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Abstract: This research investigates the implementation of complex-exponential-based neurons in
FPGA, which can pave the way for implementing bio-inspired spiking neural networks to compensate
for the existing computational constraints in conventional artificial neural networks. The increasing
use of extensive neural networks and the complexity of models in handling big data lead to higher
power consumption and delays. Hence, finding solutions to reduce computational complexity is
crucial for addressing power consumption challenges. The complex exponential form effectively
encodes oscillating features like frequency, amplitude, and phase shift, streamlining the demanding
calculations typical of conventional artificial neurons through levering the simple phase addition of
complex exponential functions. The article implements such a two-neuron and a multi-neuron neural
model using the Xilinx System Generator and Vivado Design Suite, employing 8-bit, 16-bit, and 32-bit
fixed-point data format representations. The study evaluates the accuracy of the proposed neuron
model across different FPGA implementations while also providing a detailed analysis of operating
frequency, power consumption, and resource usage for the hardware implementations. BRAM-based
Vivado designs outperformed Simulink regarding speed, power, and resource efficiency. Specifically,
the Vivado BRAM-based approach supported up to 128 neurons, showcasing optimal LUT and
FF resource utilization. Such outcomes accommodate choosing the optimal design procedure for
implementing spiking neural networks on FPGAs.

Keywords: spiking neural networks; neural encoding; complex exponential neuron; FPGA
implementation

1. Introduction

Spiking neural networks (SNNs) represent a promising approach for information
encoding, where the firing rate or number of spikes within a certain time period reflects the
oscillation properties of biological neurons. In this context, recent research has proposed
a mathematical model based on complex exponential neurons [1] that provides a means
of encoding and decoding information in artificial neural network systems by leveraging
their oscillation features, such as frequency, phase, and amplitude. The model offers a
significant advantage over existing approaches as it enables the simplification of complex
calculations involving convolution and multiplication to phase addition, which enhances
the computational efficiency and performance of artificial neural networks.

The findings of this research are particularly relevant in the context of embedded
system design, where there is a need to achieve high precision of neural network output
while dealing with limited hardware resources [2,3], such as memory and computational
capacity. Thus, this research highlights a promising avenue for improving the performance
and efficiency of spiking neural networks, which is a critical factor in enabling their
adoption in real-world applications.
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1.1. Related Work

In this literature review section, we present a comprehensive overview of recent ad-
vancements in the field of neural network models based on complex exponential functions.
One notable research study introduced the construction of a spiking neural network (SNN)
model and its hardware accelerator using FPGA utilizing spiking exponential functions [4].
Another study delved into the implementation of a Multi-Valued Neuron (MVN) model [5],
also founded on complex exponential functions, highlighting how MVNs can significantly
enhance the functionality of individual neurons. Moreover, a recent investigation focused
on MVNs introduced a novel derivative-free convolutional neural network [6] learning
algorithm, demonstrating its efficacy in accelerating the learning process while improv-
ing generalization capabilities. Remarkably, it is worth noting that, to date, there has
been a dearth of hardware accelerators designed to facilitate neural network inference
based on these innovative models. The inherent simplicity of derivative-free learning algo-
rithms presents an exciting opportunity to explore the development of dedicated hardware
accelerators for neural network learning.

Considerable effort has been devoted to the hardware implementation of spiking neu-
ral networks, with a particular focus on FPGA-based and Application-Specific Integrated
Circuit (ASIC) systems [7,8]. The paper presented in [9] describes the implementation of
a spiking neural network model on a Xilinx FPGA evaluation board, utilizing a hybrid
updating algorithm that combines conventional time-stepped updating and event-driven
updating techniques, while using 16-bit signed fixed-point number representation. Their
model consisted of 16,384 neurons and 16.8 million synapses and achieved an accuracy of
97.06% on the MNIST dataset classification task with a power consumption of only 0.477 W.

Another study [10] presents S2N2, a streaming accelerator for spiking neural networks
that efficiently supports axonal and synaptic delays, utilizes binary tensors for address-
ing events, and achieves a minimum tick-resolution of 30 ns with over three orders of
magnitude reduction in input buffer memory utilization.

The study in [11] proposed a holistic optimization framework for encoder, model,
and architecture design of FPGA-based neuromorphic hardware, which includes an efficient
neural coding scheme, training algorithm, and flexible SNN model represented as a network
of IIR filters, achieving state-of-the-art accuracy and outperforming various platforms in
terms of latency and throughput.

In [12], a simplified Leaky integrate-and-fire neuron model is used to develop an effi-
cient SNN on Xilinx Virtex 6 FPGA. In a recent study [13], deep convolutional spiking neural
networks (DCSNNs) were successfully implemented on low-power FPGA devices, where
two backpropagation techniques were compared for object classification tasks. Additionally,
another recent work [14] focuses on developing a customizable hardware accelerator for
neural network inference models, specifically building a convolutional neural network
on an FPGA. This study showcases substantial reductions in power consumption when
compared to running the same convolutional neural network model on a laptop processor.

