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Abstract: Customer churn prediction (CCP) implies the deployment of data analytics and machine
learning (ML) tools to forecast the churning customers, i.e., probable customers who may remove
their subscriptions, thus allowing the companies to apply targeted customer retention approaches
and reduce the customer attrition rate. This predictive methodology improves active customer man‑
agement and provides enriched satisfaction to the customers and also continuous business prof‑
its. By recognizing and prioritizing the relevant features, such as usage patterns and customer
collaborations, and also by leveraging the capability of deep learning (DL) algorithms, the telecom
companies can develop highly robust predictive models that can efficiently anticipate and mitigate
customer churn by boosting retention approaches. In this background, the current study presents
the Archimedes optimization algorithm‑based feature selection with a hybrid deep‑learning‑based
churn prediction (AOAFS‑HDLCP) technique for telecom companies. In order to mitigate high‑
dimensionality problems, the AOAFS‑HDLCP technique involves the AOAFS approach to optimally
choose a set of features. In addition to this, the convolutional neural network with autoencoder
(CNN‑AE) model is also involved for the churn prediction process. Finally, the thermal equilibrium
optimization (TEO) technique is employed for hyperparameter selection of the CNN‑AE algorithm,
which, in turn, helps in achieving improved classification performance. A widespread experimen‑
tal analysis was conducted to illustrate the enhanced performance of the AOAFS‑HDLCP algorithm.
The experimental outcomes portray the high efficiency of the AOAFS‑HDLCP approach over other
techniques, with a maximum accuracy of 94.65%.

Keywords: bio‑inspired algorithms; telecom industry; feature selection; metaheuristics; churn
prediction

1. Introduction
Telecommunications has become one of the most large‑scale industries in developed

countries. The technological developments and a large number of operators increase the
range of challenges encountered by the industry [1]. Companies are actively working to
survive in this competitive market, for which several approaches are being followed [2].
In order to generate high revenues, three key policies are followed, such as gaining new
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customers, promoting the existing customers, and raising the retention time of the cus‑
tomers. Comparing these policies and taking the return on investment (RoI) cost of all into
account, it can be inferred that the third policy is the most profitable approach [3], since
retaining a present customer costs considerably less than gaining a new one. Further, it
is also regarded as a simple task compared to the upselling plan. In order to implement
the third policy, companies need to reduce the ability of customer churn [4]. Alternatively,
the prediction of the customers who are likely to leave the network can help in retaining
the customer and, thus, indicates a possibly massive increase in profit if it is implemented
in the early phase [5]. Various studies have established that the machine learning (ML)
technique is extremely effective in predicting the churning customers. This approach is
implemented based on the knowledge gained from prior data [6].

Big data tasks can be performed easily with the help of artificial intelligence (AI) tech‑
nology without much effort from the sales and customer support teams [7]. So, it is crucial
to incorporate the AI in financial activities that contain social marketing, sales, customer
relationship management (CRM), and so on to effectively attract the customers and gain
their trust. Since AI is a significant part of social networks and other electronic market‑
ing sites, it is crucial to understand how to utilize, change, and execute these sites in an
efficient manner [8]. Customer behavior analysis seriously affects the social networking
and other marketing actions of the company by permitting highly customized and predic‑
tive marketing activities. By analyzing the customer data, the companies increase their
vision on what can resonate with their viewers [9]. Businesses employ such data to en‑
gage in highly efficient social media and marketing activities. It can successively result in
greater customer support and conversion rates. Also, the deep learning (DL) techniques
can support companies in terms of optimization and automation of their promotional activ‑
ities, thus saving resources and time, while it also enhances the firm’s overall effectiveness.
Recently, metaheuristic algorithms [10] have been widely used for hyperparameter tun‑
ing of the DL models. A few such metaheuristics include monarch butterfly optimization
(MBO) [11], slime mold algorithm (SMA) [12], moth search algorithm (MSA) [13], hunger
games search (HGS) [14], Runge Kutta method (RUN) [15], colony predation algorithm
(CPA) [16], weighted mean of vectors (INFO) [17], Harris hawks optimization (HHO) [18],
rime optimization algorithm (RIME) [19], etc.

