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Abstract: In the realm of computational problem-solving, the search for efficient algorithms tai-
lored for real-world engineering challenges and software requirement prioritization is relentless.
This paper introduces the Multi-Learning-Based Reptile Search Algorithm (MLBRSA), a novel ap-
proach that synergistically integrates Q-learning, competitive learning, and adaptive learning tech-
niques. The essence of multi-learning lies in harnessing the strengths of these individual learning
paradigms to foster a more robust and versatile search mechanism. Q-learning brings the advantage
of reinforcement learning, enabling the algorithm to make informed decisions based on past expe-
riences. On the other hand, competitive learning introduces an element of competition, ensuring
that the best solutions are continually evolving and adapting. Lastly, adaptive learning ensures the
algorithm remains flexible, adjusting the traditional Reptile Search Algorithm (RSA) parameters.
the application of the MLBRSA to numerical benchmarks and a few real-world engineering problems
demonstrates its ability to find optimal solutions in complex problem spaces. Furthermore, when ap-
plied to the complicated task of software requirement prioritization, MLBRSA showcases its capability
to rank requirements effectively, ensuring that critical software functionalities are addressed promptly.
Based on the results obtained, the MLBRSA stands as evidence of the potential of multi-learning,
offering a promising solution to engineering and software-centric challenges. Its adaptability, compet-
itiveness, and experience-driven approach make it a valuable tool for researchers and practitioners.

Keywords: competitive learning; adaptive learning; multi-learning-based reptile search algorithm
(MLBRSA); optimization; Q-learning; software requirement prioritization

1. Introduction

In the past few decades, there has been a noticeable increase in data dimensionality
in real-world scenarios, resulting in a corresponding growth in the time and space com-
plexity needed for their solution. The successful application of traditional mathematical
optimization techniques frequently relies on the underlying symmetrical characteristics
of the situation. While theoretical optimality guarantees exist for small-scale data-related
issues, the practical application of these guarantees is challenging due to the significant
time and space complexity involved [1,2]. Metaheuristic algorithms are commonly em-
ployed in the context of non-linear problems because of their advantageous characteristics,
including straightforward principles, robustness against beginning values, and ease of
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implementation. In addition, it has been demonstrated that metaheuristic (MH) processes
do not rely on the gradient of the fitness function, which has been shown to offer greater
precision and practicality in terms of solution accuracy. Numerous MH algorithms have
been presented since the onset of the 20th century. Moreover, MH techniques have been
widely employed in diverse engineering domains, including but not limited to route plan-
ning, image processing, IoT task scheduling, software engineering job-shop scheduling,
automatic control, mechanical engineering design, and power systems [3–6].

The increased pace of industrial expansion has led to a corresponding rise in the intri-
cacy of optimization challenges that must be addressed. Numerous limited optimization
problems exist that require urgent solution. These problems often exhibit numerous local
optima within the feasible domain, rendering them inherently complex. Furthermore, the
difficulty of addressing these problems is compounded when dealing with higher di-
mensions. The conventional approach to solving issues using classical derivatives is
characterized by high processing costs, time requirements, and a tendency to converge
towards local optima. These factors pose significant challenges in addressing the feasi-
bility and economic considerations of actual situations. In contrast, heuristic algorithms
encompass several approaches, such as greedy strategies and local search algorithms [7–9].
These algorithms rely on the inherent laws of the problem to obtain improved workable
solutions. However, their effectiveness is highly contingent upon the problem being ad-
dressed, limiting their applicability and lacking generality. The proliferation of software
for computers has led to the implementation and utilization of an increasing number of
optimization methods. The MH algorithm is currently the most widely used optimization al-
gorithm in the field. The MH optimization algorithms offer a cost-effective, straightforward,
and efficient approach to addressing such difficulties. Optimal or near-optimal solutions
can be obtained within a relatively brief timeframe [10–12]. The algorithm can identify
the most effective approach for each problem instance and obtain the optimal solution.
The MH algorithms are classified into two categories: non-nature-inspired and nature-
inspired. The categorization of natural-inspired meta-heuristics encompasses four main
groups: biologically inspired algorithms (BIA), physics-based algorithms (PBA), human-
based algorithms (HBA), swarm intelligence (SI) algorithms, evolutionary algorithms (EA),
and a miscellaneous category for those that do not fit into the groups mentioned above
due to their diverse sources of inspiration, such as societal and emotional aspects [13,14].
Nature-based optimization approaches have experienced a process akin to the process of
selection and elimination, resulting in their tendency to exhibit greater conciseness and
superior performance compared to conventional techniques. The MH algorithms possess a
straightforward structure, offer effortless operation, and exhibit a broad scope of applica-
tions, rendering them a highly favorable substitute for conventional methodologies [1,5].
The classification of MH algorithms is illustrated in Figure 1.

The SI algorithms are derived from the collective behavior exhibited by social insects,
which has been developed over millions of years of evolutionary processes.
Particle swarm optimization (PSO) is derived from the inherent characteristics of natural
swarm particles [15]. The evolutionary algorithm is a probabilistic optimization technique
that draws inspiration from the mechanisms of natural evolution. The genetic algorithm
is derived from Darwinian theory [16]. PBA is predominantly obtained through the use
of physical principles and chemical reactions. One example of an algorithm that draws
inspiration from the behavior of systems with numerous degrees of freedom in thermal
equilibrium at a finite temperature is simulated annealing (SA) [17]. A few other examples
of PBAs are the gravitational search algorithm [18], Henry gas solubility optimization [19],
equilibrium optimizer [20–22], and charged system search [23]. Human-based algorithms
draw their inspiration mostly from human behavior. One illustrative instance is har-
mony search [24], which emulates the improvisational tactics employed by musicians.
Several other widely used swarm intelligence algorithms include the krill–herd [25], artifi-
cial bee colony [26], cuckoo search algorithm [27], biogeography-based optimization [28],
grey wolf optimizer (GWO) [29–31], whale optimization algorithm [32–34], dragon-fly
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algorithm [35], ant colony optimization [36], dolphin echolocation algorithm [37], firefly al-
gorithm [38], slime mould algorithm [39–41], marine predator algorithm [42–44], mountain
gazelle optimizer [45,46], African vulture algorithm [47], artificial rabbits optimizer [48],
etc. The authors of [49] have used an improved sparrow search algorithm to estimate the
parameters of the carbon fiber drawing process. The authors of [50] proposed an enhanced
version of the snake optimizer for engineering design problems. The authors of [51] have
proposed an improved whale optimization algorithm for cloud task scheduling problems.
An improved version of the dragonfly algorithm with a neuro-fuzzy system has been
proposed by [52] for wind speed forecasting.
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These MH algorithms possess distinct attributes and are frequently employed in di-
verse computer science domains, including intrusion detection, parameter identification,
path planning, engineering optimization, feature selection, fault diagnosis, text clustering
problems, image segmentation, etc. Nevertheless, they continue to struggle with effi-
ciently achieving a balance between the convergence rate and the accuracy of the solution.
in broad terms, the optimization procedure of a MH algorithm comprises two distinct
phases. The initial stage of the process involves exploration, wherein the algorithm thor-
oughly searches the feasible domain to identify the prospective region where the best
solution could be found. The subsequent stage is characterized as exploitation, during
which the algorithm conducts a more thorough search in pursuit of the ideal solution within
a region that exhibits greater promise. These two phases exhibit a contradiction in their
approach to addressing a problem, thus necessitating the development of an algorithm that
can effectively navigate between exploration and exploitation. The algorithm must strike a
judicious equilibrium to identify the best global solution without being trapped in a locally
optimal one [53–56].

The no-free-lunch theorem demonstrates that algorithms do not universally apply
to optimization issues [57]. Hence, it is crucial to enhance the efficiency of established
algorithms. Numerous academics employ diverse methodologies to enhance pre-existing
algorithms. For instance, the authors of [58] proposed incorporating an autonomous
foraging mechanism called the remora optimization algorithm (ROA), which enables inde-
pendent food discovery and less reliance on external sources. This integration significantly
broadens the algorithm’s exploration capabilities and enhances its optimization accuracy.
According to the authors of [59], incorporating roaming methods and lens opposition-based
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learning techniques enhanced the ability of the sand cat to conduct wide global searches.
This integration also leads to accelerated convergence speed of the algorithm and suc-
cessfully enhances its overall performance. Kahraman et al. (2020) introduced the fitness
distance balance concept in their study [60]. Their fitness and distance values determine
candidates’ scoring in the selection procedure. The population with the maximum score is
chosen as the secondary solution, replacing the random individuals. This mechanism aims
to increase the likelihood of an effective auxiliary solution, thereby improving algorithm
efficiency and the likelihood of escaping local optima. In their study, the authors of [61]
introduced the natural survivor method (NSM) as an alternative approach to solely relying
on fitness values for evaluating and retaining individuals. To determine NSM scores, the
researchers incorporated three parameters into their calculations. The factors mentioned
above encompass the individual’s impact on the population, their influence on the mating
pool, and their overall fitness worth. The scores of these three factors were dynamically
weighted to decide the individual to retain by comparing their respective scores. Accord-
ing to the authors of [60–62], the potential for enhancing algorithm performance through
effective measures exists. The data mentioned above clearly indicates that the enhanced
MH algorithms have garnered significant interest within the realm of optimization.

The present study examines a new methodology known as the Reptile Search Algo-
rithm (RSA), introduced by Abualigah et al. In 2021 [63]. The primary source of inspiration
for this phenomenon is derived from the cooperative behavior exhibited by crocodiles
during the act of predation. In their recent study, the authors of [64] introduced a novel
approach called the hybrid RSA and ROA algorithm (RSAROA), which combines the
use to optimize tasks and perform data clustering. This results in improved algorithm
performance compared to other recently developed algorithms in particular problem do-
mains. The authors of [65] introduced a modified version of the RSA specifically designed
for numerical optimization problems. The utilization of the adaptive chaotic opposition-
based learning strategy, shifting distribution estimation method, and elite alternative
pooling technique effectively enhance the variety of the population, thereby achieving a bal-
anced approach to exploration and exploitation. This ultimately leads to an improvement
in the performance of the algorithm. The authors of [66] have introduced a new approach
called the enhanced reptile search optimization algorithm using a chaos random drift and
SA for feature selection. The RSA algorithm can be enhanced by including chaotic maps and
SA techniques. This improved algorithm increased diversity within the initial population
and improved algorithm progress. The authors of [67] have introduced a new approach
called the improved RSA by the Salp swarm algorithm for medical image segmentation.
This study aims to enhance the efficiency of the RSA by including the Salp swarm algorithm,
with a specific focus on its application in the domain of image segmentation. This approach
addresses the primary issues of early convergence and disparity in the search procedure as
put forth by the original method.

One notable distinction between the RSA algorithm and other optimization algorithms
is in the distinctive approach employed by the RSA to update the positions of search agents,
which involves the utilization of four novel methodologies. For example, the behavior of
surrounding prey is accomplished using two distinct locomotion methods: high-walking
and belly-walking. Additionally, Crocodiles engage in communication and collaboration to
effectively execute hunting strategies. The RSA aims to develop robust search algorithms
that yield high-quality outcomes and generate novel solutions to address intricate real-
world problems [68,69]. According to the authors, the RSA has effectively addressed
artificial landscape functions and practical engineering challenges, surpassing other widely
used optimization techniques [63]. The benchmark functions are mathematical functions
commonly employed to assess the efficacy and efficiency of optimization techniques.
Moreover, despite being classified as a stochastic population-based optimization method,
the RSA has vulnerabilities in terms of maintaining population variety and avoiding local
optima in the context of high-dimensional features. The factors mentioned above, as well
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as the distinguishing features of the RSA served as the impetus for undertaking this study
to enhance its efficacy [70,71].

Q-Learning (QL) is a type of reinforcement learning (RL) technique that operates without
the need for an explicit model of the environment. The integration of the QL and MH algorithm
has been employed to enhance the optimization algorithm’s search capability, facilitated by
advancements in RL [72–75]. The authors of the study conducted by [76] employed the RL
technique to dynamically choose five strategies for enhancing the local search capabilities of the
PSO. The authors of [77] have developed the differential evolutionary-QL (DEQL) method to
produce a population of trials by utilizing QL. The QL determines the optimal choice of mutation
and crossover techniques from a pool of four distinct strategies. The authors in the study by [78]
employed a combination of PSO and RL techniques to develop individual Q-tables for each
particle. Additionally, they implemented a dynamic selection mechanism for adjusting the
particle characteristics. The authors of [79] introduced the QL-embedded sine-cosine algorithm
(Q-SCA) as a means of parameter control. Using the QL technique can potentially expedite
the escape of the sine cosine algorithm from local optima. The authors of [80] propose that
the exploration ability of the QL algorithm can be improved by dynamically selecting the
search strategy of the arithmetic optimization algorithm (AOA). In the literature previously
mentioned, the QL algorithm was employed to optimize the approach for a certain algorithm.
The presence of certain limits may impede the resolution of various optimization challenges.
The QL algorithm employs a reward function assigned a constant value, hence creating a
situation perceived as unjust for persons who have made more advancements. Furthermore,
generating a Q-table for each individual results in a significant increase in spatial complexity.
In order to tackle this issue, it is possible to devise a hybrid approach incorporating a RL
algorithm. This approach aims to optimize the selection of a meta-heuristic algorithm, hence
maximizing the benefits achieved at various phases [77,79]. It has been observed that the
aforementioned literature shares a common objective, namely, to mitigate algorithmic precocity
and achieve a harmonious equilibrium between exploration and progress. To address the
concerns above, the following measures have been undertaken. A QL mechanism can enhance
crocodiles’ spatial exploration and exploitation capabilities. In addition, competitive learning
and adaptive learning mechanisms can be used to further improve the performance of the
RSA. Hence, this study presents a new approach, namely the Multi-Learning-Based Reptile
Search Algorithm (MLBRSA), for addressing the global optimization and software requirement
prioritization (SRP) problems. The choice of appropriate methods for boosting and enhancement
frameworks should be guided by the algorithm’s challenges and the characteristics of the
optimization issues it aims to solve. QL, competitive learning, and adaptive learning were
selected due to their direct relevance in addressing several inherent problems associated with
RSA, including the convergence towards local optima, sensitivity to parameters, and the absence
of a balanced exploration-exploitation trade-off. Alternative frameworks may potentially create
superfluous intricacy or may not fit as well with RSA’s particular dynamics and objectives.
The following are the major contributions of this study:

• the multi-learning approach is proposed to improve the performance of the RSA;
• Dynamic learning with more rewards in different situations increases the diversity of

solutions in the population and the robustness of RSA;
• Validated using 23 benchmark test functions with different dimensions and five constrained

engineering design problems;
• Validated using the software requirement prioritization optimization problem;
• Compared with state-of-the-art algorithms, including the original RSA.