Also, [15] outlines an optimization scheme aimed at improving the performance of
the SNN by adjusting biological parameters and then proceeds to implement the SNN on
FPGA using the Euler and third-order Runge–Kutta (RK3) methods.

Lastly, implementing complex exponential functions is a crucial part of this project,
and it has been developed in many research studies in various ways on FPGA, including
polynomial approximation, interpolation, lookup-table-based methods [16], CORDIC IP
core [17], two-dimensional interpolation [18], and floating-point implementation [19].
However, these methods often consume a significant amount of FPGA logic cells, such as
lookup tables (LUTs) and D flip-flops. Fortunately, most FPGAs have block random access
memory (BRAM) [20], which can be utilized to implement complex exponential functions
and save considerable FPGA resources. This is particularly important for larger projects
like neural network development, where efficient resource utilization is crucial.

In this paper, a complex-exponential-function-based neuron model [1] is designed in
MATLAB Simulink using the Xilinx System Generator (SysGen) [21,22] and Xilinx Vivado
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Design Suite for FPGA implementation on a ZynQ xc7z020clg484-1 FPGA chip, and 8-bit,
16-bit and 32-bit fixed-point number representations are used for the model design.

Xilinx System Generator is an add-on feature for MATLAB Simulink that facilitates
using graphical block programming for architecture-level FPGA designs. Xilinx Vivado
is an integrated development environment (IDE) [23] for designing digital circuits for
Xilinx FPGA and system-on-chip (SoC) devices, supporting various design entry methods,
including graphical block diagram entry and HDL code entry.

1.2. Outline

The rest of the paper is structured into several key sections. Section 2 offers a mathe-
matical overview of the complex-exponential neuron model, elucidating its foundational
principles. Section 3 explores various implementation methods, including BRAM and
CORDIC-based designs, realized through Vivado and Simulink, with subsequent analysis.
Section 4 presents results and facilitates discussion based on simulations of these implemen-
tations. Lastly, Section 5 provides a summary of the research’s core findings and outlines
potential future directions, ensuring a logical and coherent flow throughout the paper.

2. Background
2.1. Mathematical Model

In the realm of complex numbers, a representation is often employed wherein a com-
plex number z = x + iy residing in the complex plane finds its expression as z = r · eiϕ in
the phase domain. This representation entails two essential components: the magnitude
(r), which serves as the vector’s length and is calculated as r = ex, and the phase angle
(ϕ), signifying the angle between the vector and the x-axis (ϕ = y). Furthermore, Euler’s
formula remarkably connects complex exponentials with trigonometric functions, mani-
festing as eiπ + 1 = 0, with a distinctive instance at ϕ = π, intricately bridging imaginary
numbers with the transcendental constants π and e. At the core of this representation lie
two fundamental equations:

|eiϕ| =
√

cos2 ϕ + sin2 ϕ = 1 (1)

unveiling the unit magnitude of eiϕ, and

eiϕ = cos ϕ + i sin ϕ; ¯eiϕ = cos ϕ − i sin ϕ (2)

illustrating the complex exponential and its complex conjugate. These equations
encapsulate the essence of complex number representation and its profound mathemati-
cal underpinnings.

In the phase plane, an oscillating neuron E(t) can be written by the complex exponential
form as

E(t) = eiωt+θ = eθeiωt = eθ(cos ωt + i sin ωt) (3)

where ω is the angular frequency, and the real component θ is used to make the
oscillation amplitude.

The synaptic weight can also be represented by the complex exponential form as
W = eiϕ, where ϕ represents the phase delay of the neural connection.

Therefore, a weighted input can be represented as

E(t)W = eiωt+θeiϕ = eθei(ωt+ϕ) (4)

In neural networks, weights act as scaling factors that adjust data as it passes between
connected neurons. Input to a neuron is the sum of outputs from previous layer neurons,
each weighted by its respective synaptic connection. This process drives information
transformation within the network. Pre-synaptic neurons are multiplied by their corre-
sponding weight and then summed up to the post-synaptic neuron. This summation (S)
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in the post-synaptic neuron can also be represented by a complex exponential form as in
Equation (7) [1].

S = E1W1 + E2W2 (5)

= eiω1t+θ1 eiϕ1 + eiω2t+θ2 eiϕ2 (6)

= eθ1 ei(ω1t+ϕ1) + eθ2 ei(ω2t+ϕ2) (7)

Three parameters, ω, θ, and ϕ, are used to calculate the weighted sum. This represen-
tation aligns with biological plausibility, where the synaptic weight signifies a phase delay
introduced to the input neuron’s oscillation, considering minimal signal attenuation over
short distances. In biological neural cells, a specialized structure known as myelin plays a
vital role in facilitating swift impulse transmission along axons, consequently enhancing
the speed of action potential propagation [24]. In this paper, the equation of the complex
exponential function is represented by eiϕ = cos ϕ + i sin ϕ.

In this analysis, we concentrate on a two-neuron neural network model. Additionally,
an in-depth exploration of paper [25], which investigates the complex exponential neuron
model and introduces and discusses a three-neuron neural network, including its stability
and oscillation conditions.