In this background, the current study introduces the Archimedes optimization algori
thm‑based feature selection with hybrid deep‑learning‑based churn prediction (AOAFS‑
HDLCP) technique for telecom companies. The objective of the proposed AOAFS‑HDLCP
method is to predict the churning customers so as to increase the customer retention ac‑
tivities in the telecom industry. In the presented AOAFS‑HDLCP technique, the AOAFS
approach is intended to choose an optimal set of features. It has the following benefits, i.e.,
fast convergence rate and a fine balance between local and global search capacity, while
resolving continuing problems. The current study involves the convolutional neural net‑
work with an autoencoder (CNN‑AE) model for churn prediction. Further, the thermal
equilibrium optimization (TEO) technique has been applied to the hyperparameter tuning
method to boost the outcomes of the CNN‑AE model. An extensive experimental analy‑
sis was conducted to illustrate the enhanced performance of the AOAFS‑HDLCP method.
Briefly, the major contributions of this research are given below:

• An intelligentAOAFS‑HDLCPmethod includingAOAFS,CNN‑AE classification, and
TEO‑based hyperparameter tuning is introduced for churn prediction. The AOAFS‑
HDLCP method does not exist in the literature to the best of the authors’ knowledge.

• The AOAFS method is designed to detect the essential attributes from the telecom
industry’s complex datasets, thus enhancing the efficiency and effectiveness of the
churn prediction process.

• The CNN‑AE model is employed for the churn prediction process, which represents
a significant contribution to the research community. It can capture intricate patterns
and relationships in the data, thus potentially improving the accuracy of churn pre‑
diction compared with the rest of the traditional approaches.
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• A TEO technique has been developed to fine‑tune the model parameters of the CNN‑
AE model in an effective manner so as to optimize the performance in terms of pre‑
dicting customer churn.

2. Related Works
The authors in the literature [20] introduced the AI with Jaya optimization algorithm

(JOA)‑based churn prediction for data exploration (AIJOA‑CPDE) method. In this algo‑
rithm, a primary step of feature selection was introduced by employing the JOA approach
for the selection of feature sets. The proposed system utilized a bidirectional LSTM (BLS
TM) algorithm for churn prediction. Finally, the chicken swarm optimization (CSO)metho
d was applied in this study for hyper‑parameter optimization. Kozak et al. [21] consid‑
ered customer churnmanagement to validate the efficiency of swarm intelligence machine
learning (SIML) techniques. The aims of this study were of two‑fold: for the existence
of particular features and the objective in customer churn management and validating
whether the adapted SIML technique increased the efficiency of churn‑related segmenta‑
tion and decision‑making method. Saha et al. [22] studied ensemble learning approaches,
namely, xgboost (XGB), bagging and stacking, Adaboost, gradient boosting (GBM), ex‑
tremely randomized tree (ERT), and random forest (RF), standard classification algorithms,
such as LR, ANN, DT, and KNN, and the DL‑CNN approach in order to select the best
method for developing the CCP technique.

In the literature [23], the authors developed the dynamic customer churn prediction
(CCP) method for business intelligence by applying text analytics with a metaheuristic op‑
timizer (CCPBI‑TAMO)method. Additionally, the LSTMwith stacked AE (LSTM‑SAE) al‑
gorithm was also implemented for the classification of the feature‑minimized data.
Faritha Banu et al. [24] suggested the AI‑based CCP for Telecommunication Business Mar‑
kets (AICCP‑TBM) method in which the chaotic SSO‑based FS (CSSO‑FS) algorithm was
utilized for selecting the superior feature set. Additionally, the fuzzy‑rule‑based classifier
(FRC) was exploited for differentiating the non‑churn customers and churners. The quan‑
tum behaved particle swarm optimization (QPSO) approach was applied in this study to
select the membership roles for the FRC algorithm.