The paper is organized as follows: Section 2 briefly discusses the concepts of the
original RSA; Section 3 comprehensively presents the proposed MLBRSA; Section 4 details
the SRP problem, and the objective function and constraints are also discussed; Section 5
discusses the results of the 23 benchmark functions with different dimensions and five
engineering optimization problems; Section 5 also discusses the results obtained for the
SRP problem; and Section 6 concludes the paper.
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2. Reptile Search Algorithm

The RSA method, created by Abualigah et al. [69], is an innovative optimization
technique that emulates the encircling and hunting behaviors of crocodiles. This section
elucidates the exploration and exploitation skills of the RSA, which are derived from its
intelligent surroundings and hunting strategies employed to capture prey. The RSA is
a population-based approach and does not rely on gradient information. It can address
intricate and straightforward optimization issues while adhering to predefined limitations.

2.1. Initialization

The initial candidate solutions are constructed randomly during this stage, as de-
scribed in Equation (1).

X =



x1,1 . . . x1,j x1,n−1 x1,n
x2,1 . . . x2,j x2,n−1 x2,n
. . . . . . xi,j xi,n−1 xi,n
...

...
...

...
xN−1,1 . . . xN−1,j . . . xN−1,n

xN,1 . . . xN,j xN−1,n xN,n


(1)

where X denotes the candidate solutions and xij denotes the jth position of the ith solution,
N denotes the population size, and n denotes the problem dimension.

xij = rand(UB− LB) + LB, j = 1, 2, . . . , n, i = 1, 2, ..., N (2)

where UB and LB signify the upper and lower bounds, and rand denotes the random
number between [0, 1].

2.2. Exploration Phase

Crocodiles employ two distinct techniques, namely high walking and belly walking,
throughout their encircling procedure. The RSA incorporates a balanced approach between
exploration and exploitation, which can be likened to encircling and hunting, respectively.
This approach is guided by four conditions, which involve dividing the entire number of
iterations into four distinct portions. The exploration processes employed in RSA primarily
focus on two prominent search strategies, namely high walking and belly walking, which
are utilized to navigate the search space and identify optimal solutions. The high walk
strategy is characterized by the condition t ≤ T

4 . The belly walk motion strategy is
characterized by conditions t ≤ 2 T

4 and t > T
4 . This implies that the condition is satisfied

for approximately half of the exploration iterations conducted during the high walk, while
the remaining half is satisfied during the belly walk. The formula for updating the position
is stated in Equation (3) during the exploration phase.

x(i,j)(t + 1) =

{
Bestj(t)− η(i,j)(t)× β− R(i,j)(t)× rand, t ≤ T

4
Bestj(t)× xr1,j × ES(t)× rand, t ≤ 2 T

4 and t > T
4

(3)

η(i,j) = Bestj(t)× P(i,j) (4)

R(i,j) =
Bestj(t)− x(r2,j)

Bestj(t) + ε
(5)

ES(t) = 2× r3 ×
(

1− 1
T

)
(6)

P(i,j) = α +
x(i,j) − M(xi)

Bestj(t)×(UB(j)−LB(j))+ε
(7)
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M(xi) =
1
n

n
∑

j=1
x(i,j) (8)

where Bestj(t) signifies the best solution found so far, rand signifies the uniform random
number in the range of 0 and 1, T denotes the maximum iterations, t denotes the current
iteration, β denotes the control parameter guides the exploration, and its value is 0.1, η(i,j)
denotes the operator who controls the exploration, R(i,j) denotes the factors that reduce the
search area, ε denotes the epsilon (floating-point relative accuracy and is equal to 2.2204
× 10−16), xr1,j and xr2,j denotes the random population positions of the ith solution, ES(t)
denotes the random factors between [−2, 2], r3 denotes the random integer between [−1,
1], P(i,j) denotes the difference between the current solution and the best solution obtained
so far, α is constant, which drives the exploration, and its value is 0.1, and M(xi) denotes
the mean position of the ith solution.

2.3. Exploitation Phase

Crocodiles employ two distinct methods, namely collaboration and coordination,
throughout their hunting attempts. The approaches employed in this study imitate the ex-
ploitation search formulated according to Equation (9). The hunting coordination approach
in this phase is determined by the criteria t ≤ 3 T

4 and t > 2 T
4 ; otherwise, the hunting

collaboration approach is implemented. The position update equation for the exploitation
in the initial RSA is described in Equation (9).

x(i,j)(t + 1) =

{
Bestj(t)× P(i,j)(t)× rand, t > T

2 and t ≤ 3 T
4

Bestj(t)− η(i,j)(t)× ε− R(i,j)(t)× rand, t > 3 T
4 and t ≤ T

(9)

where Bestj(t) denotes the best solution found so far, η(i,j)(t) denotes the hunting variable
computed using Equation (4), rand means the random number between 0 and 1, R(i,j)(t) is
computed using Equation (5), and P(i,j)(t) computed using Equation (7).
Ultimately, in the unlikely scenario that the proposed candidate’s location is nearer to
the sustenance source than the current candidate, the reptile continues to relocate to the
new candidate’s location and commences the subsequent iteration. The pseudocode of the
original RSA is shown in Algorithm 1.

Algorithm 1: Pseudocode of the Reptile Search Algorithm

Initialize the population size, maximum number iterations, ε, α and β.
Initialize the population position randomly and their respective solution.
While t < T

Calculate the fitness, find the best solution and update ES using Equation (6).
For i = 1 : N

For j = 1 : n
Update η(i,j), R(i,j), P(i,j), and M(xi) using Equations (4), (5), (7) and (8).
If t ≤ T

4
Update using Equation (3a).

else if t ≤ 2 T
4 and t > T

4
Update using Equation (3b).

else if t > T
2 and t ≤ 3 T

4
Update using Equation (9b).

else
Update using Equation (9b).

End if
End for

End for
End while
Return: Best position and the respective solution
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3. Proposed Multi-Learning-Based Reptile Search Algorithm
The RSA is a nature-inspired metaheuristic algorithm that mimics the hunting behavior of

reptiles. Like many metaheuristic algorithms, the RSA has its strengths but has certain limitations
or defects. Some potential defects of the original RSA include: (i) the RSA, like many optimization
algorithms, can sometimes get trapped in local optima, especially in complex search spaces with
multiple peaks and valleys. This means the algorithm might converge to a sub-optimal solution
rather than the global optimum, (ii) the performance of the RSA can be sensitive to its parameter
settings, such as the values of α and β, (iii) when dealing with high-dimensional problems, the RSA
might exhibit slow convergence rates, (iv) the original RSA might not always strike the right balance
between exploration and exploitation, (v) there might be situations where the algorithm becomes
stagnant, with solutions oscillating around certain values without significant improvements, (vi) the
computational cost can increase significantly, and the algorithm might struggle to find good solutions
within a reasonable time frame, and (vii) the original RSA does not have mechanisms to adapt its
parameters or strategies based on the problem’s characteristics or its current performance [68–71].
This lack of adaptability can hinder its performance on diverse problems. Therefore, it is essential
to note that while the RSA has these potential defects, it also has strengths, and its performance
can be problem-dependent. The proposed enhancements, including the integration of Q-learning,
competitive learning, and adaptive learning, aim to address some defects and improve the algorithm’s
robustness and efficiency [81,82].

3.1. Reinforcement Learning
In history, numerous noteworthy advancements have emerged in the field of reinforcement

learning. This area of study can be classified into two distinct categories: policy-based approaches and
value-based methods. The Q-learning algorithm is commonly regarded as a representative example
of value-based techniques. During the process of learning, the agent engages in actions that have the
highest predicted Q-values in order to compute the optimum course of action. The objective is to
establish a reciprocal relationship with the surrounding environment utilizing the agent, afterwards
acquiring the highest possible reward to attain the most advantageous course of action, as seen in Fig-
ure 2. The Q-learning comprises state-space S = {s1, s2, · · · , sm}, action space A = {a1, a2, · · · , an},
an environment, the learning agent, and the reward function R. The Q-table undergoes dynamic
updates dependent on the reward, and its computation is performed as follows [78,79,82]:

Q(st+1, at+1) = Q(st, at) + λ
[
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]
(10)

where at denotes the current action, st+1 denotes the next state, st denotes the current state, rt+1
denotes the instant reinforcement reward learned from the accomplishment of at at st, λ denotes the
learning rate, γ denotes the discount factor, and Q(st+1, a) denotes the predicted Q-value when a
performed at st+1.
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The Q-table can be represented as a m× n matrix where n and m denote the number of actions
and states correspondingly. The Q-table can be described as a mapping table that associates the current
state of execution with certain actions and their corresponding future rewards. The pseudocode of
the QL is presented in Algorithm 2.
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Algorithm 2: Pseudocode of the QL Algorithm

Initialize the states s and the action a.
Foreach si and ai

Set Q(si, ai) = 0.
End For
Choose the initial state s randomly.
While the criteria not reached

Select the best action from the current state from the Q-table.
Execute the action and then get the immediate reward.
Determine the new state st+1.
Obtain the respective maximum Q-value.
Update the Q-table using Equation (10) and update the state.

End While

3.2. Competitive Learning
When applied to optimization algorithms like the RSA, competitive learning determines which

solutions (or “reptiles” in the context of the RSA) perform best and should influence or guide
the search process. In the proposed MLBRSA, solutions compete based on their fitness values.
The solution with the best (e.g., lowest) fitness value “wins” the competition. The winning solution
influences the position updates of other solutions. This is done to guide the search towards promising
regions of the search space. Competitive learning introduces a form of guided exploration. While
random exploration helps search the entire solution space, the influence of the best solution ensures
that the search is also exploitative, focusing on areas that have yielded good solutions. As the search
progresses and different solutions become winners in different iterations, the search direction and
focus can dynamically change, allowing the algorithm to adapt to complex landscapes [83–85]. In this
study, competitive learning influences how solutions are updated. The winning solution (the one
with the best fitness) provides a reference or guide for updating other solutions [81]. This ensures that
(i) the search is biased towards regions of the search space that have yielded good solutions, (ii) solutions
can escape local optima by being influenced by the global best or other high-performing solutions, and
(iii) the diversity of solutions is maintained, as not all solutions are pulled towards the best one, but are
updated with a mix of exploration and exploitation.

In each successive iteration, reptiles are chosen randomly in pairs from the existing population
to engage in competitive interactions. Following each competition, the participant with a lower
fitness value, referred to as the loser, undergoes an update process by assimilating knowledge from
the winner. Conversely, the winner is to be directly included in the population of the subsequent
iteration. The framework of competitive learning is provided in Figure 3. The first step in competitive
learning is the winner selection. For the given set of solutions X with the fitness F, the winning
solution xwinner is the one with the best fitness:

xwinner = arg min
x∈X

F(x) (11)
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The update of a solution xi considering the winning solution xwinner can be modeled as follows:

xnew
i = xi + µ× (xwinner − xi) + other terms (12)

where µ is a factor determining the extent of influence and other terms, represent other update
components (e.g., random exploration). In this study, the value of µ is selected as 0.1, i.e., 10%
of the solutions are moving towards the winning solution. In competitive learning, the influence
factor, or learning rate, critically shapes the RSA’s behavior. A higher rate, exemplified by 50%,
accelerates adaptation to input data, fostering quicker convergence. However, this swiftness can
lead to overshooting and instability, potentially delaying generality. Conversely, a lower rate, like
1%, ensures a more stable learning process but may sacrifice speed, potentially causing delays
in convergence and adaptation. In order to strike a balance, a 10% learning rate often proves optimal,
offering a moderate convergence speed without compromising stability excessively. This choice is
typically justified through empirical validation, where the learning rate’s impact determines the
most effective compromise between convergence speed and stability. Tailoring the learning rate to
the problem’s specific characteristics and considering computational resources ensures an informed
and efficient choice in the competitive learning process. The pseudocode of competitive learning is
provided in Algorithm 3.

Algorithm 3: Pseudocode of the Competitive Learning

Initialize solutions X randomly.
Evaluate the fitness of each solution in X.
While not converged:

Determine xwinner, the solution with the best fitness in X.
For each solution xi in X:

Calculate the competitive influence: influence = µ× (xwinner − xi).
Update xi considering the influence and other factors :

xi = xi + in f luence + otherupdatedterms.
Ensure xi is within bounds and evaluates the fitness of xi.

End For
End While

In this study, competitive learning provides a mechanism to guide the search using the best-
found solutions. This balance between exploration and exploitation can enhance the algorithm’s
performance in finding optimal or near-optimal solutions.

3.3. Adaptive Learning
Adaptive learning refers to the ability of an algorithm to adjust its parameters or behavior based

on its performance or the characteristics of the problem being solved. Adaptive learning can be
crucial for balancing exploration and exploitation in optimization algorithms. Adaptive learning
often involves dynamically adjusting algorithm parameters, such as learning rates, based on the
algorithm’s performance. The algorithm uses feedback, typically in solution quality or convergence
speed, to decide how to adjust its parameters. In order to adapt to the problem’s landscape, the
algorithm can converge faster to high-quality solutions. Adaptive mechanisms can help the algorithm
escape local optima by adjusting its search behavior [86].

In the proposed MLBRSA, adaptive learning influences how the algorithm updates its solutions.
Specifically, (i) parameters like α and β in the MLBRSA are adjusted based on the best solution perfor-
mance. If the best solution improves, the parameters might be increased to intensify the search around
it. If the best solution stagnates, the parameters might be decreased to diversify the search, and (ii)
by adjusting parameters like α and β, the algorithm can dynamically shift between exploration and
exploitation, ensuring a good balance throughout the search process. The feedback Ffeedback can be
calculated as the difference in the best solution’s fitness between two consecutive iterations as follows:

Ff eedback = Fbest(t)− Fbest(t− 1) (13)

where Fbest(t) denotes the current best solution and Fbest(t− 1) denotes the previous best solution.
Equation (14) is used to update the parameters adaptively. The term P represents the parameters to



Biomimetics 2023, 8, 615 11 of 49

be adapted during the iterative procedure, i.e., α and β, in this study. The update of a parameter P
based on the feedback can be modeled as follows:{

P(t) + δincrease, i f Ff eedback > 0
P(t)− δdecrease, i f Ff eedback ≤ 0

(14)

where δincrease and δdecrease denote small positive constants determining the magnitude of the parame-
ter adjustment. The pseudocode of adaptive learning is provided in Algorithm 4.