2.2. MATLAB Simulation Report

In the MATLAB Simulink, a weighted sum of two neurons model is designed as an
example for analyzing the complex exponential neural network. Figure 1 provides a com-
prehensive depiction of two weighted inputs and their combined weighted sum, plotted
individually. The temporal patterns reveal that weighted inputs introduce phase delays to
oscillating neurons while preserving their oscillation amplitude. However, the weighted
sum continues to oscillate periodically, but its amplitude is no longer constant; instead, it
exhibits periodic variations.

Figure 1. Weighted sum of two complex exponential neurons.
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Figure 2 shows the output of the weighted sum of two neurons E1W1 + E2W2 with
different parameter values mentioned in the examples below.

• Example 1 in Figure 2 (temporal plot I and polar plot I) shows the output of the
weighted sum of two neurons where ω1 = 1, ω2 = 2, θ1 = log(0.5), θ2 = log(1.5),
ϕ1 = π

2 , ϕ2 = π
3 are used.

• Example 2 (temporal plot II and polar plot II) all parameters of the weighted input
of two neurons remain the same except θ1 = log(1) is taken. This causes a change
in amplitude.

• Example 3, θ1 is changed to π
4 . This changes the phase and orientation of the

weighted sum.
• For example, 4 ω2 is set to 3; this dramatically changes the pattern of the weighted

sum, which is shown in the polar plot iv.

These four examples are used to demonstrate the effect of different parameters and
how changes of one parameters can distinctively change the oscillation patterns of the
output. Therefore, any of the parameters can be used to generate unique encoding pat-
terns [26].

Figure 2. Examples of the weighted sum of two complex exponential neurons with different parame-
ter values.

3. Methodology
3.1. Model Design in Simulink and Vivado

In this study, we present four different approaches to implement the weighted sum of
two neurons on an FPGA using the Xilinx System Generator (SysGen) of Matlab Simulink
and VHDL coding in Vivado Design Suite. The first approach involves utilizing block
random access memory (BRAM) HDL blocks to implement the complex exponential func-
tion of the weighted sum of two neurons in Matlab Simulink using SysGen. The second
approach employs BRAM IP cores and VHDL coding to develop the model in the Vivado
Design Suite. In the third approach, CORDIC HDL blocks from the Xilinx toolbox are used
in Matlab Simulink to implement the exponential function. Finally, the fourth approach uti-
lizes VHDL coding and CORDIC IP cores to implement the weighted sum of two neurons
in the Vivado Design suite.
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For each approach, three separate designs were implemented using 8-, 16-, and 32-bit
fixed-point data format configurations.

The weighted sum of two neurons requires several input parameters, including ω1, ω2,
θ1, θ2, ϕ1, ϕ2, and t. However, for the sake of simplicity, we kept all input parameters fixed
except for t across all four approaches. Specifically, we used the following fixed values:
ω1 = 1, ω2 = 2, θ1 = log(2), θ2 = log(2), ϕ1 = π

2 , and ϕ2 = π
2 . We varied the value of the

input parameter t within the range of -4 to 4 to cover a complete oscillation cycle.
The outputs of all the approaches were compared with the MATLAB simulation

output of Equation (7). The accuracy, latency, and resource utilization of each approach
were evaluated and compared to determine the most efficient approach for implementing
the weighted sum of two neurons on an FPGA.

Vitis Core Development kit version 2021.1, which includes MATLAB R2021a version
9.10.0.1602886, Xilinx System Generator, and Vivado 2021.1 (64-bit), is used to design, code,
and simulate the projects.

3.1.1. BRAM-Based Design (Using SysGen in MATLAB Simulink)

In the FPGA implementation of complex exponential neurons, a crucial task is to
implement the function ei∆. This is achieved by separately implementing the real and
imaginary components of the function, which are cos ∆ and i sin ∆, respectively. Therefore,
the real part of the complex exponential output is given by cos ∆, while the imaginary part
is given by sin ∆. Here, the ∆ is considered as input of the exponential function. In this
project, we utilize the periodicity of the cosine and sine functions, which have a period of
2π. Therefore, for any given angle θ, the values of cos(θ) and cos(θ + 2π) are the same.
The output of the cosine function is a value between −1 and 1, inclusive. To implement
the exponential function in BRAM, we consider the input range to be between −3.14 and
3.14 and the output range to be between −1 and 1 since the maximum and minimum
value of real (cos(θ)) and imaginary (sin(θ)) output is between 1 and −1. We set the input
resolution to a step size of 0.01, resulting in 629 equally spaced values in this range. This
approach simplifies the design and reduces the number of memory elements required to
implement the exponential function.

In BRAM-based design using the SysGen approach, to implement the complex expo-
nential function, a lookup table with input versus output data of cos and sin is mapped to
the block random access memory (BRAM) HDL block in MATLAB Simulink. The block
is configured as a fixed-point data format representation. Other graphical HDL blocks,
such as the adder, multiplexer, buffer, etc., are used to implement the weighted sum of two
complex exponential neurons shown in Figure 3.