In the study conducted earlier [25], the stacked bidirectional LSTM (SBLSTM) and
RNN models were developed for AOA from CCP. The aim of the presented approach
was to forecast the existence of customer churn from the insurance company. Primarily,
the AOA approach conducted the preprocessing of the data to change the new data into
a valuable format. Moreover, the SBLSTM‑RNN algorithm was utilized in this study for
distinguishing the churn and non‑churn customers. In the literature [26], the authors cre‑
ated an ML approach that can forecast the effective churn for the telecom companies. The
outcomes can be used in an appropriate manner, i.e., use marketing retention approaches
to retain the customers as and when time passes. In this method, the authors employed
recent databases and made use of preprocessing systems such as bivariate and univariate
analyses and employed data visualization methods to understand the database correctly.
Alshamari [27] intended to analyze and measure the user approval for the services ren‑
dered by the Saudi Telecom Company (STC), Mobily, and Zain. This kind of SA has been
a dominant parameter and has been utilized to create a significant business decision in
enhancing the satisfaction as well as the loyalty of the customers. In this case, the author
established new approaches based on DL technique for analyzing the percentage of cus‑
tomer satisfaction using the openly accessible database, i.e., AraCust.

The existing literature on CCP hasmade significant strides in leveraging bothML and
DL techniques to identify the potential churners. However, a notable research gap persists
in adequately addressing the critical aspects of feature selection and hyperparameter tun‑
ing within this context. Though comprehensive studies have been conducted earlier on
individual aspects of CCP, the simultaneous consideration of feature selection and hyper‑
parameter tuning remains an underexplored territory. Feature selection plays an impor‑
tant role in improving the efficacy of themodel by detecting themost informative variables,



Biomimetics 2024, 9, 1 4 of 17

thus reducing both noise and computation. At the same time, hyperparameter tuning is
crucial for fine‑tuning the model’s performance and generalization. The synergy between
these two crucial aspects can potentially yield highly efficient and accurate churn predic‑
tion methods. However, the existing research often overlooks this synergy, thus resulting
in suboptimal predictive abilities. Bridging this research gap is a vital element to unlock
the maximum potential of CCP algorithms. This can further offer the businesses highly
efficient mechanisms for customer retention and improved decision‑making processes in
extremely competitive industries.

3. The Proposed Model
In this article, the AOAFS‑HDLCP system has been proposed for churn prediction

in the telecom industry. The objective of the AOAFS‑HDLCP method is to obtain churn
prediction so as to increase the customer retention in the telecom industry. In the presented
AOAFS‑HDLCP technique, the AOAFS approach, CNN‑AE classification, and TEO‑based
hyperparameter tuning are introduced. Figure 1 exhibits the working procedure of the
AOAFS‑HDLCP approach.
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3.1. Stage I: Feature Selection Using AOA
In this study, the AOA is designed to choose the optimum feature set. The funda‑

mental condition of AOA is based on Archimedes’ physical law of buoyancy [28]. AOA is
an effective model for the optimization process since it can balance the tradeoff between
exploration and exploitation phases, thus making it suitable for managing difficult and
multidimensional search spaces. Inspired by the Archimedes’ principle of buoyancy, the
AOAmethod formulates an effective way for its searchingmechanism based on the fitness
landscape, thus enabling effective convergence towards the optimal solution. It is highly
adaptable, integrated to the ability of escaping the local minima and well suited for ad‑
dressing real‑world problems across various domains. Since the feature selection process
identifies highly relevant features, the AOA’s adaptability and capacity to discern informa‑
tive features from amultitude of possibilities prove to be invaluable. With dynamic adjust‑
ment of the searching process based on the dataset characteristics, the AOA performs well
in the detection of optimum feature subsets. It results in improved model interpretability,
reduced computational complexity, and improved generalization performance.

AOA is a newmetaheuristic algorithm, derived from the Archimedes’ principle. Sim‑
ilar to other population‑based metaheuristic techniques, the AOA technique begins its
search method with an initial population and a random volume, density, and acceleration.
Following is the list of steps followed in AOA method.