Algorithm 4: Pseudocode of the Adaptive Learning

Initialize solutions X randomly.
Evaluate the fitness of each solution and initialize α and β and Fbest(t− 1) = infinity.
While not converged:

Determine Fbest(t), the best fitness in X.
For each solution xi in X:

Update xi using current parameters (α and β).
Ensure xi is within bounds and evaluates the fitness of xi.

End For
//Adaptive Learning//

Find the feedback value by Ff eedback = Fbest(t)− Fbest(t− 1).
If Ffeedback > 0:

Increase parameters (α+ = δincrease and β+ = δincrease).
Else:

Decrease parameters (α− = δdecrease and β− = δdecrease).
End If
Fbest(t− 1) = Fbest(t)

End While

In the proposed MLBRSA, adaptive learning provides a mechanism to adjust the algorithm’s behavior
based on performance. This dynamic adjustment can help the algorithm respond better to the challenges of
the problem’s landscape, enhancing its ability to find optimal or near-optimal solutions.

3.4. Multi-Learning Reptile Search Algorithm
This subsection explains the step-by-step procedure of the proposed MLBRSA. The following

steps describe the formulation of the proposed algorithm.
Step 1—Initialize MLBRSA: the algorithm initializes the MLBRSA. This involves setting up

the initial population of solutions and defining the search space boundaries. Given a population size
N, dimension n, and search space boundaries LB and UB, initialize the population X:

xij = rand(UB− LB) + LB, j = 1, 2, . . . , n, i = 1, 2, ..., N (15)

Step 2—QL Decision: At this step, the algorithm uses QL to decide the next action for each
solution. This decision is based on past experiences and the expected reward of taking a particular
action in the current state. For each solution xi, decide the next action based on the Q-table Q and an
exploration rate ξ:

Actionsi =

{
randi([1, 4]), i f rand(0, 1) < ξ

argmaxaQ(i, a), Otherwise
(16)

Step 3—Competitive Learning: Here, the solutions compete against each other based on their
fitness values. Only the best solutions (winners) can update their positions, while the others remain
unchanged. This introduces a survival-of-the-fittest dynamic. For the given set of solutions X with
the fitness F, the winning solution xwinner is the one with the best fitness:

xwinner = argminiF(xi) (17)

The competition influence is calculated as follows:

in f luence = µ× (xwinner − xi) (18)

where µ is the influence factor and its value is 0.1, i.e., 10%.
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Step 4—Adaptive Learning: the algorithm evaluates its performance and dynamically adjusts
its parameters (α and β). This self-tuning mechanism ensures that the algorithm remains flexible and
adaptable to the problem’s characteristics, dynamically adjusting the parameters α and β based on
the performance difference ∆F between two consecutive iterations:

∆F = Fbest(t)− Fbest(t− 1) (19)

The dynamic parameters are as follows:

α =

{
α + δ, i f ∆F < 0
α− δ, Otherwise

(20)

β =

{
β + δ′, i f ∆F < 0
β− δ′, Otherwise

(21)

where δ and δ′ are small positive constants, and their value is 0.01 and 0.001, respectively.
Step 5—Update & Iterate: Based on the decisions from the previous steps, the algorithm

updates the positions of the solutions. It then checks for convergence criteria. If the criteria are not
met, the algorithm returns to the QL step and iterates until the end conditions are satisfied. Update
the position of each solution based on the selected action using Equation (22):

x(i,j)(t + 1) =


Bestj(t)− η(i,j)(t)× β− R(i,j)(t)× rand + in f luence, if Action = 1

Bestj(t)× xr1,j × ES(t)× rand + in f luence, if Action = 2
Bestj(t)× P(i,j)(t)× rand + in f luence, if Action = 3

Bestj(t)− η(i,j)(t)× ε− R(i,j)(t)× rand + in f luence, if Action = 4

(22)

Step 6—Iterate until a stopping criterion is met and return the best solution.
The pseudocode of the suggested MLBRSA is presented in Algorithm 5.

Algorithm 5: Pseudocode of the Proposed MLBRSA

Initialize solutions X randomly.
Evaluate the fitness of each solution and Initialize α and β and Fbest(t− 1) = infinity.
Initialize the states s and the action a.
For each si and ai

Set Q(si, ai) = 0.
End For
Choose the initial state s randomly.
While not converged:

Determine xwinner, the solution with the best fitness in X.
Determine Fbest(t), the best fitness in X.
For each solution xi in X:

QL Action Selection (Random or greedy action).
Calculate the competitive influence : influence = µ× (xwinner − xi).
Select the best action from the current state from the Q-table.
Execute the action and then get the immediate reward.
Decide action using QL. If rand(0, 1) < ε, choose a random action; else, use Q-table.
Update xi considering the influence and other factors using Equation (22).
Determine the new state st+1.
Obtain the respective maximum Q-value.
Update the Q-table using Equation (10) and update the state.
Ensure xi is within bounds and evaluates the fitness of xi.

End For
For each solution xi in X:

Update xi using current parameters (α and β).
Ensure xi is within bounds and evaluates the fitness of xi.

End For
Find the feedback value by ∆F = Fbest(t)− Fbest(t− 1).
If Ffeedback > 0:
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Increase parameters (α+ = δincrease and β+ = δincrease).
Else:

Decrease parameters (α− = δdecrease and β− = δdecrease).
End If
Fbest(t− 1) = Fbest(t)

End While
Return: Best solution.

3.5. Computational Complexity
Analyzing the time and space complexity of the MLBRSA can be more nuanced than traditional

algorithms due to their stochastic nature and dependence on parameters. The time complexity is
provided as follows: (i) the initialization of (N) solutions with (n) dimensions takes (O(N × n));
(ii) QL Decision: for each of the (N) solutions, deciding the next action based on the Q-table is
(O(1)), so in total, it is (O(N)); (iii) Competitive Learning: Finding the best solution based on fitness
evaluation is (O(N)); (iv) Adaptive Learning: Adjusting parameters based on performance is (O(1))
for each solution, so (O(N)) in total; and (v) Update & Iterate: Updating the position of each solution
and checking for convergence for each of the (T) iterations is (O(N × n)). Therefore, the overall time
complexity for the algorithm for (T) iterations is: [O(T × (N × n + N + N + N)) = O(T × N × n)].
The space complexity is provided as follows: (i) Population Matrix: Storing (N) solutions, each with
(n) dimensions, requires (O(N × n)) space; (ii) Q-table: Assume a discrete state and action space
for QL; the Q-table’s size would be (O(states× actions)). However, in the MLBRSA, this might be
abstracted or approximated so that the exact space complexity can vary based on the implementation;
and (iii) Auxiliary Variables: Variables like (α), (β), fitness values, etc., would take (O(N)) space.
Therefore, the overall space complexity is: [O(N × n + states× actions + N)].

4. Software Requirements Prioritization (SRP) Problem
Software Requirements Prioritization (SRP) optimization problem addresses the challenge

of ranking software requirements in order of importance. In the realm of software development,
it is crucial to determine which features or functionalities should be developed first, considering
constraints like time, budget, and resources. SRP ensures that the most critical requirements, which
offer maximum value to stakeholders and end-users, are addressed promptly. Traditional methods
often fall short in this multi-faceted decision-making process. Hence, optimization techniques are
employed in SRP to evaluate and prioritize requirements holistically, ensuring that software products
are both high-quality and aligned with user needs and business objectives.

4.1. Introduction
Over the past several decades, the technological landscape has witnessed significant advance-

ments, leading to the emergence of intricate and sophisticated software systems. Given their height-
ened sensitivity to various factors, developing these large-scale software systems is a delicate process.
Creating a comprehensive and quality software system involves input from multiple stakeholders.
These stakeholders play a pivotal role in outlining the essential features, functionalities, and capabili-
ties that the software must encompass. Their collective vision and expectations lay the foundation
for the software’s overall quality and performance. Central to the development of high-quality
software is the process of requirements engineering. This process is the backbone of software de-
velopment, ensuring the system is built on a solid foundation of well-defined and well-understood
requirements. Even though these requirements form the basis for creating a highly adaptable system,
their importance cannot be overstated. The journey of requirements engineering is multi-faceted,
comprising several critical phases. These include (i) Elicitation: This is the initial phase where
the requirements are gathered from various sources, primarily stakeholders; (ii) Analysis: Here,
the gathered requirements are scrutinized to ensure clarity and feasibility; (iii) Documentation:
This phase involves recording the analyzed requirements in a structured manner; (iv) Verification:
This ensures that the documented requirements align with the stakeholders’ expectations; (v) Val-
idation: This phase checks the feasibility and relevance of the requirements in the context of the
software’s objectives; and (vi) Prioritization: in this phase, requirements are ranked based on their
significance and impact on the software’s overall functionality [87–89].

The prioritization process is particularly crucial. It ensures that the software system is developed
in a structured manner, allowing for the timely creation of its major components. This not only
guarantees the software’s quality but also takes into account various other considerations that might
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influence its development and deployment. The genesis of any software development process lies
in accurately identifying and understanding its requirements. Even minor oversights in this phase
can have cascading effects, leading to inflated cost projections, extended development durations,
compromised quality, reduced client satisfaction, and, in extreme cases, the complete failure of the
project. Specific elicitation techniques ensure that the client’s requirements are accurately captured.
These techniques aim to gather software requirements directly from the stakeholders, ensuring that
the software meets their expectations and needs [90,91]. During the elicitation phase, requirements
are broadly categorized into two types: (i) Functional Requirements: These pertain to the specific
functions and features the software should possess, and (ii) Non-Functional Requirements: These are
criteria against which the functional requirements are evaluated, ensuring that the software meets
certain quality standards. As the software moves into the implementation phase, these requirements
are prioritized based on their importance. This ranking ensures that the most critical components are
addressed first, paving the way for a systematic and efficient development process [92,93].

It is crucial to swiftly identify and address customer needs, ensuring their utmost satisfaction.
Certain software approaches, like agile’s incremental development, involve multiple releases, each
with its distinct set of requirements. Given the myriad technical challenges and conflicts developers
encounter during product development, selecting a subset of requirements is vital to maximizing
customer satisfaction. However, choosing the best subset from various requirements is challenging.
In order to aid with decision-making, it is essential to introduce a methodology that pinpoints the
most optimal subset of requirements. Successful requirement analysis hinges on ranking software
requirements based on quality, cost, delivery time, and available resources. In software requirement
prioritization (SRP), stakeholders are pivotal in prioritizing requirements. Their analysis is crucial,
especially since different stakeholders might perceive the same requirement differently. This variance
in perception can be particularly pronounced between seasoned professionals and newcomers.
Linguistic terms are employed to articulate requirement preferences. Additionally, fuzzy numbers
are utilized to quantify ambiguous and subjective data [94–96].

Customer satisfaction and precise requirements identification are paramount when formulating
an optimal subset for the Next Release Problem (NRP-hard). The NRP-hard refers to the challenge of
determining which features or requirements should be included in the next version of a software
product, taking into account various constraints and objectives. Traditional optimization methods
discussed in Section 1, which often focus on a singular objective or criterion, have proven inadequate
in addressing the multi-faceted nature of the NRP-hard. These conventional methods, being linear
and singular in their approach, often miss out on capturing the intricate interplay of various factors
that influence the decision-making process for the next release. The complexity of the NRP-hard arises
from balancing multiple objectives, such as cost, time, resource allocation, and, most importantly,
customer satisfaction. Since each requirement might have different implications for these objectives,
finding an optimal subset is not straightforward. For instance, while customers might highly desire
one requirement, it might also be resource-intensive, pushing the release date further. Therefore, re-
lying solely on traditional optimization methods can lead to suboptimal decisions. These methods
might overlook certain critical requirements or prioritize less impactful ones, ultimately failing to de-
liver a product version that truly resonates with customer needs and organizational goals. In essence,
to effectively tackle the NRP-hard, there is a need for more reliable optimization techniques that can
consider and balance the myriad of factors and constraints involved [97–99]. Therefore, in this study,
the proposed MLBRSA is applied to the SRP problem to handle the NRP-hard optimization problem.
The performance of the MLBRSA is compared with other algorithms to prove its superiority.

4.2. Problem Formulation
The software requirement prioritization problem aims to determine an optimal set of software

requirements that should be implemented, considering various constraints and objectives. In this
section, we mathematically formulate the problem using an objective function and constraints.

4.2.1. Objective Function
The primary objective is to maximize the net value derived from the selected software require-

ments while considering their associated costs and importance [100,101]. The objective function F is
given as follows:

F(x) =
n

∑
i=1

xi ×Valuei ×Weighti −
n

∑
i=1

xi × Costi (23)
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where xi denotes the binary decision vector, which is ‘1′ if the ith requirement is selected and ‘0′ other-
wise, Valuei denotes the value of the ith requirement, Weighti denotes the importance weight of the ith
requirement, with the values assigned as 3 for ‘HIGH’, ‘2′ for ‘MEDIUM’, and ‘1′ for ‘LOW’ importance,
Costi denotes the cost associated with the ith requirement, and n denotes the total requirements.

4.2.2. Constraints
Budget Constraint: the total cost of the selected requirements should not exceed the available

budget B, and it is formulated as follows:

n

∑
i=1

xi × Costi ≤ B (24)

Prerequisite Constraint: If a requirement has a prerequisite, it can only be selected if its
prerequisite is also selected and formulated as follows:

xi ≤ xj, ∀i, j such that i is a prerequisite of j (25)

Minimum High Importance Constraint: At least a certain percentage PH of the ‘High’ impor-
tance requirements should be selected as follows:

∑
i:Imporatancei=

‘ H′
xi ≥ PH ×MinHigh (26)

where MinHigh is the minimum number of high-importance requirements that must be selected.
Maximum Low Importance Constraint: No more than a certain percentage PL of the ‘Low’

importance requirements should be selected as follows:

∑
i:Imporatancei=

‘ L′
xi ≤ PL ×MaxLow (27)

where MaxLow is the maximum number of low-importance requirements that can be selected.
The objective function aims to maximize the net benefit, which is the difference between the total

value and the total cost of the selected requirements. The constraints ensure that the prerequisites of
any selected requirement are also selected. The binary constraint ensures that each requirement is
either selected or not.

5. Results and Discussions
The performance potential of the proposed algorithm is rigorously evaluated through a compre-

hensive set of tests and analyses. These evaluations are conducted using various methods, including:

• 23 standard benchmark functions with different dimensions: the problems are predefined
mathematical functions commonly used in optimization research to test the efficiency and
accuracy of new algorithms;

• Five engineering design problems: These are typical problems encountered in engineering
disciplines, which provide a practical context for assessing the algorithm’s applicability and
effectiveness;

• Software requirement prioritization problem: These are intricate and multi-faceted problems
sourced from real-life scenarios, offering a challenging problem for the algorithm.