Once the design is complete, an IP core is generated using the Xilinx System Generator
tool. This IP core is instantiated in Vivado IDE to perform behavioral simulation and
generate a hardware implementation report.

3.1.2. BRAM-Based Design in Vivado

In this approach, we utilized the Block Memory Generator tool (version 8.4) of Xilinx
LogiCORE to map the block random access memory (BRAM) to implement the complex
exponential function in Vivado IDE. To ensure the same level of precision and accuracy, we
used a similar lookup table configuration of the BRAM-based design in MATLAB Simulink
for the BRAM mapping.

For implementing the weighted sum of two neurons model, we opted for a VHDL
coding approach and fixed-point data format to develop the necessary components, in-
cluding the adder and multiplexer. These components were then mapped to the BRAM to
finally complete the implementation.

3.1.3. CORDIC-Based Design (Using SysGen in MATLAB Simulink)

In the CORDIC-based design approach, we take advantage of the built-in Sin_and_Cos
function provided by the Xilinx CORDIC 6.0 HDL block in MATLAB Simulink to efficiently
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implement the complex exponential function. Since the input of the CORDIC block is
limited to a range of −π to π, a wrapping subsystem is implemented before the CORDIC
IP Core to ensure that the input signal falls within this range. This helps to guarantee the
accuracy and precision of the final output.

Once the complex exponential function is obtained, it is combined with other com-
ponents, such as an adder, multiplexer, and buffer, to implement the weighted sum of
two neurons. The fixed-point representation is used throughout the design to maintain
precision and reduce the computational overhead.

After finishing the design, an IP core is created using the Xilinx System Generator tool.
This IP core is then embedded in Vivado IDE, where behavioral simulation is performed
and a hardware implementation report is generated.

Figure 3. The 32-bit implementation of BRAM-based design in MATLAB Simulink.
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3.1.4. CORDIC-Based Design in Vivado

CORDIC-based design in Vivado: In the CORDIC-based design approach in Vivado,
we utilize the CORDIC (6.0) IP core of Xilinx to implement the complex exponential function
using its built-in Sin and Cos functions and parallel architecture.

Similar to the approach in Simulink, we implement a wrapping function, adder, multi-
plexer, and buffer in VHDL coding to implement the weighted sum of two neurons. Figure 4
shows the schematic diagram of CORDIC-based design in Vivado IDE as an example.

Figure 4. Schematic diagram of 32-bit CORDIC-based design in Vivado.

3.1.5. The Fixed-Point Implementation

In the given project, the input range lies between −4 and 4, while the output range is
between −1 and 1. To represent the integer part of the input value in binary, only three bits
are required as 4 in binary can be represented as 100. One bit is used to represent the sign
of the input value, and the remaining bits are reserved for the fractional part.

However, for internal operations such as addition and multiplication, the input values
go beyond decimal 16. Therefore, five bits are reserved for the integer part to ensure
accurate calculations.

Similarly, for the output values, one bit is used to represent the sign, and the remaining
bits are used for the fractional part. Since the maximum and minimum output values
are 1 and −1, one bit is reserved for decimal 1, and the remaining bits are used for the
fractional part.

By utilizing this fixed-point representation technique, we can allocate more bits to the
fractional part, thereby enhancing the precision and accuracy of the final output.

Based on the above conditions, for the Simulink and Vivado-based design, in an 8-bit
fixed-point implementation, the input is configured as Fix8_5 data format, with one sign
bit, two integer bits, and five fractional bits. The output comes with Fix8_6 data format,
with one sign bit, one integer bit, and six fractional bits.

In the 16-bit fixed-point implementation, the input is configured as Fix16_13 data
format, with one sign bit, two integer bits and 13 fractional bits. The output comes with
Fix16_14 data format, with one sign bit, one integer bit, and 14 fractional bits.

In the 32-bit fixed-point implementation, the input is configured as Fix32_29 data
format, with one sign bit, two integer bits, and 29 fractional bits. The output comes with
Fix32_30 data format, with one sign bit, one integer bit, and 30 fractional bits.

4. Results and Discussion
4.1. Simulation Report
4.1.1. 8-Bit Implementation Result

The graphs presented in Figure 5 depict the output of the FPGA simulation for the
weighted sum of complex exponential neurons using four different approaches in the 8-bit
fixed-point implementation, which are compared to the output of MATLAB simulation.

The graphs in Figure 6 show the absolute difference in the real values of the weighted
sum of complex exponential neurons using BRAM-based and CORDIC-based designs in
both Simulink and Vivado for the 8-bit fixed-point implementation.

It was observed that while the shape of the output signals produced by the four
different approaches were similar to the output produced by MATLAB, the precision of the
outputs was very poor when compared to the expected output generated by MATLAB.
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As the MATLAB simulation output for the weighted sum of two neurons in the 16-bit
implementation is comparable to the output displayed in Figure 7, we have excluded the
graph for the MATLAB simulation output of the weighted sum of two neurons.

