots to reconvene into a singular group after successful
sub-group foraging. The trajectory of the swarm robots was unobstructed by the sudden
addition of obstacles. The simulation results show a parallel to fish foraging behavior, where
schools exhibit a dynamic dispersion for resource acquisition and aggregation for collective
objectives. The proposed approach shows a similar ability to disband into sub-groups for
task-specific operations, and subsequently amalgamate in the face of new objectives, which
underscores the flexibility and dynamic resource allocation of the proposed approach.

Foraging

Pilot 

New Target

Suddenly adding obstacles  

Foraging

Pilot 

(a) (b)

Figure 6. The scenario of a new target in sudden-change environments: (a) A new target and obstacle
suddenly exist in the environment. (b) The trajectories as the swarm robots exhibit a reconfiguration
into a consolidated group and are oriented towards the new target.

4.4. Comparison Studies

To evaluate the performance of the proposed approach, a total of 20 test cases are
conducted in each evaluation. In these tests, the positions of robots, targets, and obstacles
are randomly distributed in the environment. The proposed approach is compared with a
novel FIRA method [25]. This method is also a fish-inspired method and achieves similar
foraging behavior as the proposed approach, making it a valuable point of comparison.
The foraging behavior of the FIRA can be denoted by [25]

Ff = C f

m

∑
j=0

((
fPi + Pt fvi

)D f

Dt

)
(20)

where m is the number of food sources; C f is the coefficient of foraging weighting; fPi is the
target position; Pt is the foraging time; fvi is the velocity of the target; D f is the coefficient
of the target attraction; and Dt is the distance between the robot and the target. The general
obstacle avoidance can be denoted by

Fo = Co

p

∑
j=0

(
(− fPo + Pt fvo )

Do

Dobs

)
(21)

where p is the number of obstacles; Co is the coefficient of general avoidance weighting;
fPo is the obstacle position; fvo is the obstacle velocity; Do is the coefficient of the repulsion
forces from obstacle; and Dobs is the distance between the robot and the obstacles. In
addition to foraging behavior, FIRA incorporates other behaviors, with the final action
position being the cumulative result of various behavior vectors. Concurrently, these
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behaviors are assigned different priorities; for instance, obstacle avoidance is prioritized
over foraging behavior. The comparison results are summarized in Table 1.

Table 1. Comparison results of the FIRA and proposed method.

Method Average Travel Distance Foraging Time

FIRA [25] 58.7 m 41.3 s
Proposed method 27.4 m 23.5 s

The proposed method forages multiple targets with shorter distances and less time
expended compared to FIRA, as shown in Table 1. This is because FIRA lacks sub-group
behavior, as shown in Equation (20). This implies that for multi-target foraging, swarm
robots need to traverse through each target point, significantly increasing both the distance
and the time required for foraging. In contrast, the proposed method intelligently divides
the robot swarm into distinct sub-groups based on the SOM algorithm. These sub-groups
concurrently forage on different targets to markedly enhance efficiency. In addition, obstacle
avoidance in FIRA is based on a fully connected potential field method. The selection
of influence parameters between robots and obstacles presents a significant challenge.
Although the impact of obstacles increases as the distance decreases, the repulsive force
exerted by obstacles still affects the movement efficiency of the robots even when they are
not in close proximity. In contrast, the proposed method features only local connections
between neurons, resulting in the global influence of obstacles being confined to a very
small area.

5. Discussion

The proposed approach aimed to enable robotic systems with the foraging ability of
fish. Therefore, most parameters are decided by the task requirements of the foraging,
such as the robot velocity and the parameters of the SOM algorithm. The parameters of
the shunting equation have been discussed in previous work [31]. In this discussion, the
most important parameters A and µ are discussed, and some simulations are carried out to
demonstrate the effect of these parameters.

The parameter A plays a significant role in the transient response of neural activity. In
order to investigate the parameter A, several simulation experiments are tested with the
same parameter settings, except that A has a different value. Figure 7 shows three typical
results from the simulations varying the parameter A. The neural network architecture
is 40 × 40 neurons. The x- and y-axes are the position of the neuron in the Cartesian
workspace. The z-axis is the value of the neural activity. The past travel trajectory of the
excitatory input has a more lasting influence into the neural network when A = 10, as
shown in Figure 7a. The small passive damping of the remaining neural activity makes
the past influence of the excitatory input disappear slowly. The influence of the past
position of the excitatory input on the generation of the trajectory decreases as the value
of the parameter A increases. This can be observed in the results presented in Figure 7b.
The propagation of neural activity within the proposed neural network is observed to be
dependent on the current position of the excitatory input. However, it is observed that
the neural network may become saturated if a very small value of A is selected, as shown
in Figure 7c. The saturation causes the robot to find it difficult to distinguish between its
current position and its neighboring positions. In summary, it is generally recommended
to select a value of A within the interval of (0.2, 50].

The parameter µ is important in forming the neural activity landscape because the
local connection to each neuron is a small region, and the propagation of positive neural
activity is able to arrive at the entire neural network. In order to investigate the parameter
µ, several simulation experiments with the same parameter settings are tested, except that µ
has a different value. The neural activity landscapes in Figure 7b,d are similar, because both
systems have the same A. However, the propagation of neural activity from the excitatory
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input is weakened due to choosing a lower µ value. The remaining neural activity has a
relatively stronger influence on the neural network. The robot might not choose the optimal
neuron for the next movement. The past travel trajectory of the excitatory input in Figure 7e
has a much wider influence on the neural network. Compared to the activity landscape
in Figure 7a, there is a wide range through which the robot cannot move. Furthermore,
when parameter µ > 1 it is very easy to saturate the neural activity because the propagated
activity is amplified, as shown in Figure 7f. Thus, the value of µ is normally selected to be
in the interval µ ∈ (0, 1].

（a） （b） (c)

(d) (e) (f)

Figure 7. The neural activity when choosing different values. (a) A = 10. (b) A = 50. (c) Neural
network is saturated when A = 0.2. (d) µ = 0.1. (e) µ = 5. (f) Neural network is saturated when
µ = 10.

6. Conclusions

In this paper, an innovative fish-inspired foraging approach of swarm robots is pro-
posed to forage targets in complex environments. The proposed approach employs a BINN
coupled with an SOM algorithm to enable the swarm robots to mimic fish-like patterns
such as collision-free movement and dynamic sub-group behavior. The swarm robots are
able to reconfigure their movements in response to environmental changes. The foraging
process is similar to the versatility and resilience seen in fish foraging. The simulation
results indicate enhanced cooperation, efficiency, and adaptability in different scenarios.
The proposed approach provided an effective integration of fish-inspired strategies with
neurodynamic and swarm intelligence models, which can provide insights for future bio-
inspired algorithms and robotic systems. Future work will consider integrating real sensor
data to design more intelligent foraging algorithms suitable for increasingly complex and
uncertain environments, such as underwater or disaster scenarios. In addition, future
work will also apply the proposed approach in real-robot platforms to achieve practical
applications, such as pollution detection, search and rescue operations, and biological
studies in marine environments.
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