All tests were conducted on a specific computer setup to ensure consistency and reliability
in the evaluations. This setup was a PC running Microsoft Windows 11®. The hardware specification
includes 16 Gigabytes of memory and an Intel(R)Core(TM)-i5 CPU with a clock speed of 2.50 GHz.
For coding and executing the algorithms, MATLAB software (version 9.9 (R2020b); Massachusetts,
USA) was chosen. This software is widely recognized in the research community for its versatility
and robustness in handling complex mathematical computations and simulations.

When evaluating the proposed MLBRSA, it is benchmarked against several other algorithms.
These include the RSA, improved RSA (IRSA) [65], reinforcement learning-based GWO (RLBGWO) [82],
improved dwarf mongoose optimization algorithm (IDMOA) [102], RL-based hybrid Aquila optimizer
and AOA (RLAOA) [80], adaptive gaining-sharing knowledge (AGSK) algorithm [103], and ensemble
sinusoidal differential covariance matrix adaptation with Euclidean neighborhood (LSHADE-cnEpSin)
algorithm [104]. The population size and the maximum number of iterations for the 23 test functions are
30 and 500, respectively, and for the real-world problems are 30 and 1000, respectively. The algorithm
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parameters can be found in Table A1. Each algorithm is executed 30 times, and the results are recorded for
a fair comparison. The performance factors include Min, Max, Mean, Median, standard deviations (STD),
run-time (RT), and Friedman’s ranking test (FRT) values.

5.1. Numerical Test Functions
Various statistical metrics are employed to understand each algorithm’s performance compre-

hensively. These metrics offer insights into the distribution, central tendency, and variability of the
results. Specifically, the following metrics are presented: Minimum (Min): This represents the lowest
value or score the algorithm achieves. It provides a sense of the worst-case performance; Maximum
(Max): in contrast to the minimum, this metric showcases the highest value or score the algorithm
achieves, indicating the best-case performance; Mean: This is the average score of the algorithm
across all runs or iterations. It provides a central value that represents the typical performance of the
algorithm; Standard Deviation (STD): This metric measures the amount of variation or dispersion
from the mean. A low standard deviation indicates that the results are close to the mean, while a
high standard deviation suggests that the results can vary widely. A specialized statistical ranking
test known as the FRT is employed further to validate the performance and superiority of the ML-
BRSA. The FRT is a non-parametric test to detect treatment differences across multiple test attempts.
The detailed findings from this test, specifically pertaining to the MLBRSA, are elaborated upon to
offer a clear understanding of its standing compared to other algorithms.

5.1.1. Capacity Analysis
The benchmark functions are categorized based on their characteristics and challenges. Uni-

modal Benchmarks (F1–F7): These are functions with a single peak or trough. They assess an
algorithm’s ability to exploit or hone in on a single optimal solution. The results for these bench-
marks are tabulated in Table 1. Multi-modal Functions (F8–F13) with 30 Dimensions: Multi-modal
functions have multiple peaks or troughs, making them more challenging as they test an algorithm’s
exploration capability. Specifically, the ones with 30 dimensions are designed to evaluate how well an
algorithm can navigate a complex search space with many variables. The results for these functions
are presented in Table 2. Multi-modal Functions (F14–F23) with Fixed Dimensions: These functions
also have multiple peaks or troughs but have a set number of dimensions. They are used to gauge an
algorithm’s proficiency in discovering solutions in low-dimensional search spaces. The outcomes for
these benchmarks are detailed in Table 3. The best results in each table are highlighted using boldface
typography to make it easier for readers to identify superior performance at a glance. This visual cue
ensures that standout performances are immediately recognizable.

Table 1. Unimodal functions with 30-dimension results.

Functions MLBRSA RSA IRSA RLBGWO IDMOA LSHADE-
cnEpSin AGSK RLAOA

F1

Min 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.58E-247 4.07E-124 0.00E+00 5.42E-256

Max 0.00E+00 0.00E+00 1.56E-276 2.37E-165 8.34E-231 1.26E-115 0.00E+00 1.97E-239

Avg. 0.00E+00 0.00E+00 1.98E-277 1.34E-166 5.42E-232 6.57E-117 0.00E+00 9.92E-241

STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.81E-116 0.00E+00 0.00E+00

F2

Min 0.00E+00 0.00E+00 4.88E-174 0.00E+00 9.35E-132 1.85E-66 3.95E-246 3.35E-127

Max 0.00E+00 0.00E+00 5.94E-143 8.04E-74 2.05E-121 1.53E-59 9.82E-229 2.26E-119

Avg. 0.00E+00 0.00E+00 3.57E-144 4.02E-75 1.38E-122 1.51E-60 5.65E-230 1.17E-120

STD 0.00E+00 0.00E+00 1.32E-143 1.80E-74 4.73E-122 4.17E-60 0.00E+00 5.04E-120

F3

Min 0.00E+00 0.00E+00 7.05E-216 0.00E+00 1.05E-222 2.75E-108 0.00E+00 8.27E-182

Max 0.00E+00 0.00E+00 2.59E-160 7.71E-65 1.87E-202 6.28E-98 0.00E+00 1.97E-160

Avg. 0.00E+00 0.00E+00 1.29E-161 3.85E-66 9.34E-204 4.88E-99 0.00E+00 9.99E-162

STD 0.00E+00 0.00E+00 5.79E-161 1.72E-65 0.00E+00 1.44E-98 0.00E+00 4.41E-161
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Table 1. Cont.

Functions MLBRSA RSA IRSA RLBGWO IDMOA LSHADE-
cnEpSin AGSK RLAOA

F4

Min 0.00E+00 0.00E+00 6.42E-126 0.00E+00 7.07E-122 1.15E-59 4.60E-194 2.16E-121

Max 0.00E+00 0.00E+00 4.39E-105 2.19E-67 5.78E-111 6.11E-53 2.08E-178 2.43E-115

Avg. 0.00E+00 0.00E+00 3.13E-106 1.10E-68 3.04E-112 3.46E-54 1.04E-179 1.83E-116

STD 0.00E+00 0.00E+00 1.00E-105 4.91E-68 1.29E-111 1.36E-53 0.00E+00 5.78E-116

F5

Min 0.00E+00 2.35E-25 0.00E+00 8.54E-04 2.21E+01 2.15E+01 8.21E-12 2.00E+01

Max 0.00E+00 2.90E+01 2.87E+01 2.60E+01 2.68E+01 2.75E+01 2.57E-05 2.40E+01

Avg. 0.00E+00 1.16E+01 1.51E+00 1.89E+01 2.40E+01 2.35E+01 2.89E-06 2.17E+01

STD 0.00E+00 1.46E+01 6.41E+00 1.12E+01 1.25E+00 1.28E+00 6.24E-06 1.06E+00

F6

Min 0.00E+00 5.93E+00 0.00E+00 1.93E-07 2.36E-09 5.89E-07 8.33E-02 5.57E-09

Max 0.00E+00 7.50E+00 0.00E+00 7.11E-05 8.77E-09 1.69E-05 2.54E-01 2.47E-01

Avg. 0.00E+00 7.21E+00 0.00E+00 9.75E-06 4.72E-09 6.67E-06 1.60E-01 1.24E-02

STD 0.00E+00 4.40E-01 0.00E+00 1.68E-05 1.63E-09 5.31E-06 4.13E-02 5.53E-02

F7

Min 5.40E-05 1.67E-06 1.54E-04 1.98E-05 5.89E-05 8.32E-05 6.61E-07 2.75E-05

Max 9.14E-04 6.55E-04 2.94E-03 4.00E-03 7.83E-04 1.72E-03 1.80E-05 9.09E-04

Avg. 3.12E-04 1.24E-04 9.44E-04 1.19E-03 2.38E-04 8.63E-04 7.95E-06 3.67E-04

STD 2.11E-04 1.49E-04 8.21E-04 1.41E-03 1.91E-04 4.59E-04 5.66E-06 2.38E-04

Table 2. Multi-modal functions with 30-dimension results.

Functions MLBRSA RSA IRSA RLBGWO IDMOA LSHADE-
cnEpSin AGSK RLAOA

F8

Min −1.01E+07 −5.66E+03 −1.26E+04 −1.26E+04 −9.66E+03 −1.13E+04 −1.25E+04 −1.22E+04

Max −5.87E+05 −3.38E+03 −9.02E+03 −9.02E+03 −7.63E+03 −7.32E+03 −7.02E+03 −7.76E+03

Avg. −3.20E+06 −5.30E+03 −1.20E+04 −1.22E+04 −8.56E+03 -8.90E+03 −1.11E+04 −1.05E+04

STD 2.48E+06 5.17E+02 1.30E+03 1.09E+03 4.99E+02 9.84E+02 1.54E+03 1.21E+03

F9

Min 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Max 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Avg. 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F10

Min 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16

Max 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16

Avg. 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16

STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F11

Min 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Max 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Avg. 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F12

Min 1.57E-32 6.00E-01 1.57E-32 1.83E-08 1.75E-09 7.08E-08 1.38E-03 6.34E-09

Max 1.57E-32 1.67E+00 1.57E-32 3.67E-07 6.23E-09 1.04E-01 3.76E-03 6.53E-03

Avg. 1.57E-32 1.41E+00 1.57E-32 1.29E-07 3.64E-09 5.18E-03 2.38E-03 1.29E-03

STD 2.81E-48 3.69E-01 2.81E-48 8.58E-08 1.16E-09 2.32E-02 6.54E-04 2.66E-03
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Table 2. Cont.

Functions MLBRSA RSA IRSA RLBGWO IDMOA LSHADE-
cnEpSin AGSK RLAOA

F13

Min 1.35E-32 1.90E-30 1.35E-32 8.74E-09 3.10E-08 2.22E-06 2.37E-11 5.24E-10

Max 1.35E-32 3.00E+00 2.97E+00 6.96E-06 5.48E-02 6.48E-02 2.45E-05 3.27E-01

Avg. 1.35E-32 6.00E-01 3.90E-01 1.74E-06 1.41E-02 1.26E-02 2.04E-06 3.06E-02

STD 2.81E-48 1.23E+00 7.56E-01 1.94E-06 1.58E-02 1.91E-02 6.17E-06 7.23E-02

Table 3. Multi-modal functions with fixed dimensions.

Functions MLBRSA RSA IRSA RLBGWO IDMOA LSHADE-
cnEpSin AGSK RLAOA

F14

Min 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01

Max 9.98E-01 1.08E+01 1.99E+00 9.98E-01 2.98E+00 1.99E+00 2.98E+00 1.08E+01

Avg. 9.98E-01 4.32E+00 1.05E+00 9.98E-01 1.15E+00 1.10E+00 1.25E+00 2.53E+00

STD 0.00E+00 3.38E+00 2.22E-01 1.69E-16 4.86E-01 3.06E-01 5.46E-01 2.35E+00

F15

Min 3.07E-04 6.74E-04 3.07E-04 3.08E-04 3.07E-04 3.07E-04 3.07E-04 3.07E-04

Max 3.07E-04 5.72E-03 3.07E-04 1.60E-03 1.22E-03 2.04E-02 4.27E-04 3.07E-04

Avg. 3.07E-04 2.83E-03 3.07E-04 6.25E-04 6.74E-04 1.51E-03 3.14E-04 3.07E-04

STD 3.20E-19 1.50E-03 3.57E-19 3.46E-04 4.60E-04 4.46E-03 2.67E-05 6.90E-19

F16

Min −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316

Max −1.0316 −1.0282 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316

Avg. −1.0316 −1.0308 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316

STD 1.99E-08 9.54E-04 2.28E-16 2.10E-16 1.84E-16 1.97E-16 4.74E-08 2.10E-16

F17

Min 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789

Max 0.39789 0.39790 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789

Avg. 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789

STD 1.79E-14 2.64E-06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.68E-06 0.00E+00

F18

Min 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000

Max 3.0000 3.0023 3.0000 3.0000 3.0000 3.0000 3.0000 84.0000

Avg. 3.0000 3.0003 3.0000 3.0000 3.0000 3.0000 3.0000 7.0500

STD 8.46E-16 6.09E-04 1.03E-15 3.05E-15 3.10E-15 1.30E-15 4.46E-06 1.81E+01

F19

Min −3.8628 −3.8261 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628

Max −3.8628 −3.6173 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628

Avg. −3.8628 −3.7714 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628

STD 2.24E-15 5.26E-02 2.28E-15 2.26E-15 2.00E-15 2.28E-15 3.67E-06 2.24E-15

F20

Min −3.3220 −3.1997 −3.3220 −3.3220 −3.3220 −3.3220 −3.3220 −3.3220

Max −3.2031 −1.4209 −3.2031 −3.1327 −3.2031 −3.2031 −3.2007 −3.2031

Avg. −3.2507 −2.6042 −3.2982 −3.2736 −3.2447 −3.2566 −3.2980 −3.2744

STD 5.98E-02 4.06E-01 4.88E-02 7.02E-02 5.82E-02 6.07E-02 4.91E-02 5.98E-02

F21

Min −10.1532 −5.0552 −5.0552 −10.1532 −10.1532 −10.1532 −10.1531 −10.1532

Max −10.1532 −5.0552 −5.0552 −5.0552 −5.0552 −2.6305 −10.1513 −2.6305

Avg. −10.1532 −5.0552 −5.0552 −9.3885 −9.8983 −7.4830 −10.1526 −7.4830

STD 3.05E-15 2.80E-07 0.00E+00 1.87E+00 1.14E+00 2.79E+00 4.56E-04 2.79E+00
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Table 3. Cont.