Step 1. Initialize the population location, volume, density, and acceleration using the
following Equation (1):

Xi = lbi + rand × (ubi − 1bi); i = 1, 2, . . . , N,
acci = lbi + rand × (ubi − 1bi); i = 1, 2, . . . , N,

deni = rand (N, D)
voli = rand (N, D)

(1)

where the population number and dimension of the search range are N and D, respectively.
The ith object in the N population is Xi. The lower and upper limitations of the search range
are lbi and ubi, respectively. N × D dimensional matrix that can be calculated randomly
by the system function is denoted by rand(N, D). Volume, density, and acceleration of
the ith object are voli, denj, and acci, correspondingly. Next, the individual Xbest with the
optimum fitness value and the respective accbest, denbest, and volbest are chosen [29].

Step 2. Upgrade the density and volume of the (t + 1)th iteration of the ith objectas
given below.

dent+1
i = dent

i + rand ×
(
denbest − dent

i
)
,

volt+1
i = volti + rand ×

(
volbest − volti

)
,

(2)

In Equation (2), the global optimum values of density and volume are denoted by
denbest and volbest, correspondingly.

Step 3. Compute the density decline factor d and the parameter TF, which creates a
balance between global and local convergence capability of the AOA method.

TF = exp
(

t − tmax
tmax

)
, (3)

In Equation (3), the maximum and the existing iterations are denoted by tmax and t,
respectively. Here, TF rises with the iteration number, until TF = 1.

dt+1 = exp
(

tmax − t
tmax

)
−
(

t
tmax

)
, (4)

In Equation (4), as the iteration number increases, d reduces and the search is trans‑
ported to the bounded area that has been detected [30].



Biomimetics 2024, 9, 1 6 of 17

Step 4. When TF ≤ 0.5, then the exploration and collision takes place between the
objects. Using the following equation, the acceleration is updated.

acct+1
i = denmr+volmr×accmr

dent+1
i +volt+1

i
,

mr = rand,
(5)

In Equation (5), acceleration, volume, and density of the ith individual at (t + 1)th
iteration are denoted by ct+1

i , volt+1
i , and dent+1

i , correspondingly. The ct+1
i , volt+1

i , and
dent+1

i of the random individuals are denoted by accmr, denmr, and volmr, correspondingly.
When TF > 0.5, the exploitation stage and no collision between the objects takes place.

So, the acceleration is updated as given below.

acct+1
i =

denbest + volbest × accbest

dent+1
i + volt+1

i

, (6)

Next, using the following equation, the acceleration is normalized.

acct+1
i,norm = u ×

acct+1
i −min(acc)

max(acc)−min(acc)
+ l, (7)

In Equation (7), the range of normalization and fixed value at 0.9 and 0.1 are u and l,
correspondingly. The step percentage of each agent change is acct+1

i,norm. When the object i
is far from the global optima, then acct+1

i,norm value would be higher, which implies that the
object is in the exploration stage.

Step 5. When TF ≤ 0.5, then the location of the population X is updated using the
equation below.

Xt+1
i = Xt

i + C1 × rand × acct+1
i,norm × d ×

(
Xrand − Xt

i
)
, (8)

In Equation (8), C1 is a constant equivalent to 2. Or else, when TF > 0.5, the location
of the population X is updated using Equation (9):

Xt+1
i = Xt

best + F × C2 × rand × acct+1
i,norm × d ×

(
T × Xbest − Xt

i
)
, (9)

Here, C1 is a constant equivalent to 6. T = C3 × TF; T rises with time. The parameter
F changes the movement’s direction and is evaluated by Equation (10):

P = 2 × rand − C4,

F =

{
+1, i f P ≤ 0.5,
−1, i f P > 0.5,

(10)

where C3 and C4 balance the direction of the movements to adjust the capability of the
model so as to escape the local optima.

Step 6. Evaluation. Based on the updated population, the individual with the optimal
fitness and their acceleration, density, and volume are selected. The procedure is reiterated
until the maximal iteration is obtained [31].