Figure 5. FPGA simulation output graphs of the weighted sum of complex exponential neurons in
four different approaches for 8-bit fixed-point implementation.

Figure 6. Comparison of absolute difference in real value between MATLAB simulation output and
four different approaches in 8-bit implementation.
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4.1.2. 16-Bit Implementation Result

The FPGA simulation outputs for the weighted sum of complex exponential neurons
using four different approaches in 16-bit fixed-point implementation are presented in
Figure 7. Figure 8 displays the absolute difference of real values of the weighted sum of two
complex exponential neurons for the same four approaches in 16-bit fixed-point implemen-
tation. The comparison of Figures 7 and 8 indicates that the outputs of the weighted sum of
two neurons in 16-bit fixed-point implementation for all four approaches are significantly
more accurate and closely matched to the output of the MATLAB simulation.

Figure 7. FPGA simulation output graphs of the weighted sum of complex exponential neurons in
four different approaches for 16-bit fixed-point implementation.

From the Figures 5 and 7, we can observe some glitches in the output of the BRAM
Simulink-based designs; this might be because of the overflow in the calculation in the
wrapping system design. We will fix it in our future research.

Figure 8. Comparison of absolute difference in real value output between MATLAB simulation and
four different approaches in 16-bit implementation.
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4.1.3. 32-Bit Implementation Result

By examining the graphs in Figure 9 in the 32-bit implementation presented in the
paper, it is evident that the absolute difference between the output generated by the
MATLAB simulation and the output produced by the four different design approaches is
significantly lower compared to the 16-bit implementation. This implies that the accuracy
and precision of the output are greatly improved by using 32-bit implementation.

Figure 9. Comparison of absolute difference in real value between MATLAB simulation output and
four different approaches in 32-bit implementation.

4.1.4. MAE of the Four Different Implementation Approaches

The Mean Average Error graphs in Figure 10 clearly indicate that as the bit size
increases, the Mean Average Error becomes minimized for all four implementation ap-
proaches. This suggests that the outputs generated by these implementations are becoming
more precise and closer to the expected output. Though it is shown in the report that MAE
has been calculated using the output of the real value, a similar result is found for the
output of the imaginary value.

Figure 10. Mean Average Error of the output of four different implementation approaches for real
and imaginary values.

4.1.5. Discussion Summary

The discussed results focus on the performance of different fixed-point implementa-
tion approaches of complex exponential neurons in FPGA simulations. The paper compares
the output of the FPGA simulations with that of MATLAB simulations. The results show
that the 8-bit fixed-point implementation has poor precision compared to the 16-bit and
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32-bit implementations. The 16-bit implementation outputs are more accurate and closely
matched to the MATLAB simulation outputs. The 32-bit implementation further improves
the accuracy and precision of the output, as evident by the significantly lower absolute dif-
ference between the output generated by the MATLAB simulation and the output produced
by the four different design approaches. The Mean Average Error graphs demonstrate
that the accuracy and precision of the output increase as the bit size increases, minimiz-
ing the Mean Average Error for all four implementation approaches. Overall, the results
suggest that the use of higher bit sizes in fixed-point implementation approaches can
improve the accuracy and precision of the output, making them more reliable and useful in
practical applications.

4.2. Hardware Implementation Report

The field of FPGA hardware design offers multiple approaches for implementing a
design, each with its own set of advantages and disadvantages. This article will focus
on comparing four design methods: BRAM-based design in both Simulink and Vivado,
and the CORDIC IP-based design in both Simulink and Vivado for 8-, 16-, and 32-bit
implementation. The comparison between these methods will be based on their speed,
power requirements, and resource usage.

The BRAM-based implementation uses block RAMs as the primary storage element for
the design. The advantage of this approach is that it enables the implementation of designs
with high memory requirements, and it can be optimized for power and area. However,
this approach may not be optimal for designs with high operating frequencies since the
latency of accessing the block RAM can be high, leading to a reduced operating frequency.

The CORDIC IP-core-based implementation involves using pre-designed and pre-
verified blocks of digital circuits (IP cores) that can be integrated into a larger design. This
approach can reduce development time and simplify the design process. Additionally, IP
cores are typically optimized for performance, which can result in high
operating frequencies.

This project has utilized the ZYNQ-7 ZC702 Evaluation Board library in Vivado for
implementing all the different methods. The board used in this project has a part name of
xc7z020clg484-1, and it offers 484 I/O pins, LUTs of 53,200, FFs of 106,400, and DSPs of 220,
among other resources.

4.2.1. WNS Report

Figure 11 shows the worst negative slack (WNS) in nanoseconds for different clock
frequencies for four different types of implementations: BRAM-based in Simulink, BRAM-
based in Vivado, CORDIC-based in Simulink, and CORIDC-based in Vivado, with different
data widths of 8 bits, 16 bits, and 32 bits.

Figure 11. WNS vs. operating frequency graphs in four different approaches.
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WNS represents the amount of time by which the path with the worst timing violates
the clock period, which means that the design fails to meet timing at that frequency.
A negative WNS means that the design is failing timing, while a positive WNS means that
the design is meeting timing. Ideally, a positive value of nearly zero or zero is considered
as a good design for a particular clock frequency.