Functions MLBRSA RSA IRSA RLBGWO IDMOA LSHADE-
cnEpSin AGSK RLAOA

F22

Min −10.4029 −5.0877 −5.0877 −10.4029 −10.4029 −10.4029 −10.4029 −10.4029

Max −10.4029 −5.0877 −5.0877 −5.0877 −5.0877 −5.0877 −10.4009 −1.8376

Avg. −10.4029 −5.0877 −5.0877 −9.8714 −9.8714 −8.0111 −10.4021 −7.7122

STD 3.36E-15 9.43E-07 1.93E-15 1.64E+00 1.64E+00 2.71E+00 6.10E-04 3.14E+00

F23

Min −10.5364 −5.1285 −10.5364 −10.5364 −10.5364 −10.5364 −10.5362 −10.5364

Max −10.5364 −5.1285 −5.1285 −10.5363 −5.1285 −5.1285 −10.5342 −1.6766

Avg. −10.5364 −5.1285 −5.6693 −10.5364 −9.7252 −8.3732 −10.5356 −7.8007

STD 2.97E-15 2.01E-06 1.66E+00 2.03E-05 1.98E+00 2.72E+00 5.13E-04 3.54E+00

Tables 1–3 provide a comprehensive overview of the performance of the proposed MLBRSA, and
the results are quite impressive. Across most of the standard test functions, the MLBRSA consistently
delivered optimal results. This superior performance is evident in the best results and the average
and STD values, which offer insights into the central tendency and variability of the algorithm’s
outcomes. Exploitation in optimization refers to an algorithm’s ability to refine its search and hone
in on the best solutions in a local area. The test functions F1 through F7 serve as a measure of this
capability. A closer look at Table 1 reveals that the MLBRSA emerged as the top performer in six of
these seven functions. This dominance underscores the MLBRSA’s exceptional ability to exploit and
find optimal solutions, outshining all other algorithms under consideration. Exploration pertains
to an algorithm’s capacity to search widely across the solution space, ensuring it does not miss
out on potential optimal solutions in distant regions. The test functions F8 through F13 gauge this
ability. Table 2 shows that, out of these six functions, the MLBRSA surpassed other algorithms in all
six, highlighting its robust exploration capabilities. The test functions F14 through F23 assess an
algorithm’s proficiency in navigating low-dimensional search spaces. The MLBRSA’s prowess is
also evident here, with the algorithm delivering superior results in ten functions. This demonstrates
its versatility in handling both complex and simpler problem spaces. The standout performance
of the MLBRSA across most test functions can be attributed to its integration of QL, competitive
learning, and adaptive learning. These methodologies enhance both the exploitation and exploration
abilities of the algorithm. In contrast, the RSA, which serves as a comparison, struggles due to an
imbalance in its exploration and exploitation dynamics. Figure 4 provides a visual representation of
various metrics across 23 test functions. Some key observations include: (i) Trajectory curve: This
curve tracks the progression of the baseline parameter of the initial population over iterations. It
reveals that solutions in the MLBRSA undergo significant shifts in the early phases, which taper off
as the algorithm progresses. By the end, the MLBRSA stabilizes, effectively utilizing the available
solution space; (ii) Mean fitness curves: These curves depict the evolution of the average fitness of the
population over time, offering insights into the algorithm’s performance trajectory; (iii) Search space
coverage: the MLBRSA excels in thoroughly scanning the solution space, as evident from its focus
on potential solution areas in the search history; (iv) Exploratory activity: the trajectories showcase
the MLBRSA’s primary exploration activities, characterized by sudden, decisive movements. This
indicates the algorithm’s agility in navigating the solution space; and (v) Convergence and global best
search: the MLBRSA’s ability to converge rapidly and relentless pursuit of the global best solution
are also evident.
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Figure 4. Visual representation of various metrics for numerical test functions. 

5.1.2. Dimensionality Analysis 
The performance of the MLBRSA is further scrutinized by examining its behavior in 

high-dimensional spaces. High dimensionality can pose significant challenges to optimi-
zation algorithms as the solution space grows exponentially, making it harder to find op-
timal solutions. The primary goal is understanding how the MLBRSA fares when con-
fronted with large dimensions. This is crucial because the ability to handle high dimen-
sionality is a testament to an algorithm’s robustness and versatility. Several statistical met-
rics are used to provide a comprehensive understanding of the performance across differ-
ent algorithms. These include Min, Max, Mean, and STD. The outcomes based on these 
metrics for all the considered algorithms are tabulated in Table A2 (for 100 dimensions) 
and Table A3 (for 500 dimensions). The functions F1 through F13 are chosen for this anal-
ysis, with two distinct dimensional settings, 100 and 500. The population size for the al-
gorithm is set at 30, and the algorithm is allowed to run for a maximum of 500 iterations. 
As seen in Table A2, the MLBRSA exhibits remarkable prowess. Specifically, when dealing 
with the functions F1–F13 set at 100 dimensions, the MLBRSA consistently outshines other 
algorithms. This dominance is evident across almost all the tests conducted, underscoring 
its ability to handle moderately high-dimensional problems easily. Moving to a much 
higher dimensionality, Table A3 presents the results for the 500-dimensional setting. Here, 
the challenge is significantly amplified due to the vastness of the solution space. Yet, the 
MLBRSA rises to the occasion, outperforming all other algorithms in 12 of 13 problems. 
This is a testament to its robust design and capabilities. The standout performance of the 
MLBRSA, especially in high-dimensional spaces, can be attributed to its integration of 
multi-learning techniques. These techniques enhance the algorithm’s ability to navigate 
vast solution spaces efficiently, ensuring that it does not get trapped in suboptimal solu-
tions and continues its pursuit of the best possible outcomes. In summary, the MLBRSA’s 
performance in moderate (100 dimensions) and high (500 dimensions) dimensional spaces 
underscores its versatility and robustness. Its design, especially the incorporation of multi-
learning, is pivotal in ensuring its dominance across a wide range of problems. 

5.1.3. Complexity Analysis  
The computation time, often referred to as the run time (RT), is a crucial metric when 

evaluating the efficiency of algorithms. It provides insights into how quickly an algorithm 
can produce results, which is especially important in real-time applications or scenarios 
with tight computational budgets. The primary objective is to understand the proposed 
MLBRSA’s computational efficiency compared to other algorithms. The RT values serve 
as a direct measure of this efficiency. All the RT values for the considered algorithms are 
systematically presented in Table A4. This table offers a side-by-side comparison, enabling 
readers to gauge the relative computational speeds of the algorithms quickly. A closer 
examination of Table A4 reveals that the mean RT for the suggested MLBRSA is 0.08 s. 
This is marginally higher than the basic RSA, which has an average RT of 0.18 s across all 
23 test functions. This slight increase in RT for the MLBRSA might be attributed to 
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5.1.2. Dimensionality Analysis
The performance of the MLBRSA is further scrutinized by examining its behavior in high-

dimensional spaces. High dimensionality can pose significant challenges to optimization algorithms
as the solution space grows exponentially, making it harder to find optimal solutions. The primary
goal is understanding how the MLBRSA fares when confronted with large dimensions. This is crucial
because the ability to handle high dimensionality is a testament to an algorithm’s robustness and
versatility. Several statistical metrics are used to provide a comprehensive understanding of the
performance across different algorithms. These include Min, Max, Mean, and STD. The outcomes
based on these metrics for all the considered algorithms are tabulated in Table A2 (for 100 dimensions)
and Table A3 (for 500 dimensions). The functions F1 through F13 are chosen for this analysis, with
two distinct dimensional settings, 100 and 500. The population size for the algorithm is set at 30,
and the algorithm is allowed to run for a maximum of 500 iterations. As seen in Table A2, the
MLBRSA exhibits remarkable prowess. Specifically, when dealing with the functions F1–F13 set at
100 dimensions, the MLBRSA consistently outshines other algorithms. This dominance is evident
across almost all the tests conducted, underscoring its ability to handle moderately high-dimensional
problems easily. Moving to a much higher dimensionality, Table A3 presents the results for the 500-
dimensional setting. Here, the challenge is significantly amplified due to the vastness of the solution
space. Yet, the MLBRSA rises to the occasion, outperforming all other algorithms in 12 of 13 problems.
This is a testament to its robust design and capabilities. The standout performance of the MLBRSA,
especially in high-dimensional spaces, can be attributed to its integration of multi-learning tech-
niques. These techniques enhance the algorithm’s ability to navigate vast solution spaces efficiently,
ensuring that it does not get trapped in suboptimal solutions and continues its pursuit of the best
possible outcomes. In summary, the MLBRSA’s performance in moderate (100 dimensions) and high
(500 dimensions) dimensional spaces underscores its versatility and robustness. Its design, especially the
incorporation of multi-learning, is pivotal in ensuring its dominance across a wide range of problems.

5.1.3. Complexity Analysis
The computation time, often referred to as the run time (RT), is a crucial metric when evaluating

the efficiency of algorithms. It provides insights into how quickly an algorithm can produce results,
which is especially important in real-time applications or scenarios with tight computational budgets.
The primary objective is to understand the proposed MLBRSA’s computational efficiency compared
to other algorithms. The RT values serve as a direct measure of this efficiency. All the RT values for
the considered algorithms are systematically presented in Table A4. This table offers a side-by-side
comparison, enabling readers to gauge the relative computational speeds of the algorithms quickly.
A closer examination of Table A4 reveals that the mean RT for the suggested MLBRSA is 0.08 s.
This is marginally higher than the basic RSA, which has an average RT of 0.18 s across all 23 test
functions. This slight increase in RT for the MLBRSA might be attributed to additional features or
complexities introduced in the algorithm to enhance its optimization capabilities. One reason could
be the lower computational complexity inherent to the RSA. However, it is essential to note that
while the RSA might be faster, its performance in terms of optimization is subpar for all the selected
test functions. This highlights a trade-off between speed and optimization quality. In the grand
scheme of things, the proposed MLBRSA ranks second in terms of RT. This places it behind only
two other algorithms but ahead of several others. While the MLBRSA might not be the fastest
in terms of computation time, it is essential to consider the balance between speed and optimization
performance. An algorithm might be swift but not provide the best optimization results, making the
slight increase in RT for better performance a worthy trade-off in many scenarios. In summary, while
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the proposed MLBRSA might take slightly longer to compute than others, its superior optimization
capabilities make it a valuable choice. The detailed analysis of RT values underscores the importance
of considering speed and quality when evaluating optimization algorithms.

5.1.4. Statistical Test Analysis
The evaluation of algorithms often necessitates a rigorous statistical approach to ensure that

the observed results are valid and reliable. One of the primary tools in this regard is the statistical
rank test. This test is essential to rank and compare algorithms based on their observed performance
metrics. By doing so, researchers can determine which algorithm is superior in specific contexts or
under certain conditions. The FRT is a prominent choice among the various statistical rank tests
available. It is renowned and widely adopted in research circles for its efficacy in ranking algorithms.
The FRT is a non-parametric test, which means it does not assume a specific distribution for the
underlying data. This makes it versatile and applicable to a wide range of datasets. It is an alternative
to the one-way ANOVA, which compares means across different groups. The FRT is particularly
suitable when the parameter under evaluation is continuous. It is designed to detect differences or
variations across multiple groups or sets. A critical aspect of any statistical test is the significance
level, which is set at 0.05 in this context. This means that there is a 5% risk of concluding that a
difference exists when, in reality, there is not. If the p-value (a measure of the evidence against
a null hypothesis) obtained from the test is less than or equal to this significance level, the null
hypothesis is rejected. In simpler terms, if the p-value is 0.05 or less, it suggests that not all group
median values are the same. This study employs the FRT as the primary tool to rank the algorithms.
This choice underscores the trust the research community places in the FRT for such evaluations.
Table A5 provides a comprehensive overview of the FRT values for all the algorithms across the
23 test functions under consideration. This table lists individual FRT values and presents the average
FRT values, which are pivotal in the ranking process. In summary, the FRT is a robust and reliable
tool for ranking algorithms in this research. By comparing the FRT values and using a stringent
significance level, the study ensures that the rankings are valid and scientifically sound. The detailed
presentation of these values in Table A5 further aids in transparency and clarity, allowing readers to
understand the relative performance of each algorithm.

5.1.5. Convergence Analysis
The performance of the MLBRSA, particularly its convergence activities, has been meticulously

studied. Convergence in optimization refers to the algorithm’s ability to approach and find the
optimal solution over iterations. The primary goal was to understand and evaluate the highest score
metric of the MLBRSA, specifically its ability to converge to the optimal value. This optimal value
is a benchmark to gauge how close the algorithm gets to the best possible solution. The speed at
which the MLBRSA converges to the optimal solution was analyzed for every benchmark function
used in the study. This speed is a testament to the algorithm’s efficiency and ability to find solutions
quickly. In order to provide a comprehensive perspective on the MLBRSA’s performance, it was
benchmarked against several other algorithms. The performance metrics were obtained over 30 runs
to ensure reliability and consistency in the results. Figure 5 provides a visual representation of
the convergence rates of the various algorithms. The MLBRSA, in most scenarios, showcases a
commendable convergence rate, often outpacing other methods. This is indicative of its robust
design and optimization capabilities. The results highlight the synergistic effect of integrating a multi-
learning strategy with the RSA. This integration has led to a marked enhancement in the convergence
efficiency of the optimization algorithm. Not only does the MLBRSA converge faster than other
algorithms, but it also reaches the optimal value in fewer iterations. This rapid convergence rate
sets it apart from other techniques, emphasizing its efficiency. Box plots are graphical tools that
visually represent data distribution through quartiles, depicting five key statistical metrics: the
minimum, first quartile (25th percentile), median (50th percentile), third quartile (75th percentile),
and maximum. These plots provide insights into the data’s spread, symmetry, and central tendency.
For all 23 benchmark functions, box plots were generated for each selected algorithm. These are
visually presented in Figure 6, offering a detailed view of the proposed algorithm’s data distribution
characteristics. It showcases the symmetry, spread, and centrality of the MLBRSA’s performance
metrics. A closer look at Figure 6 reveals that the statistical attributes of the MLBRSA surpass those
of all other algorithms under consideration.
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Figure 5. Convergence curves of all selected algorithms.
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Finally, the MLBRSA’s convergence capabilities have been thoroughly analyzed and bench-
marked against other algorithms. Its rapid convergence rate and ability to achieve optimal values
in fewer iterations underscore its superiority. The visual representations provided by the box plots
further emphasize its standout performance across various benchmark functions.

5.2. Engineering Design Optimization Problems
In this sub-section, we delve into evaluating the performance of the newly introduced MLBRSA.

This evaluation is done by applying it to five specific engineering design challenges. These challenges
include (i) welded beam design, (ii) pressure vessel design, (iii) tension/compression spring design,
(iv) three-bar truss design, and (v) tubular column design problems.

Each design problem has its constraints, making them particularly challenging. The primary
reason for choosing these specific problems is to rigorously test the capability of the MLBRSA
in effectively managing and solving constrained optimization challenges. To ensure a comprehensive
assessment, each algorithm, including the proposed MLBRSA, is run individually a total of 30 times.
For every run, a consistent population size of 30 is maintained. The maximum iteration count for all
these algorithms is also capped at 1000. One of the significant challenges in optimization problems is
managing constraints. This study has employed the static penalty constraint handling mechanism
to address this [105]. This mechanism aids in ensuring that the constraints are adhered to during
the optimization process. It is essential to note that the objective functions chosen for all the design
mentioned above problems are geared towards minimization. In other words, these optimization
problems aim to find the smallest possible value that satisfies all the given constraints.