The FF of theAOA‑FS technique considers the classification outcomes and the amount
of features selected. It diminishes the set size of the selected features and increases the
classification outcomes. Hence, the FF is used for evaluating the individual solutions:

Fitness = α ∗ ErrorRate + (1 − α) ∗ #SF
#All_F

, (11)

In Equation (11), ErrorRate implies the classifier error rate based on the selected fea‑
tures. ErrorRate is estimated as a percentage of incorrect classification to the amount of
classifications made in the range of [0,1]. #SF shows the number of features selected and
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#All_F denotes the total quantity of features in the original dataset. α controls the promi‑
nence of classification quality and the subset length. α is fixed as 0.9 in the current study.

3.2. Stage II: Churn Prediction Using CNN‑AE Model
The CNN‑AEmodel is used for churn prediction. CNNmodel is a kind of DLmethod

and is one of the state‑of‑art techniques for CV applications, owing to its considerable
benefits [32]. CNN technique has a primary benefit, i.e., feature learning, and it can extract
and learn relevant features. Due to its deep architecture, the CNN technique also learns
from abundant datasets. Feature extraction is a main and challenging problem for pattern
prediction. The features are highly essential since they represent the image properties.
CNN is aDL approach used for the extraction of features that give a self‑learning layer. The
component in the encoded vector does notmean to encode a single feature. In the decoding
network,masses of parameters existwhile a combination could encode and construct a vast
number of features. Thus, the CNN‑AE technique is used to implement the unsupervised
learning for dimension reduction and feature extraction. The distance between the vectors
is muchmore rapid to compute since the smaller feature is projected to be a low dimension.
Figure 2 demonstrates the infrastructure of the CNN‑AE model.
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CAE has a similar structure to CNN that comprises pooling layers and convolutional
filters. However, the only difference between CNN and CAE is that both input and output
nodes have equal dimensions inCAE. The recreated data are compared to the input dataset.
The learning method is not reliant on the labeled dataset. The CNN‑AE is a category of
unsupervised learningmethod, while CNN is a kind of DLmethodwithmultiple convolu‑
tional layers. It is primarily exploited for feature extraction process and image processing
tasks [33]. CAE uses a convolution operator for encoding the input features and replicating
them in the output with aminimal amount of reconstructed errors. CAE consists of output
layer m feature maps and m convolution kernels. The input mapping feature is generated
from the input layer while n corresponds to the number of input channels. The hidden
depiction of CAE of the kth feature map in the encoder is described using Equation (12),
where σ denotes the activation function and ∗ indicates the 2D convolution. In the de‑
coder, the reconstruction is described using a subsequent equation, where H shows the
hidden feature maps and c denotes the bias as per the input channel [34].

hk = σ
(

x ∗ Wk + bk
)

, (12)
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y = σ

(
∑
kϵH

hk ∗
∼
W

k
+ c

)
(13)

3.3. Stage III: Parameter Tuning Using the TEO Method
Ultimately, the TEO has been implemented in the current study for fine‑tuning the pa‑

rameters, compared to theCNN‑AE architecture. The target of hyperparameter selection is
critical for fine‑tuning the configuration of theCNN‑AE technique. Optimumhyperparam‑
eters considerably impact the effectiveness of the model, while they also affect the model’s
capability for effectually taking complex features and generalizing them. By implement‑
ing the TEO technique, the research goal is to proficiently direct the hyperparameter space
and enhance the capabilities of CNN‑AEs in the context of CCP within the telecom indus‑
try. The TEO method is inspired from the unique ability to represent the principles of
thermal equilibrium in physical systems, thus enabling a robust analysis of the hyperpa‑
rameter space. The TEO system provides different benefits in the optimization process,
mainly in hyperparameter tuning for the DL models. Inspired from the principles of ther‑
mal equilibrium, the TEO technique strikes an active balance between the exploration and
exploitation phases. Thus, it can navigate complex solution spaces, mimic physical meth‑
ods, provide greater convergence and solution quality, and can be combined with local
and global search approaches. The versatility and efficiency of the TEO method make it
a favorable choice for fine‑tuning the hyperparameters in architectures, namely CNN‑AE.
Further, it is also applicable in case of CCP in the telecom industry, where it yields an
enriched performance and can accomplish optimum configurations.