From Figure 11, it appears that Vivado BRAM and Vivado CORDIC designs have
better worst negative slack (WNS) values than Simulink BRAM and Simulink CORDIC
designs for all operating frequencies. This means that Vivado designs are meeting timing
more easily compared to Simulink designs in the selected frequency range (10 Mzh to
500 MHz).

Furthermore, it can be observed that as the operating frequency increases, the WNS
values become more negative for all designs. This is expected since higher frequencies lead
to shorter clock cycles, which gives less time for the signals to propagate through the circuit.
As a result, it becomes harder for the designs to meet timing at higher frequencies.

In terms of the design types, it appears that the CORDIC designs have worse WNS
values compared to the BRAM designs for all operating frequencies.

It can also be observed that bit size has less significance for all designs except the
CORDIC-based design in Simulink, where the increase in bit size leads to a decrease in the
WNS value.

Overall, the WNS values provide an indication of the timing performance of the
designs, but other factors such as resource usage and power consumption also need to be
considered when comparing different design implementations.

4.2.2. Max Operating Frequency

Maximum Operating Frequency is calculated by the formula below:

fmax =
1

TS − WNS
(8)

where fmax is the maximum clock frequency, WNS is worst negative slack, TS is the mini-
mum time required to complete a sequence. In maximum operating frequency, WNS will
be nearly 0 and fmax = 1

TS
If we look at Figure 12, it can be observed that the maximum frequency achieved

varies for different bit sizes and different implementations. For the BRAM-based implemen-
tations, the Simulink implementation achieves a higher maximum frequency compared to
the Vivado implementation for all bit sizes. On the other hand, for the CORDIC-based im-
plementations, both the Simulink and Vivado implementations achieve the same maximum
frequency of 300 MHz for 8-bit and 16-bit implementations, while for 32-bit implementation,
the Vivado implementation achieves a higher maximum frequency of 200 MHz compared
to the Simulink implementation.

Figure 12. Maximum operating frequency vs. bit-size graph for different implementation approaches.

Overall, the BRAM-based implementations achieve higher maximum frequencies
compared to the CORDIC-based implementations. Moreover, increasing the bit-size results
in a decrease in the maximum frequency achieved for all implementations, except for the
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Vivado CORDIC implementation for 32-bit, where it achieves a higher maximum frequency
compared to the 16-bit implementation.

4.2.3. Resource Usages

Table 1 shows the usage of lookup tables (LUTs) and flip-flops (FFs) for different
implementations using different design tools. For the BRAM-based designs, the LUT usage
is comparatively low, ranging from 41 to 337 for Vivado and from 286 to 2904 for Simulink,
across all bit sizes. The FF usage for the BRAM-based designs is also low, ranging from 0 to
116 for Vivado and from 514 to 5336 for Simulink. On the other hand, the CORDIC-based
designs have a higher LUT and FF usage, especially for the higher bit sizes. The LUT
usage for the CORDIC-based designs ranges from 612 to 7660 for Simulink and from 548 to
7473 for Vivado. The FF usage for the CORDIC-based designs ranges from 196 to 874 for
Simulink and from 516 to 7217 for Vivado.

Overall, it can be observed that the BRAM-based designs require relatively fewer
FPGA resources in terms of LUT and FF usage compared to CORDIC-based designs.
However, as the bit size increases, the resources required for CORDIC-based designs
increase significantly. It is also interesting to note that the usage of FPGA resources is
different for different design tools, with Simulink generally requiring more resources than
Vivado. These findings can be useful for selecting the appropriate implementation method
based on the available FPGA resources and the desired performance requirements.

Table 1. LUT and FF usages for different implementations.

Resource Usages Bit Size BRAM Simulink BRAM Vivado CORDIC Simulink CORDIC Vivado

LUT usages 8 286 41 612 548
LUT usages 16 965 202 2160 2094
LUT usages 32 2904 337 7660 7473

FF usages 8 514 0 196 516
FF usages 16 2190 0 412 1944
FF usages 32 5336 116 874 7217

Upon analyzing Figure 13, it is evident that as the bit size increases in each implemen-
tation method, the IO usage also increases. Additionally, it can be observed that BRAMs are
only utilized in the BRAM-based implementations while the DSP units are only used in the
Simulink-based implementations. Interestingly, no DSP unit is utilized in the Vivado-based
implementation. Overall, the usage of IO, BRAM, and DSP units vary depending on the
implementation method and the bit size used.