5.2.1. Welded Beam Design Problem
The main objective of the welded beam design problem is to identify the optimal cost while

considering the constraints. The problem considers four design variables x = [x1, x2, x3, x4], i.e.,
[h, l, t, b], in which l defines the length, b defines bar thickness, t defines the weld thickness, and h
defines the height. The welded design problem has five equality constraints such as beam blending
stress (θ), shear stress (τ), bar buckling load (Pc), beam end deflection (δ), and side constraints.
The upper bounds and lower bounds of all design variables are 0.1 6 x1 6 2, 0.1 6 x2 6 10,
0.1 6 x3 6 10, and 0.1 6 x4 6 2. In addition, other design variables are selected as σmax = 30, 000 psi,
τmax = 13, 600 psi, G = 12× 106 psi, E = 30× 16 psi, δmax = 0.25 in., L = 14 in., and P = 6000 lb.
The welded beam design is illustrated in Figure 7. The fitness function and the constraints of the
welded beam design problem are as follows [106]:

f1(x) = 1.10471 x2
1x2 + 0.04811 x3x4(14 + x2) (28)

subjected to:

g1

(→
x
)
= τ

(→
x
)
− τmax 6 0

g2

(→
x
)
= σ

(→
x
)
− σmax 6 0

g3

(→
x
)
= δ

(→
x
)
− δmax 6 0

g4

(→
x
)
= x1 − x4 6 0

g5

(→
x
)
= P− Pc

(→
x
)
6 0

g6

(→
x
)
= 0.125− x1 6 0

g7

(→
x
)
= 1.10471x2

1 + 0.04811x3x4(14.0 + x2)− 5.0 6 0



(29)
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The results obtained by the MLBRSA and other algorithms, such as the IRSA, RSA, RLBGWO,
IDMOA, LSHADE-cnEpSin, AGSK, and RLAOA, are listed in Table 4. Table 4 shows that the MLBRSA
outperformed all of the other approaches and cost the least. Table 4 additionally includes statistical
information such as the Min, Mean, STD, and RT. As a result, it is decided that the suggested MLBRSA
is more reliable for the welded beam design optimization problem. The convergence curves and
boxplot analysis of all algorithms are shown in Figure 12b and Figure 13b. Furthermore, all FRT
values derived by all algorithms are presented. The proposed MLBRSA comes out on top when it
comes to solving the welded beam design challenge.

Table 4. Results obtained for the welded beam problem.

Algorithm h l t b Min Max Avg. STD RT FRT

MLBRSA 0.2057 3.2530 9.0366 0.2057 1.695E+00 1.695E+00 1.695E+00 3.014E-16 0.49 1.38

IRSA 0.2057 3.2530 9.0366 0.2057 1.695E+00 1.695E+00 1.695E+00 4.874E-09 0.73 4.05

RSA 0.2057 3.2530 9.0366 0.2057 1.695E+00 1.695E+00 1.695E+00 3.374E-06 0.11 4.65

RLBGWO 0.2057 3.2530 9.0366 0.2057 1.695E+00 1.703E+00 1.696E+00 1.860E-03 1.08 6.80

IDMOA 0.2057 3.2531 9.0366 0.2057 1.695E+00 1.790E+00 1.716E+00 3.029E-02 0.68 7.80

LSHADE-
cnEpSin 0.2057 3.2530 9.0366 0.2057 1.695E+00 1.695E+00 1.695E+00 3.602E-16 0.84 1.63

AGSK 0.2057 3.2530 9.0366 0.2057 1.695E+00 1.695E+00 1.695E+00 2.211E-05 0.53 4.90

RLAOA 0.2057 3.2530 9.0366 0.2057 1.695E+00 1.695E+00 1.695E+00 4.925E-05 0.62 4.80

5.2.2. Pressure Vessel Design Problem
Figure 8 depicts the schematic of the pressure vessel design optimization problem. The pressure

vessel features capped ends and hemispherical heads. Minimization of construction costs is the
primary objective of this problem. It considers four control vectors x = [x1, x2, x3, x4] = [Ts, Th, R, L],
where Ts denotes the shell thickness, Th denotes the head thickness, R denotes the inner radius, and
L denotes the cylindrical section length. This problem also has four equality constraints, as listed
in Equation (31). The bounds of variables are 0 ≤ Ts, Th ≤ 99 and 10 ≤ R, L ≤ 200. Equation (30)
denotes the primary objective of the pressure vessel design problem [106]:

f2(x) = 0.6224 x1x3x4 + 1.7781 x2x2
3 + 3.1661 x2

1x4 + 19.84 x2
1x3 (30)

subjected to:
g1(x) = −x1 + 0.0193x

g2(x) = −x2 + 0.00954x3 ≤ 0
g3(x) = −πx2

3x4 − (4/3)πx3
3 + 1, 296, 000 ≤ 0

g4(x) = x4 − 240 ≤ 0
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Figure 8. Structure of pressure vessel design.

The results obtained by the MLBRSA and other algorithms, such as the IRSA, RSA, RLBGWO,
IDMOA, LSHADE-cnEpSin, AGSK, and RLAOA, are listed in Table 5. Table 5 shows that the
MLBRSA outperformed all of the other approaches, and the obtained cost is minimal compared to
other algorithms. Table 5 includes statistics such as the Min, Mean, STD, and RT. As a result, it is
decided that the suggested MLBRSA is a reliable tool for the pressure vessel design optimization
problem. The convergence curves and boxplot analysis of all algorithms are shown in Figures 12b and
13b. Furthermore, all FRT values derived by all algorithms are presented. The proposed MLBRSA
comes out on top when it comes to solving the welded beam design challenge.
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Table 5. Results obtained for the pressure vessel design problem.

Algorithm Ts Th R L Min Max Avg. STD RT FRT

MLBRSA 1.094 2.94E-18 65.225 10.000 2.303E+03 2.303E+03 2.303E+03 0.000E+00 0.18 1.00

IRSA 1.094 0.00E+00 65.225 10.000 2.303E+03 2.303E+03 2.303E+03 3.460E-13 0.81 4.50

RSA 1.094 5.01E-23 65.225 10.000 2.303E+03 2.303E+03 2.303E+03 0.000E+00 0.08 3.55

RLBGWO 1.094 0.00E+00 65.225 10.000 2.303E+03 6.055E+03 2.876E+03 1.188E+03 0.57 6.35

IDMOA 1.094 6.12E-18 65.225 10.000 2.303E+03 2.303E+03 2.303E+03 3.904E-13 0.34 4.83

LSHADE-
cnEpSin 2.768 −4.51E+01 205.691 9.997 −3.347E+06 −2.478E+05 −1.368E+06 7.297E+05 0.85 6.83

AGSK 1.094 1.30E-17 65.225 10.000 2.303E+03 3.624E+03 2.567E+03 5.424E+02 0.28 3.55

RLAOA 1.094 3.57E-19 65.225 10.000 2.303E+03 3.637E+03 2.766E+03 6.477E+02 0.37 5.40

5.2.3. Tension/Compression Spring Design Problem
Another classic mechanical engineering design that has been considered is the tension/compression

spring design. The main objective of the spring design problem is to reduce the tension spring
weight of the framework, and the structure is depicted in Figure 9. It considers three control vectors
x = [x1, x2, x3] = [d, D, N], where D denotes the mean coil dia, d denotes the wire dia, and N denotes
active coils. This problem also has four equality constraints, as listed in Equation (33). The bounds
of variables are 0.05 ≤ d ≤ 2, 0.25 ≤ D ≤ 1.3, and 2 ≤ N ≤ 15. Equation (32) denotes the primary
objective of the tension/compression spring design problem [106]:

f3

(→
x
)
= (x3 + 2)x2x2

1 (32)

subjected to:

g1

(→
x
)
= 1− x3

2 x3

71785x4
1
≤ 0

g2

(→
x
)
=

4x2
2−x1x2

12566(x2x3
1−x4

1)
+ 1

5108x2
1
− 1 ≤ 0

g3

(→
x
)
= 1− 140.45x1

x2
2 x3

≤ 0

g4

(→
x
)
= x1+x2

1.5 − 1 ≤ 0


(33)
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Figure 9. Structure of the tension/compression spring design.

The results obtained by the MLBRSA and other algorithms, such as the IRSA, RSA, RLBGWO,
IDMOA, LSHADE-cnEpSin, AGSK, and RLAOA, are listed in Table 6. Table 6 shows that the MLBRSA
outperformed all of the other approaches, and the obtained weight is minimal compared to other
algorithms. Table 6 includes statistics such as the Min, Mean, STD, and RT. As a result, it is decided
that the suggested MLBRSA is a reliable tool for the tension/compression design optimization
problem. The convergence curves and boxplot analysis of all algorithms are shown in Figures 12b and
13b. Furthermore, all FRT values derived by all algorithms are presented. The proposed MLBRSA
comes out on top when it comes to solving the tension/compression spring design challenge.
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Table 6. Results obtained for the tension/compression spring design problem.

Algorithm d D P Min Max Avg. STD RT FRT

MLBRSA 0.1391 1.3000 11.8924 3.662E+00 3.662E+00 3.662E+00 8.087E-16 0.23 2.08

IRSA 0.1391 1.3000 11.8924 3.662E+00 3.662E+00 3.662E+00 1.248E-15 0.85 6.70

RSA 0.1391 1.3000 11.8924 3.662E+00 3.662E+00 3.662E+00 1.197E-15 0.10 3.90

RLBGWO 0.1391 1.3000 11.8924 3.662E+00 3.662E+00 3.662E+00 1.317E-15 0.61 6.85

IDMOA 0.1391 1.3000 11.8924 3.662E+00 3.662E+00 3.662E+00 2.213E-15 0.54 6.10

LSHADE-
cnEpSin 0.1413 1.3626 10.9903 3.639E+00 3.639E+00 3.639E+00 6.040E-09 0.80 1.00

AGSK 0.1391 1.3000 11.8924 3.662E+00 3.662E+00 3.662E+00 1.305E-15 0.31 4.43

RLAOA 0.1391 1.3000 11.8924 3.662E+00 3.662E+00 3.662E+00 1.462E-15 0.37 4.95

5.2.4. Three-Bar Truss Design Problem
The primary objective of the three-bar truss design is to reduce the weight of the bar construc-

tions. The problem has three equality constraints, including each bar’s stress, buckling, and deflection.
The problem has three control vectors: x = [x1, x2, x3 = x1] = [A1, A2]. The bounds of variables are
0 ≤ x1, x2, x3 ≤ 1, and the values of a few other parameters are l = 100 cm, P = 2 kN/cm2, and
σ = 2 kN/cm2. The primary objective is presented in Equation (34), and the equality constraints are
listed in Equation (35). The structure of the three-bar truss is shown in Figure 10 [106].
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The results obtained by the MLBRSA and other algorithms, such as the IRSA, RSA, RLBGWO,
IDMOA, LSHADE-cnEpSin, AGSK, and RLAOA, are listed in Table 7. Table 7 shows that the MLBRSA
outperformed all of the other approaches, and the obtained weight is minimal compared to other
algorithms. Table 7 includes statistics such as the Min, Mean, STD, and RT. As a result, it is decided
that the suggested MLBRSA is a reliable tool for the three-bar truss design optimization problem.
The convergence curves and boxplot analysis of all algorithms are shown in Figures 12b and 13b.
Furthermore, FRT values derived by all algorithms are presented. The proposed MLBRSA comes out
on top when it comes to solving the welded beam design challenge.
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Table 7. Results obtained for the three-bar truss design problem.

Algorithm x1 x2 Min Max Avg. STD RT FRT

MLBRSA 0.78685 0.28801 1.864E+02 1.864E+02 1.864E+02 5.832E-14 0.14 2.55

IRSA 0.78685 0.28801 1.864E+02 1.864E+02 1.864E+02 4.829E-12 0.85 8.00

RSA 0.78685 0.28801 1.864E+02 1.864E+02 1.864E+02 7.434E-14 0.08 4.25

RLBGWO 0.78685 0.28801 1.864E+02 1.864E+02 1.864E+02 6.520E-14 0.56 5.15

IDMOA 0.78685 0.28801 1.864E+02 1.864E+02 1.864E+02 8.118E-14 0.46 4.38

LSHADE-
cnEpSin 0.78685 0.28801 1.864E+02 1.864E+02 1.864E+02 5.609E-14 0.50 2.90

AGSK 0.78685 0.28801 1.864E+02 1.864E+02 1.864E+02 7.290E-14 0.28 4.40

RLAOA 0.78685 0.28801 1.864E+02 1.864E+02 1.864E+02 7.290E-14 0.37 4.38

5.2.5. Tubular Column Design Problem
To handle a compressive load P of 2500 kgf for the least cost, a uniform column of the tubu-

lar section should be built with hinge joints at both ends. The structure of the tubular column de-
sign is depicted in Figure 11. The material used to make the column has a yield strength (σy) of
500 kgf/cm3, an elastic modulus (E) of 0.85 × 106 kgf/cm2, and a weight density (ρ) of 0.0025 kgf/cm3.
The column measures 250 cm in length (L). The column’s stress should be less than the yield stress
(constraint g1) and buckling stress, respectively (constraint g2). The column’s average diameter is
limited to being between 2 and 14 cm, and columns thicker than 0.2 to 0.8 cm are not readily accessible
on the market. The cost of the column is expressed as 5 W + 2d, where W is the weight in kg of
force and d is the average diameter of the column in centimetres. The objective function is presented
in Equation (36), and six equality constraints are listed in Equation (37). It considers two control vectors
x = [x1, x2] = [d, t] [106]:

f5

(→
x
)
= 9.8× d× t + 2× d (36)

subject to:
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(→
x
)
= P

πdt ≤ σy
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x
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8L2 ≤ 0
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x
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x
)
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x
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(37)

Figure 11. Structure of the tubular column design.
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The results obtained by the MLBRSA and other algorithms, such as the IRSA, RSA, RLBGWO,
IDMOA, LSHADE-cnEpSin, AGSK, and RLAOA, are listed in Table 8. Table 8 shows that the
MLBRSA outperformed all of the other approaches, and the obtained cost is minimal compared to
other algorithms. Table 8 includes statistics such as the Min, Mean, STD, and RT. As a result, it is
decided that the suggested MLBRSA is a reliable tool for the tubular column design optimization
problem. The convergence curves and boxplot analysis of all algorithms are shown in Figures 12b
and 13b. Furthermore, FRT values derived by all algorithms are presented. The proposed MLBRSA
comes out on top when it comes to solving the tubular column design challenge.