According to the Newton’s law of cooling, TEO is a novel optimization technique,
which describes that the rate of heat loss for an object is directly proportionate to the
temperature difference between the object and its surrounding environments at a certain
point [35]. In the current research work, some search agents are represented as reference,
while some as recognized nodes (cooling objects). Unrecognized NLOS nodes or nodes,
on the other hand, are represented as environment. The heat exchange between the envi‑
ronment and the cooling objects is mathematically modelled as follows:

Tc−env
i = (1 − (cv1 + cv2 ∗ (1 − NCI) ∗ rnd)) ∗ Tp−env

i (14)

NCI =
CIN

MaxIter
(15)

Tp−env
i and Tx−env

i represent the earlier and the modified temperatures of the environ‑
ment’s objects, respectively, with cv1 and cv2 being considered as the variables used for
controlling the prediction or localization operations, correspondingly [36]. Furthermore,
CIN and MaxIter refer to the existing and the maximum iteration counts. In addition to
this, the initial phase of the TEO optimization technique updates the temperature of the
objects and their surrounding environments as given below.

Tnew−env
i = Tx−env

i +
(

Told−env
i − Tx−env

i

)
∗ e−βNCI (16)

β =
CosineNCI(Obi)

CosineNCI(Worst_Obj)
(17)

Now, the rnd value is compared to the predefined prevention threshold that has been
implemented earlier for randomly selecting a single dimension of the ith searching agent
to restore its value based on Equation (18):

Ti,j = Ti,Min + rnd ∗
(
Tj,Max − Tj,Min

)
(18)
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In Equation (18), Tj represents the jth variable of the ith searching agent, with T, Min
and T,Max correspondingly indicating the lower and upper thresholds of the jth vari‑
able [37]. Fitness selection has been an essential component in the TEO methodology. An
encoder solution is applied to estimate the outcome of the solution candidate. Therefore,
the accuracy value is the foremost form applied for designing the FF.

Fitness = max
(

TP
TP + FP

)
(19)

Here, the true and false positive values are denoted by TP and FP, respectively.

4. Results and Discussion
The developed method was validated using the Python 3.8.5 tool on a PC configured

with i5‑8600k, GeForce 1050Ti 4 GB, 16 GB RAM, 250 GB SSD, and 1 TB HDD specifica‑
tions. Diverse Python Packages were implemented, namely opencv‑python, numpy, mat‑
plotlib, tensorflow (GPU‑CUDA Enabled), keras, pickle, sklearn, and pillow. The CCP
performance of the AOAFS‑HDLCP technique was investigated using the customer churn
prediction: Telecom Churn Dataset [38], including 3,333 data instances with 21 attributes
as described in Table 1. The dataset was downloaded from the Kaggle repository.

Table 1. Details of the database.

Class No. of Samples

Churn 483
Non‑Churn 2850
Total Samples 3333

The set of measures, used for examining the classification outcomes, are accuracy
(accuy), precision (precn), recall (recal), and F‑score (Fscore).

Precn =
TP

TP + FP
(20)

Precision is used to measure the proportion of the predicted positive instances out of
each instance that is predicted as positive.

Recal =
TP

TP + FN
(21)

Recall is used to measure the proportion of the positive samples classified.

Accuy =
TP + TN

TP + TN + FP + FN
(22)

Accuracy is used to measure the proportion of the classified samples (positive and
negative) against the overall samples classified.

Fscore =
2TP

2TP + FP + FN
(23)

F‑score combines the harmonic mean of precn and recal .
The confusion matrices generated by the AOAFS‑HDLCP method on 90:10 and 80:20