4.2.4. Power Requirement

The power requirements in watts for four different types of 16-bit FPGA implementa-
tions, namely BRAM Simulink, BRAM Vivado, CORDIC Simulink, and CORDIC Vivado,
for different operating frequencies are shown in Figure 14. It can be observed that as the
operating frequency increases, the power requirement for all four implementations also
increases. Among the four implementations, BRAM Simulink requires the least amount of
power while CORDIC Simulink and CORDIC Vivado require the highest amount of power.
At a frequency of 10 MHz, the power requirement for all four implementations is quite
close to each other, ranging from 0.108 watts to 0.114 watts. However, at a frequency of
500 MHz, the power requirement varies significantly among the implementations, ranging
from 0.29 watts for CORDIC Simulink to 0.553 watts for CORDIC Vivado. Therefore, it is
important to consider the power requirement of different FPGA implementations while
selecting the appropriate design for a particular application, especially if the operating
frequency is high.
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Figure 13. Other resource utilization graph.

Figure 14. Frequency vs. power requirement graph for 16-bit implementation.

4.2.5. Discussion Summary

In this hardware implementation report, four different design methods were com-
pared for implementing a two-neuron network on an FPGA, with a focus on speed, power
requirements, and resource usage. The BRAM-based implementation in Vivado achieved
better WNS values and higher maximum frequencies compared to the Simulink imple-
mentation, while CORDIC-based designs had worse WNS values due to the algorithm’s
complexity. BRAM-based designs had comparatively lower resource usage, with Vivado
implementation requiring fewer resources compared to Simulink.

4.3. Hardware Implementation Report for the Design with All the Input Variables in Use

In the initial stages of our design, the computation of the weighted sum for a two-
neuron model within the FPGA was driven by a single dynamic input, the “time” (t)
variable, while other critical parameters—specifically ω, θ, and ϕ—were set as constants,
merely occupying ROM space. This configuration did not accurately represent the FPGA’s
resource usage when handling multiple dynamic inputs. To rectify this and simulate a more
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realistic resource consumption scenario, we expanded our study to include all variables as
inputs, one example is shown in the Figure 15. Employing four distinct implementation
strategies, we leveraged the robust ZYNQ-7 ZC706 Evaluation Board, which is powered by
the xc7z045ffg900-2 FPGA part. The new board was chosen for its ample I/O pins, which
were necessary to meet our project’s expanded requirements. This board boasts an array of
features, such as 362 usable I/O pins, 218,600 lookup tables (LUTs), 437,200 flip-flops (FFs),
545 block RAMs (BRAMs), and 900 digital signal processors (DSPs), to name a few.

Figure 15. 16-bit implementation of BRAM-based design in MATLAB Simulink with all the input
variables that were actively employed in the FPGA’s implementation.

Figure 16 illustrates the peak operating frequencies attained through various imple-
mentation methods across differing bit sizes. An analysis of Figures 12 and 16 (which depict
scenarios with a singular dynamic input (time t) and other variables held constant) reveals a
similar pattern in maximum operating frequency achieved across the four implementation
methods. Intriguingly, when all input variables were actively employed in the FPGA’s
implementation of the two-neuron model’s weighted sum, certain methods demonstrated
an ability to reach elevated maximum operating frequencies. This indicates the potential
for improved performance when the model is fully parameterized with dynamic inputs.
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Figure 16. Maximum operating frequency vs. bit−size graph for different implementation approaches
when all input variables were actively employed in the FPGA’s implementation.

The power consumption across four distinct implementation methods, as observed
when all input variables were dynamically integrated into the FPGA’s framework, is
comprehensively illustrated in Figure 17.

Table 2 presents a detailed overview of resource utilization for various implementa-
tions, highlighting the consumption metrics when all input variables were incorporated
into the FPGA implementation. Similar to the implementations with a single variable input,
the CORDIC Vivado model, in these multi-variable input scenarios, continues to show the
highest resource consumption compared to other methods. Conversely, the BRAM Vivado
model maintains its status as the most resource-efficient approach.
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Figure 17. Power consumption across four different implementation methods when all input variables
were used in FPGA implementation.

Overall, integrating all input variables into the FPGA implementation, while leading
to an increase in power consumption and resource utilization, simultaneously enables a sig-
nificant boost in operating frequency. This enhancement was consistently observed across
different implementation methods, regardless of whether they used all input variables or
not, indicating a uniform trend in implementation results.

Table 2. FPGA resource usages for different implementations when using all input variables in
FPGA implementation.

Resource Usages Bit Size BRAM Simulink BRAM Vivado CORDIC Simulink CORDIC Vivado

LUT 8 296 341 622 835
LUT 16 983 234 2116 2148
LUT 32 2940 639 7694 7777

FF 8 546 20 196 516
FF 16 1966 0 508 1944
FF 32 5336 88 874 7218

BRAM 8 2 1 0 0
BRAM 16 4 2 0 0
BRAM 32 4 4 0 0

DSP 8 6 0 6 0
DSP 16 6 6 6 6
DSP 32 24 24 24 24

IO 8 73 73 73 73
IO 16 145 145 145 145
IO 32 289 289 289 289

4.4. Multi-Neuron Implementation Report

After successfully implementing the weighted sum two neurons model, our objective
was to evaluate the capabilities of four different implementation methods for real-time
computing of the weighted sum of N number of inputs or neurons, where N is 4, 8, 16, 32,
64, 128. To achieve this, we utilized the ZYNQ-7 ZC702 Evaluation Board and measured
how many neurons could be successfully implemented on the FPGA board and how much
of the resources each of the four implementation methods consumed. To achieve real-time
computing of the weighted sum of N inputs, we used parallel instantiation of the sum of
the two-neuron model. We only considered 16-bit and 32-bit implementations, taking into
account output precision.