Table 8. Results obtained for the tubular column design problem.

Algorithm d t Min Max Avg. STD RT FRT

MLBRSA 5.45273 0.29154 2.649E+01 2.649E+01 2.649E+01 7.290E-15 0.38 4.03

IRSA 5.45273 0.29154 2.649E+01 2.649E+01 2.649E+01 7.290E-15 0.82 4.03

RSA 5.45273 0.29154 2.649E+01 2.649E+01 2.649E+01 7.514E-15 0.55 4.23

RLBGWO 5.45273 0.29154 2.649E+01 2.649E+01 2.649E+01 8.816E-15 0.07 6.43

IDMOA 5.45273 0.29154 2.649E+01 2.649E+01 2.649E+01 1.031E-14 0.15 5.23

LSHADE-
cnEpSin 5.45273 0.29154 2.649E+01 2.649E+01 2.649E+01 7.290E-15 0.56 4.03

AGSK 5.45273 0.29154 2.649E+01 2.649E+01 2.649E+01 7.290E-15 0.28 4.03

RLAOA 5.45273 0.29154 2.649E+01 2.649E+01 2.649E+01 7.290E-15 0.37 4.03Biomimetics 2023, 8, x FOR PEER REVIEW 36 of 52 
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5.3. Results Obtained for SRP Problem
The software requirement prioritization problem is a multifaceted challenge that demands a

balance between various factors such as cost, value, and importance. In this section, we dissect
the results obtained from the RSA and its enhanced version, i.e., the MLBRSA, to understand their
efficacy in addressing this challenge. This study ignored the comparison among other peers, such as
the RLBGWO, IDMOA, LSHADE-cnEpSin, AGSK, and RLAOA. The comparison is unfair because
none of the selected algorithms are utilized for this objective. Therefore, this study considered the
original RSA and the proposed MLBRSA to prove the superiority of the MLBRSA over the RSA,
but not others. The RSA and MLBRSA are applied to the SRP problem directly. Each algorithm is
executed 30 times individually for a fair comparison. The population size and the maximum number
of iterations are selected as 30 and 100, respectively. All other parameters of the RSA and MLBRSA
are selected as per the previous discussions. The data required for the SRP is available in [105].

Firstly, the bar graph between the total value and cost is shown in Figure 14. The bar graph
offers a clear visual representation of the balance RSA strikes between value and cost. While the RSA
does manage to select requirements that offer value, it occasionally overshoots the budget, suggesting
potential inefficiencies or a lack of stringent adherence to budget constraints. The performance
of the MLBRSA is notably superior. The algorithm consistently zeroes in on requirements that
maximize value while ensuring costs are kept within the stipulated budget. This demonstrates the
efficacy of the proposed strategy. Figure 15 shows the pie chart between the proportion of selected
and non-selected requirements obtained by both the RSA and MLBRSA. The pie chart reveals the
RSA’s inclination to select a substantial portion of the available requirements. This might indicate a
broader, less discriminating selection approach, which could include less critical requirements at the
expense of more pivotal ones. The proposed MLBRSA showcases a more discerning selection process.
The algorithm’s focus on high-value and high-importance requirements ensures that the selections
are more attuned to project priorities.
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Figure 16 shows the distribution of the costs for the selected requirements obtained by the RSA
and MLBRSA. The histogram shows the diversity in the costs of the requirements chosen by the
RSA. While diversity is commendable, the spread suggests that the algorithm might not always
prioritize the most value-driven requirements. The proposed MLBRSA leans towards higher-value
requirements, even if they are associated with a slightly elevated cost. This suggests a more value-
centric selection approach, which is crucial for projects with tight budgets. Figure 17 shows the
heatmap of the importance and cost. The original RSA’s heatmap indicates a somewhat scattered
approach. The algorithm sometimes leans towards medium and low-importance requirements, even
with a higher price tag. This could lead to suboptimal selections when budget constraints are tight.
The proposed MLBRSA’s heatmap is evidence of its refined selection process. The pronounced
selection of high-importance requirements, even those with steeper costs, aligns perfectly with the
proposed strategies’ focus on importance.
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This clustering indicates the MLBRSA’s capability to identify and prioritize high-value 
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Figure 18 shows the scatter plot between the value and the cost. While the RSA’s selections
are dispersed, the MLBRSA’s choices cluster around high-value requirements. This clustering
indicates the MLBRSA’s capability to identify and prioritize high-value requirements consistently.
Figure 19 shows the distribution by importance, and Figure 18 shows the ability of the proposed
MLBRSA to prioritize ‘High’ importance requirements, further emphasizing its alignment with project
priorities. Figure 20 shows the line graph of cost and the accumulated value. The proposed algorithm
obtained a steeper curve, and it is indicative of its efficiency. The algorithm accumulates value at a
faster rate relative to cost, showcasing its prowess in maximizing value while being cost-effective.
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Figure 21 shows the important distribution of selected requirements. The pie chart for RSA
reveals a somewhat even distribution across the importance categories. While this might suggest a
balanced approach, it also indicates that the RSA might not emphasize high-importance requirements,
which are crucial for the project’s success. In contrast, the proposed MLBRSA significantly emphasizes
high-importance requirements. This is a testament to the algorithm’s refined selection process, which
prioritizes requirements deemed critical for the project.
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Figure 22 shows the budget utilization. It demonstrates the prowess of the proposed MLBRSA
in budget management. Not only does it ensure that the selected requirements offer maximum value,
but it also ensures that the total cost remains within the stipulated budget. This is crucial for projects
where budget adherence is non-negotiable. Figure 23 shows the histogram for weighted values of
selected requirements. This histogram provides a deeper insight into the value-centric approach of
the MLBRSA. The pronounced peaks in the higher weighted value regions indicate that the MLBRSA
consistently selects requirements that offer the best value for money. This aligns with the objective
function’s focus on maximizing weighted value.
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In summary, the comparative analysis is discussed as follows: (i) Value Maximization: Across all
visual representations, the MLBRSA consistently outshines RSA in terms of maximizing value. This
is particularly evident in Figures 14, 18 and 20; (ii) Budget Adherence: the MLBRSA’s stringent adher-
ence to budget constraints, as seen in Figure 14, sets it apart from the RSA.
Figure 20 underscores the MLBRSA’s unmatched ability to maximize value while ensuring strict
adherence to the budget; (iii) Importance Consideration: Figures 17 and 18 highlight the superior
capability of the MLBRSA to prioritize and select high-importance requirements. Figure 19 showcases
the MLBRSA’s superior capability to prioritize and select high-importance requirements. While the
RSA offers a balanced approach, the MLBRSA’s focus on high-importance requirements ensures that
the project’s critical needs are addressed; (iv) Efficiency in Value Accumulation: Figure 19 showcases
the MLBRSA’s unmatched efficiency in rapidly accumulating value relative to cost; and (v) Value-
Centric Approach: Figure 23 provides compelling evidence of the MLBRSA’s value-driven selection
process. The pronounced peaks in the higher weighted value regions indicate the MLBRSA’s ability
to identify and prioritize high-value requirements consistently.

The visual representations prove the superiority of the proposed MLBRSA in addressing the
software requirement prioritization problem. While the RSA offers a broad-based approach, the
MLBRSA’s refined objective function and additional constraints ensure a more targeted, value-driven,
and budget-conscious selection process. The RSA’s broader selection might suit projects with flexible
budgets and less stringent requirement priorities. However, for projects where every dollar counts
and priorities are non-negotiable, the MLBRSA’s discerning and value-centric approach is invaluable.
The results offer a clear visual representation of how both algorithms prioritize importance. While
the RSA’s balanced approach might seem commendable, the proposed MLBRSA’s emphasis on
high-importance requirements aligns better with the project’s critical needs. Budget management is
another area where the proposed MLBRSA shines.

Projects often grapple with budget constraints, making it imperative for the selection process
to offer maximum value without overshooting the budget. In addition, the provided results also
offer a deep dive into the value-centric approach of the algorithms. The RSA’s selections, while
valuable, often do not offer the best value for money. The proposed MLBRSA, with its pronounced
peaks in the higher weighted value regions, consistently zeroes in on requirements that offer the
best bang for the buck. In conclusion, the visual representations provide compelling evidence of
the proposed MLBRSA’s refined, value-driven, and budget-conscious selection process. For projects
where importance prioritization, budget adherence, and value maximization are paramount, the
proposed MLBRSA emerges as the clear winner.

6. Conclusions
The introduction of the Multi-Learning-Based Reptile Search Algorithm (MLBRSA) marks a

pivotal moment in the landscape of computational problem-solving. By seamlessly intertwining
the principles of QL, competitive learning, and adaptive learning, the MLBRSA emerges as an en-
couragement of modernization, setting a new benchmark for algorithmic efficiency and versatility.
Its inherent design, which capitalizes on reinforcement, competition, and adaptability, equips it
with a unique prowess to delve deep into complex problem terrains and extract optimal solutions.
By amalgamating the principles of QL, competitive learning, and adaptive learning, the MLBRSA
not only addresses the inherent challenges posed by complex engineering problems but also excels
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in the domain of software requirement prioritization. Its unique ability to combine reinforcement,
competition, and adaptability ensures it can navigate intricate problem spaces, continually refining
its solutions. The empirical validations, as evidenced by its applications to numerical benchmarks
and real-world engineering problems, not only validate its theoretical soundness but also highlight
its practical relevance. In the software development sphere, where the prioritization of requirements
is often a daunting task fraught with uncertainties, the MLBRSA performed well. In the context of
software development, the algorithm’s proficiency at ranking requirements ensures that pivotal soft-
ware functionalities receive the attention they warrant, thereby optimizing the development process.
It offers a systematic, experience-driven approach to ensure that pivotal software functionalities are
not just recognized but also prioritized, optimizing the overall development trajectory.

Looking ahead, the potential applications of the MLBRSA are vast. Given its demonstrated
proficiency, it can be extended to other domains, such as artificial intelligence, robotics, and bioinfor-
matics. The adaptability of the algorithm suggests that it could be fine-tuned for specific industry
challenges, paving the way for more specialized versions of the MLBRSA. Additionally, integrating
the MLBRSA with other advanced computational techniques could further enhance its capabilities.
There is also scope for exploring the algorithm’s performance in dynamic environments, where
problem parameters change over time. Lastly, as the world of software development continues to
evolve, understanding how the MLBRSA can be integrated into modern agile and DevOps practices
will be crucial.
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Appendix A

Table A1. Various parameters of the selected algorithms.

S. No. Algorithm Parameters

1 RSA α = 0.1 and β = 0.005

2 MLBRSA α and β are adaptable, Exploration rate ξ = 0.1, Learning rate for QL
λ = 0.5, Discount factor γ = 0.9

3 RLBGWO Exploration rate ξ = 0.1, Learning rate for QL λ = 0.5, Discount factor
γ = 0.9

4 IDMOA phi = [−1, 1], CF = [0, 1]

5 IRSA α = 0.1, β = 0.1, kn = 9, andke = T /10

6 LSHADE-
cnEpSin µF = 0.5, µCR = 0.5, µ f req = 0.5, H = 5, f req = 0.5, ps = 0.5, and pc = 0.4

7 AGSK
p = 0.05, 5% o f N is suitable for the best partition size is 5% ,

worst partition size is 5% , and the middle partition size is 90%, KwP =
[0.85, 0.05, 0.05, 0.05], and c = 0.05.

8 RLAOA
m = 10, n = 2, ξ linearly increasing f rom 0 to 0.9, α = 0.1, ω = 0.01,

γ = 0.9, λ = 5, µ = 0.499, s = 0.01, r̃ = 10, α = 0.1, β = 1.5, and
Max episodes = 100
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Table A2. Test functions F1–F13 with 100 dimensions.

Functions MLBRSA RSA IRSA RLBGWO IDMOA LSHADE-
cnEpSin AGSK RLAOA

F1

Min 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.18E-241 6.58E-123 0.00E+00 2.66E-247

Max 0.00E+00 0.00E+00 1.65E-257 1.97E-144 3.27E-221 1.15E-109 0.00E+00 3.95E-233

Avg. 0.00E+00 0.00E+00 8.23E-259 9.85E-146 1.63E-222 5.75E-111 0.00E+00 1.98E-234

STD 0.00E+00 0.00E+00 0.00E+00 4.40E-145 0.00E+00 2.56E-110 0.00E+00 0.00E+00

F2

Min 0.00E+00 0.00E+00 7.08E-161 0.00E+00 3.65E-128 1.78E-62 7.13E-234 6.78E-125

Max 0.00E+00 0.00E+00 4.37E-133 1.37E-70 2.51E-117 9.31E-57 7.80E-217 9.99E-116

Avg. 0.00E+00 0.00E+00 2.19E-134 6.85E-72 1.45E-118 4.95E-58 4.01E-218 5.21E-117

STD 0.00E+00 0.00E+00 9.77E-134 3.06E-71 5.59E-118 2.08E-57 0.00E+00 2.23E-116

F3

Min 0.00E+00 0.00E+00 3.76E-178 0.00E+00 7.40E-215 4.03E-101 0.00E+00 2.53E-154

Max 0.00E+00 0.00E+00 6.21E-147 3.51E-28 7.59E-193 1.60E-87 0.00E+00 1.01E-135

Avg. 0.00E+00 0.00E+00 3.14E-148 1.92E-29 3.79E-194 8.46E-89 0.00E+00 5.10E-137

STD 0.00E+00 0.00E+00 1.39E-147 7.86E-29 0.00E+00 3.58E-88 0.00E+00 2.26E-136

F4

Min 0.00E+00 0.00E+00 7.64E-117 0.00E+00 1.77E-119 4.20E-55 8.14E-175 2.75E-119

Max 0.00E+00 0.00E+00 3.93E-87 3.11E-64 1.66E-104 3.55E-47 2.33E-155 4.36E-112

Avg. 0.00E+00 0.00E+00 1.97E-88 1.56E-65 8.31E-106 1.87E-48 1.16E-156 3.78E-113

STD 0.00E+00 0.00E+00 8.80E-88 6.96E-65 3.71E-105 7.92E-48 5.21E-156 1.03E-112

F5

Min 0.00E+00 9.90E+01 9.24E+01 4.61E-03 9.30E+01 9.39E+01 1.07E-10 9.12E+01

Max 0.00E+00 9.90E+01 9.81E+01 9.80E+01 9.82E+01 9.82E+01 2.72E-05 9.63E+01

Avg. 0.00E+00 9.90E+01 9.42E+01 6.24E+01 9.53E+01 9.67E+01 2.41E-06 9.36E+01

STD 0.00E+00 0.00E+00 1.63E+00 4.69E+01 1.74E+00 1.46E+00 6.11E-06 1.27E+00

F6

Min 0.00E+00 2.50E+01 0.00E+00 1.07E-05 2.18E-04 7.51E-02 2.26E+00 2.53E-03

Max 0.00E+00 2.50E+01 0.00E+00 1.99E-03 1.31E-02 4.77E-01 4.02E+00 3.80E+00

Avg. 0.00E+00 2.50E+01 0.00E+00 4.68E-04 2.99E-03 2.11E-01 3.26E+00 1.85E+00

STD 0.00E+00 0.00E+00 0.00E+00 6.62E-04 3.88E-03 8.50E-02 4.66E-01 9.94E-01

F7

Min 5.01E-05 3.05E-06 1.06E-04 7.16E-05 8.22E-05 3.31E-05 2.31E-06 4.73E-05

Max 9.97E-04 3.72E-04 2.44E-03 1.06E-02 1.08E-03 2.41E-03 3.61E-05 1.80E-03

Avg. 3.25E-04 9.96E-05 8.96E-04 1.88E-03 4.09E-04 9.12E-04 1.75E-05 4.31E-04

STD 2.35E-04 8.64E-05 6.33E-04 2.95E-03 2.73E-04 6.43E-04 1.12E-05 3.92E-04

F8

Min 2.36E+08 −1.77E+04 −4.19E+04 −4.19E+04 −3.27E+04 −3.21E+04 −3.78E+04 −4.12E+04

Max −1.47E+06 −1.43E+04 −2.15E+04 −3.01E+04 −2.37E+04 −2.46E+04 −2.38E+04 −2.51E+04

Avg. −1.81E+07 −1.60E+04 −3.55E+04 −4.13E+04 −2.81E+04 −2.80E+04 −2.89E+04 −3.68E+04

STD 5.16E+07 9.70E+02 6.77E+03 2.64E+03 2.36E+03 1.67E+03 4.03E+03 4.74E+03

F9

Min 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Max 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Avg. 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F10

Min 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16

Max 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16

Avg. 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16

STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
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Table A2. Cont.