of the TRS/TSS datasets are demonstrated in Figure 3. The outcomes portray the effectual
recognition of the proposed model in terms of churn and non‑churn samples on all the
class labels.
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The CCP outcomes of the AOAFS‑HDLCP method under 90:10 and 80:20 of the TRS
/TSS datasets are shown in Table 2. The simulation values demonstrate that the AOAFS‑
HDLCP method categorized the churn and non‑churn samples effectively. With 90% TRS,
the AOAFS‑HDLCP model provided an average accuy of 93.58%, precn of 96.63%, recal
of 93.58%, Fscore of 95.03%, and an AUCscore of 93.58%. In addition, with 10% TSS, the
AOAFS‑HDLCP technique offered an average accuy of 90.59%, precn of 94.89%, recal of
90.59%, Fscore of 92.59%, and an AUCscore of 90.59%. Also, with 80% TRS, the AOAFS‑
HDLCP model yielded an average accuy of 90.62%, precn of 93.88%, recal of 90.62%, Fscore
of 92.15%, and an AUCscore of 90.62%. At last, with 20% TSS, the AOAFS‑HDLCP method
accomplished an average accuy of 92.01%, precn of 94.34%, recal of 92.01%, Fscore of 93.13%,
and an AUCscore of 92.01%.
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Table 2. CCP outcomes of the AOAFS‑HDLCP method on 90:10 and 80:20 of TRS/TSS datasets.

Class Accuy Precn Recal Fscore AUCscore
Training Phase (90%)
Churn 87.90 95.30 87.90 91.45 93.58
Non‑Churn 99.26 97.96 99.26 98.60 93.58
Average 93.58 96.63 93.58 95.03 93.58
Testing Phase (10%)
Churn 82.22 92.50 82.22 87.06 90.59
Non‑Churn 98.96 97.28 98.96 98.11 90.59
Average 90.59 94.89 90.59 92.59 90.59
Training Phase (80%)
Churn 82.69 90.65 82.69 86.49 90.62
Non‑Churn 98.55 97.10 98.55 97.82 90.62
Average 90.62 93.88 90.62 92.15 90.62
Testing Phase (20%)
Churn 85.42 91.11 85.42 88.17 92.01
Non‑Churn 98.60 97.57 98.60 98.08 92.01
Average 92.01 94.34 92.01 93.13 92.01

The confusion matrices generated by the AOAFS‑HDLCP system on 60:40 and 70:30
TRS/TSS datasets are illustrated in Figure 4. The outcomes indicate the effectual prediction
of the proposed model in terms of churn and non‑churn samples under all the classes.
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The CCP outcomes of the AOAFS‑HDLCP system at 60:40 and 70:30 TRS/TSS datasets
are shown in Table 3. The achieved outcomes indicate that the proposed AOAFS‑HDLCP
technique categorized the churn and non‑churn samples in an effective manner. With 60%
TRS, the AOAFS‑HDLCP method provided an average accuy of 87.18%, precn of 96.83%,
recal of 87.18%, Fscore of 91.21%, and an AUCscore of 87.18%. In addition, with 40% TSS,
the AOAFS‑HDLCP method yielded an average accuy of 91.58%, precn of 97.70%, recal
of 91.58%, Fscore of 94.33%, and an AUCscore of 91.58%. Also, with 70% TRS, the AOAFS‑
HDLCP method produced an average accuy of 93.09%, precn of 96.64%, recal of 93.09%,
Fscore of 94.76%, and an AUCscore of 93.08%. At last, with 30% TSS, the AOAFS‑HDLCP
method accomplished an average accuy of 94.65%, precn of 96.92%, recal of 94.65%, Fscore
of 95.74%, and an AUCscore of 94.65%.

Table 3. CCP outcomes of the AOAFS‑HDLCP method on 60:40 and 70:30 of TRS/TSS datasets.

Class Accuy Precn Recal Fscore AUCscore
Training Phase (60%)

Churn 74.65 97.70 74.65 84.63 87.18

Non‑Churn 99.71 95.96 99.71 97.80 87.18

Average 87.18 96.83 87.18 91.21 87.18

Testing Phase (40%)

Churn 83.42 98.22 83.42 90.22 91.58

Non‑Churn 99.74 97.17 99.74 98.43 91.58

Average 91.58 97.70 91.58 94.33 91.58

Training Phase (70%)

Churn 86.88 95.51 86.88 90.99 93.09

Non‑Churn 99.30 97.77 99.30 98.53 93.09

Average 93.09 96.64 93.09 94.76 93.09

Testing Phase (30%)

Churn 90.00 95.45 90.00 92.65 94.65

Non‑Churn 99.30 98.39 99.30 98.84 94.65

Average 94.65 96.92 94.65 95.74 94.65

Both TR_accuy andVL_accuy outcomes of theAOAFS‑HDLCPmethodology for 70:30
TRS/TSS dataset are illustrated in Figure 5. The TL_accuy is evaluated by estimating the
AOAFS‑HDLCP system on the TR data, while VL_accuy is determined by the assessment
of the proposed method using test data. The simulation values show that both TR_accuy
and VL_accuy values increase with the maximum number of epochs. Hereafter, the effec‑
tiveness of the AOAFS‑HDLCP method increases on the TR and TS data with an increase
in the number of epochs.