Table 3 shows the maximum number of neurons achieved by different implementation
methods on the ZYNQ-7 ZC702 Evaluation Board for both 16-bit and 32-bit implementa-
tions. For the 16-bit implementation, Simulink BRAM achieved a maximum of 64 neurons,
while Simulink CORDIC and Vivado CORDIC achieved only 32 neurons each. BRAM-
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based method in Vivado achieved the highest number of neurons among all the methods
with 128 neurons.

Table 3. Maximum number of neurons successfully implemented by the four implementation methods.

8-Neuron Method
Max. Number of Neurons

16 Bit 32 Bit

Simulink BRAM 64 16
Simulink CORDIC 32 8
Vivado BRAM 128 64
Vivado CORDIC 32 8

For the 32-bit implementation, the maximum number of neurons achieved is signifi-
cantly lower than the 16-bit implementation. Simulink BRAM achieved only 16 neurons,
while Simulink CORDIC and Vivado CORDIC achieved only 8 neurons each. Vivado
BRAM, again, achieved the highest number of neurons with 64. The data show that the
number of neurons that can be successfully implemented on the board varies significantly
based on the implementation method and the bit size used.

Figure 18 displays the LUT and FF resource utilization of the weighted sum of eight
neurons for four different implementation methods using a 16-bit and 32-bit implemen-
tation. In the case of the 16-bit implementation, the Simulink BRAM and Vivado BRAM
implementations consumed the lowest LUT and FF resources, with the latter not utiliz-
ing any FF resources. On the other hand, the Simulink CORDIC and Vivado CORDIC
implementations consumed significantly higher LUT and FF resources than the BRAM
implementations. For the 32-bit implementation, the BRAM implementations (Simulink
BRAM and Vivado BRAM) consumed fewer LUT and FF resources than the CORDIC im-
plementations (Simulink CORDIC and Vivado CORDIC), with Vivado CORDIC consuming
the most LUT and FF resources. The utilization of LUT and FF resources in the weighted
sum of eight neurons implementation was considerably less for the BRAM-based design in
Vivado for both 16-bit and 32-bit implementations when compared to other methods.

Figure 18. LUT and FF usage in 16-bit and 32-bit implementations for the weighted sum of eight neurons.

From Table 4, it can be observed that the highest frequency achieved in the eight-
neuron implementation for both 16-bit and 32-bit designs was with Vivado CORDIC
method at 200 MHz. The Simulink BRAM and Vivado BRAM implementations achieved
the lowest frequencies, with 250 MHz and 50 MHz for 16-bit and 53 MHz for 32-bit.
The Simulink CORDIC implementation had the lowest frequency, achieving only 19 MHz
and 9 MHz for 16-bit and 32-bit, respectively.

Table 4. Maximum frequency achieved by different implementation methods.

8-Neuron Method
Maximum Frequency (MHz)

16 Bit 32 Bit

Simulink BRAM 250 150
Simulink CORDIC 19 9
Vivado BRAM 50 53
Vivado CORDIC 200 200



Biomimetics 2023, 8, 621 19 of 21

5. Conclusions and Future Work

In this paper, different design methods were compared for implementing a two-
neuron network and a multi-neuron network on an FPGA. The comparison was based on
speed, power requirements, and resource usage. The results showed that the BRAM-based
implementation in Vivado achieved better WNS values and higher maximum frequencies
compared to the Simulink implementation. BRAM-based designs had comparatively lower
resource usage, with the Vivado implementation requiring fewer resources compared
to Simulink.

For the multi-neuron implementation, the number of neurons that could be success-
fully implemented on the board varied significantly based on the implementation method
and the bit-size used. The Vivado BRAM-based design achieved the highest number of
neurons among all the methods with 128 neurons. The utilization of LUT and FF resources
in the multi-neuron implementation was considerably less for the BRAM-based design in
Vivado for both 16-bit and 32-bit implementations when compared to other methods.

Overall, the results show that the choice of implementation method can significantly
impact the performance and resource usage of the FPGA design. Therefore, it is important
to carefully evaluate different design options and select the one that best meets the specific
requirements of the application.

In order to advance the research in this field, the next step would be to create a fully
functional complex exponential neural network model. The current work has mainly
concentrated on the information encoding aspect of the neural network model. However,
in order to develop a complete model, further research is required to establish the decoding
method and create a neural network model using complex exponential neurons. Addition-
ally, it would be important to compare the performance of the complex exponential neural
network model with other existing neural network models to assess its effectiveness.
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LUT Lookup Table
FF Flip-Flop
SSN Simultaneous Switching Noise
BRAM Block RAM (Random Access Memory)
CORDIC Coordinate Rotation Digital Computer
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