Functions MLBRSA RSA IRSA RLBGWO IDMOA LSHADE-
cnEpSin AGSK RLAOA

F11

Min 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Max 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Avg. 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F12

Min 4.71E-33 1.27E+00 4.71E-33 1.52E-09 5.40E-06 1.53E-03 1.15E-05 4.92E-03

Max 4.71E-33 1.33E+00 4.71E-33 5.99E-05 9.76E-05 6.18E-03 5.16E-02 6.32E-02

Avg. 4.71E-33 1.32E+00 4.71E-33 8.49E-06 3.60E-05 2.66E-03 2.28E-02 2.33E-02

STD 1.40E-48 1.14E-02 1.40E-48 1.55E-05 2.09E-05 1.13E-03 1.98E-02 1.44E-02

F13

Min 1.35E-32 5.65E+00 1.35E-32 2.42E-07 8.09E-03 4.48E-01 1.07E-12 1.35E-01

Max 1.35E-32 1.00E+01 9.89E+00 7.19E+00 3.57E-01 8.34E+00 1.28E-07 1.50E+00

Avg. 1.35E-32 9.78E+00 6.79E+00 3.60E-01 6.90E-02 4.36E+00 1.16E-08 6.63E-01

STD 2.81E-48 9.73E-01 3.08E+00 1.61E+00 7.78E-02 3.55E+00 2.90E-08 3.79E-01

Table A3. Test functions F1–F13 with 500 dimensions.

Functions MLBRSA RSA IRSA RLBGWO IDMOA LSHADE-
cnEpSin AGSK RLAOA

F1

Min 0.00E+00 0.00E+00 2.09E-281 0.00E+00 1.61E-231 5.32E-117 0.00E+00 5.22E-237

Max 0.00E+00 0.00E+00 3.58E-246 2.78E-140 9.02E-218 2.71E-105 0.00E+00 1.63E-226

Avg. 0.00E+00 0.00E+00 2.84E-247 1.85E-141 6.01E-219 2.05E-106 0.00E+00 1.09E-227

STD 0.00E+00 0.00E+00 0.00E+00 7.18E-141 0.00E+00 6.94E-106 0.00E+00 0.00E+00

F2

Min 0.00E+00 0.00E+00 6.50E-149 2.02E+01 3.97E-124 8.59E-61 7.70E-233 3.59E-121

Max 2.51E-270 0.00E+00 4.67E-123 2.82E+269 9.90E-115 1.30E-55 1.92E-209 8.34E-116

Avg. 1.67E-271 0.00E+00 3.12E-124 1.88E+268 6.97E-116 1.53E-56 2.50E-210 7.58E-117

STD 0.00E+00 0.00E+00 1.21E-123 6.55E+04 2.55E-115 3.47E-56 0.00E+00 2.18E-116

F3

Min 0.00E+00 0.00E+00 3.21E-217 0.00E+00 2.67E-208 7.50E-94 0.00E+00 1.08E-115

Max 0.00E+00 0.00E+00 1.30E-119 9.84E+02 2.16E-189 4.66E-81 3.60E-308 2.86E-93

Avg. 0.00E+00 0.00E+00 8.66E-121 7.02E+01 1.54E-190 3.35E-82 0.00E+00 1.99E-94

STD 0.00E+00 0.00E+00 3.35E-120 2.54E+02 0.00E+00 1.20E-81 0.00E+00 7.36E-94

F4

Min 0.00E+00 0.00E+00 2.45E-95 0.00E+00 2.40E-114 1.22E-49 4.30E-154 1.00E-114

Max 0.00E+00 0.00E+00 2.29E-78 1.87E-70 1.03E-103 8.21E-43 3.04E-141 4.48E-104

Avg. 0.00E+00 0.00E+00 1.90E-79 1.29E-71 8.97E-105 1.46E-43 2.05E-142 4.95E-105

STD 0.00E+00 0.00E+00 5.99E-79 4.82E-71 2.71E-104 2.85E-43 7.85E-142 1.29E-104

F5

Min 0.00E+00 4.99E+02 4.91E+02 2.72E-01 4.92E+02 4.95E+02 6.76E-08 4.92E+02

Max 0.00E+00 4.99E+02 4.96E+02 4.94E+02 4.95E+02 4.96E+02 6.79E-05 4.95E+02

Avg. 0.00E+00 4.99E+02 4.92E+02 3.62E+02 4.94E+02 4.96E+02 7.87E-06 4.94E+02

STD 0.00E+00 0.00E+00 1.28E+00 2.26E+02 1.11E+00 5.21E-01 1.84E-05 8.24E-01

F6

Min 0.00E+00 1.25E+02 0.00E+00 3.46E-07 1.59E+00 1.84E+01 8.98E+01 2.04E+01

Max 0.00E+00 1.25E+02 0.00E+00 2.14E-02 2.11E+00 3.05E+01 9.89E+01 3.62E+01

Avg. 0.00E+00 1.25E+02 0.00E+00 3.69E-03 1.90E+00 2.37E+01 9.36E+01 2.94E+01

STD 0.00E+00 0.00E+00 0.00E+00 6.34E-03 1.50E-01 4.08E+00 2.33E+00 3.85E+00
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Table A3. Cont.

Functions MLBRSA RSA IRSA RLBGWO IDMOA LSHADE-
cnEpSin AGSK RLAOA

F7

Min 1.17E-05 5.08E-05 5.13E-05 1.35E-05 3.16E-05 1.81E-04 8.67E-06 4.41E-05

Max 6.98E-04 4.50E-04 1.60E-03 8.80E-03 9.33E-04 3.78E-03 7.36E-05 1.29E-03

Avg. 3.31E-04 2.10E-04 5.80E-04 1.14E-03 3.03E-04 1.36E-03 3.42E-05 4.35E-04

STD 2.14E-04 1.23E-04 4.48E-04 2.22E-03 2.82E-04 9.87E-04 2.07E-05 3.11E-04

F8

Min −1.24E+08 −7.87E+04 −2.09E+05 −2.09E+05 −1.32E+05 −1.30E+05 −2.04E+05 −2.07E+05

Max −4.48E+06 −5.26E+04 −1.50E+05 −1.48E+05 −9.55E+04 −7.89E+04 −4.25E+04 −1.55E+05

Avg. −3.17E+07 −6.25E+04 −1.90E+05 −2.05E+05 −1.21E+05 −1.07E+05 −1.30E+05 −1.81E+05

STD 3.38E+07 6.75E+03 2.89E+04 1.56E+04 8.81E+03 1.56E+04 4.25E+04 1.89E+04

F9

Min 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Max 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Avg. 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F10

Min 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16

Max 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16

Avg. 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16

STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F11

Min 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Max 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Avg. 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F12

Min 4.71E-33 1.27E+00 4.71E-33 1.52E-09 5.40E-06 1.53E-03 1.15E-05 4.92E-03

Max 4.71E-33 1.33E+00 4.71E-33 5.99E-05 9.76E-05 6.18E-03 5.16E-02 6.32E-02

Avg. 4.71E-33 1.32E+00 4.71E-33 8.49E-06 3.60E-05 2.66E-03 2.28E-02 2.33E-02

STD 1.40E-48 1.14E-02 1.40E-48 1.55E-05 2.09E-05 1.13E-03 1.98E-02 1.44E-02

F13

Min 1.35E-32 5.65E+00 1.35E-32 2.42E-07 8.09E-03 4.48E-01 1.07E-12 1.35E-01

Max 1.35E-32 1.00E+01 9.89E+00 7.19E+00 3.57E-01 8.34E+00 1.28E-07 1.50E+00

Avg. 1.35E-32 9.78E+00 6.79E+00 3.60E-01 6.90E-02 4.36E+00 1.16E-08 6.63E-01

STD 2.81E-48 9.73E-01 3.08E+00 1.61E+00 7.78E-02 3.55E+00 2.90E-08 3.79E-01

Table A4. RT values for 23 test functions.

Problem MLBRSA IRSA RSA RLBGWO IDMOA LSHADE-
cnEpSin AGSK RLAOA

F1 0.28 0.31 0.11 0.50 4.43 0.74 1.78 0.77

F2 0.20 0.27 0.07 0.39 4.28 0.64 1.38 0.49

F3 0.22 0.24 0.11 0.47 8.84 0.52 1.77 0.46

F4 0.13 0.17 0.04 0.24 2.64 0.44 0.72 0.30

F5 0.13 0.16 0.05 0.27 3.12 0.41 0.97 0.38

F6 0.17 0.22 0.05 0.32 3.51 0.60 1.11 0.43

F7 0.23 0.28 0.10 0.51 8.32 0.63 1.75 0.55
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Table A4. Cont.

Problem MLBRSA IRSA RSA RLBGWO IDMOA LSHADE-
cnEpSin AGSK RLAOA

F8 0.20 0.24 0.07 0.40 4.95 0.63 1.16 0.49

F9 0.19 0.23 0.12 0.37 4.11 0.60 1.12 0.47

F10 0.19 0.23 0.11 0.36 4.38 0.63 0.92 0.48

F11 0.20 0.25 0.15 0.40 5.15 0.63 1.15 0.49

F12 0.33 0.39 0.19 0.82 16.00 0.75 2.76 0.74

F13 0.34 0.39 0.18 0.82 15.95 0.75 2.69 0.73

F14 0.36 0.40 0.24 1.02 22.11 0.28 2.58 0.76

F15 0.10 0.14 0.02 0.22 1.93 0.07 0.39 0.27

F16 0.09 0.12 0.02 0.20 1.67 0.05 0.35 0.27

F17 0.11 0.14 0.02 0.24 1.58 0.02 0.44 0.41

F18 0.13 0.15 0.02 0.24 1.52 0.05 0.43 0.35

F19 0.12 0.16 0.03 0.27 2.41 0.08 0.49 0.34

F20 0.11 0.12 0.02 0.21 2.11 0.10 0.41 0.32

F21 0.13 0.16 0.03 0.27 2.71 0.10 0.52 0.35

F22 0.10 0.13 0.03 0.24 2.73 0.09 0.48 0.30

F23 0.11 0.14 0.03 0.25 3.13 0.09 0.50 0.31

Mean RT 0.18 0.22 0.08 0.39 5.55 0.39 1.12 0.45

Rank 2 3 1 4.5 8 4.5 7 6

Table A5. FRT values for 23 benchmark functions.

Problem MLBRSA RSA IRSA RLBGWO IDMOA LSHADE-
cnEpSin AGSK RLAOA

F1 2.300 2.300 4.600 4.300 6.400 8.000 2.300 5.800

F2 1.775 1.775 4.550 4.250 5.750 8.000 3.550 6.350

F3 2.175 2.175 5.350 5.875 4.400 7.550 2.175 6.300

F4 1.600 1.600 5.900 6.000 5.200 8.000 3.200 4.500

F5 1.350 4.850 2.250 6.500 6.350 6.250 3.450 5.000

F6 1.500 8.000 1.500 5.400 3.000 5.350 6.950 4.300

F7 4.800 2.950 6.050 5.300 4.150 6.750 1.050 4.950

F8 1.000 8.000 2.500 3.050 6.400 6.000 4.250 4.800

F9 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500

F10 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500

F11 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500

F12 1.500 8.000 1.500 4.600 3.000 5.650 6.750 5.000

F13 1.325 3.750 3.675 4.950 5.900 6.550 3.800 6.050

F14 2.725 7.750 2.925 3.350 4.600 3.125 6.450 5.075

F15 2.225 7.850 2.300 6.300 5.500 3.725 5.450 2.650

F16 6.050 8.000 2.550 2.925 3.425 3.175 6.950 2.925

F17 3.625 7.600 3.475 3.475 3.475 3.475 7.400 3.475
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Table A5. Cont.

Problem MLBRSA RSA IRSA RLBGWO IDMOA LSHADE-
cnEpSin AGSK RLAOA

F18 2.225 7.850 2.875 3.750 4.525 3.150 7.050 4.575

F19 3.350 8.000 3.075 3.225 4.900 3.075 7.000 3.375

F20 4.025 8.000 2.425 3.725 5.575 3.825 4.650 3.775

F21 1.600 7.900 6.300 3.225 3.550 4.250 4.800 4.375

F22 1.975 7.850 6.325 2.625 4.150 3.900 4.900 4.275

F23 2.150 7.750 5.900 2.900 4.200 3.875 5.150 4.075

Mean FRT 2.729 5.889 3.892 4.314 4.693 5.095 4.816 4.571

Rank 1 8 2 3 5 7 6 4
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