The TR_loss and VR_loss outcomes of the AOAFS‑HDLCP model under 70:30 of the
TRS/TSS are shown in Figure 6. The TR_loss represents the error between the predic‑
tion performance and original values at the TR dataset. The VR_loss denotes the perfor‑
mance evaluation of the AOAFS‑HDLCP method on the validation dataset. The simula‑
tion value demonstrates that both TR_loss and VR_loss tend to reduce with an increase
in the number of epochs. This provides the superior outcome of the AOAFS‑HDLCP
algorithm and its ability to produce accurate classification. The minimized TR_loss and
VR_loss values reveal the high efficiency of the AOAFS‑HDLCP system in capturing pat‑
terns and correlations.
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A wide range of PR analysis was conducted upon the AOAFS‑HDLCP model upon
the 70:30 TRS/TSS dataset and the results are shown in Figure 7. The simulation values
infer that the AOAFS‑HDLCP approach produced the maximum PR values. Additionally,
the AOAFS‑HDLCP technique attained the maximum PR performance in all the classes.
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Table 4 shows the results of the comparison analysis conducted between the proposed
AOAFS‑HDLCP method and the existing methods [20,39,40]. The experimental values in‑
fer that the DR and LR models exhibited poor results, whereas the SVM, SGD, and RM‑
SProp approaches achieved slightly increased performance.

Table 4. Comparison analysis outcomes of the AOAFS‑HDLCP technique with other approaches
[20,39,40].

Methods Accuy Precn Recal Fscore AUCscore
AOAFS‑HDLCP 94.65 96.92 94.65 95.74 94.65
AIJOA‑CPDE 91.28 95.52 91.29 94.08 91.29
Logistic Regression 80.53 79.31 80.44 79.05 82.18
Decision Tree 76.67 56.78 75.68 64.97 78.25
ISMOTE‑OWELM 90.48 91.65 89.39 89.64 89.85
SVMModel 84.29 84.54 83.99 85.59 83.98
SGD Model 84.41 86.10 85.81 84.32 84.80
RMSProp Model 87.35 85.18 85.19 85.07 86.27

Along with that, the AIJOA‑CPDE approach illustrated reasonable outcomes with an accuy of 91.28%, precn of
95.52%, recal of 91.29%, Fscore of 94.08%, and an AUCscore of 91.29%. However, the AOAFS‑HDLCP technique
gained the maximum performance with an accuy of 94.65%, precn of 96.92%, recal of 94.65%, Fscore of 95.74%, and
an AUCscore of 94.65%. Therefore, the AOAFS‑HDLCP technique can be applied for accurate CCP process.

5. Conclusions
In the current study, the AOAFS‑HDLCP technique has been introduced for churn

prediction in the telecom industry. The objective of the presented method is to accomplish
churn prediction so as to increase the customer retention process in the telecom industry.
In the presented technique, the AOAFS approach, CNN‑AE classification, and TEO‑based
hyperparameter tuning have been developed. In the current research work, the AOAFS is
designed to choose an optimal set of features. The CNN‑AE model has been involved in
churn prediction process. The TEO technique has been applied to the hyperparameter tun‑
ing process to optimize the outcomes of the CNN‑AE system. A widespread experimental
analysis was conducted to illustrate the superior performance of the AOAFS‑HDLCP ap‑
proach. The achieved findings portray the significant performance of the AOAFS‑HDLCP
method over other techniques, with an improved accuracy of 94.65%. In the future, studies
can focus on handling outlier removal and class imbalance data handling problems.
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