
Citation: Miao, Y.; Li, Y.; Pan, J.; Liu,

Z.; Liu, L.; Wang, Z.; Wang, Z.

Bio-Inspired Fault Diagnosis for

Aircraft Fuel Pumps Using a

Cloud-Edge System. Biomimetics 2023,

8, 601. https://doi.org/10.3390/

biomimetics8080601

Academic Editor: Antonio Concilio

Received: 12 September 2023

Revised: 9 December 2023

Accepted: 10 December 2023

Published: 13 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomimetics

Article

Bio-Inspired Fault Diagnosis for Aircraft Fuel Pumps Using a
Cloud-Edge System
Yang Miao 1,2,* , Yantang Li 1, Jun Pan 3, Zhen Liu 1, Lei Liu 4, Zeng Wang 5 and Zijing Wang 6

1 Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
2 Beijing Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology,

Beijing 100124, China
3 AVIC Nanjing Electromechanical Hydraulic Engineering Center, Nanjing 211102, China
4 Land Space Technology Huzhou Co., Ltd., Huzhou 313099, China
5 China Aerospace Science and Technology Corporation, Beijing 100076, China
6 Beijing Institute of Radio Measurement, Beijing 100143, China
* Correspondence: miaoyang@vip.126.com

Abstract: The fuel pump serves as the central component of the aircraft fuel system, necessitating
real-time data acquisition for monitoring purposes. As the number of sensors increases, there is a
substantial rise in data volume, leading to a simultaneous increase in computational processing for
traditional Prognostics and Health Management methods while computational efficiency decreases.
In response to this challenge, a novel health monitoring approach for aircraft fuel pumps is proposed
based on the collaborative utilization of cloud-edge resources. This approach enables efficient
cooperation among the sensor side, edge side, and cloud side to achieve timely fault warnings
and accurate fault classification for fuel pumps. Within this method, anomaly judgment tasks are
allocated to the edge side, and an anomaly judgment method that integrates the 3σ threshold and
“3/5 strategy” is devised. Additionally, a fault diagnosis algorithm, founded on a convolutional
auto-encoder, is formulated in the cloud to discern various fault types and severities. Comparative
results demonstrate that, in contrast to long short-term memory networks, convolutional neural
networks, extreme learning machines, and support vector machines, the proposed method yields
improvements in accuracy of 4.35%, 6.40%, 17.65%, and 19.35%, respectively. Consequently, it is
evident that the proposed method exhibits notable efficacy in the condition monitoring of aircraft
fuel pumps.

Keywords: aircraft fuel pump; health monitoring; cloud-edge collaboration; 3/5 strategy; fault diagnosis

1. Introduction

The fuel pump assumes a crucial role within the fuel system of aircraft, serving as a
fundamental component responsible for delivering the requisite pressure and fuel flow
to the engine. Monitoring the operational integrity of the fuel pump is of paramount
importance, as it significantly contributes to upholding the stability of the fuel system.
The existing methods like simulation analysis [1,2], fault tree analysis [3], and signal
pro-cessing [4,5] can be used to analyze the fault mechanism of the fuel pump and its
rela-tionship.

The emergence of Prognostics and Health Management (PHM) has been inextricably
linked with the advent of information technology [6–9]. It represents a novel approach
to health state management that draws on the latest research findings of contemporary
information and artificial intelligence technologies, with particular emphasis on equipment
health state monitoring, prediction, and management. PHM has served as a catalyst for a
pivotal transition in equipment diagnosis, from “post-maintenance” and “scheduled main-
tenance” to “situational maintenance”. Currently, PHM has found diverse applications in
the diagnosis of different devices [10–14]. Especially in the field of aircraft, the application
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of PHM is much more than common. Che et al. [15] present a PHM model that combines
multiple deep learning algorithms for condition assessment, fault classification, sensor
prediction, and remaining useful life (RUL) estimation of aircraft systems. Hsu et al. [16]
proposed a case study on the implementation of a health assessment and prediction work-
flow for RUL based on the PHM framework of currently in-service aircraft, which could
significantly benefit fleet operators and aircraft maintenance. Yan et al. [17] combined the
existing maintenance management experience and the output result of PHM to make more
reliable verification for the maintenance of aircraft air-condition systems.

The fundamental approach of PHM involves the utilization of sensors dispersed
throughout the equipment to gather operational data. This data are then subjected to
analysis through relevant algorithms, aiming to extract valuable information that reflects
the equipment’s status, identifies fault modes, and evaluates the remaining lifespan of its
components. While most of the health monitoring systems mentioned in the aforemen-
tioned literature rely on centralized processing of sensor data, the complexity of equipment
structures and the increase in key measurement points have resulted in exponential growth
in operational data volume. Consequently, traditional PHM systems experience significant
delays in centralized data processing.

The introduction of edge computing [18] effectively addresses this issue. Cloud-
edge collaboration has emerged as a crucial research area within the domain of device
health management [19,20]. It entails the use of edge computing to share a portion of the
computational load with the cloud. This approach not only mitigates the lengthy network
transmission delays associated with uploading computational tasks to the cloud but also
enables real-time feedback of device abnormalities to technicians. Erbao [21] et al. have
successfully addressed the issues of low efficiency and high energy consumption inherent
in traditional online monitoring methods for high-voltage equipment in substations by
constructing an integrated cloud-edge system. Qiu et al. [22] have analyzed the relationship
between various forms of edge computing and industrial edge computing systems while
exploring key technologies within the industrial edge computing framework. Li et al. [23]
have designed an intelligent fault diagnosis system based on cloud-edge collaboration,
employing a fault diagnosis algorithm that combines short-duration memory networks
and multi-scale convolutional networks. This system has been applied to machine tool
detection, meeting accuracy requirements while reducing diagnosis time.

However, in the aforementioned methods, the monitoring targets primarily consist of
individual types of information, such as electrical signals and vibration signals, whereas
the monitoring of fuel pumps often involves multiple signal types, like vibration signals
and pressure signals. Researchers have also proposed advanced fault diagnosis methods
for fuel pumps. For instance, Verhulst et al. [24] developed a fault detection and diagnosis
(FDD) scheme to isolate damaged injectors in internal combustion engines. Additionally,
Pecho et al. [25] explored the application of a novel technique, Recurrence Quantification
Analysis (RQA), for monitoring non-linear transient accelerometer data, specifically for use
in auxiliary aircraft hardware health monitoring. A method of intermittent fault diagnosis
based on support vector machines (SVM) is presented by Jiang et al. [26] to quickly and
effectively diagnose intermittent faults in aircraft fuel pumps. Miao et al. [27,28] addressed
the challenges of limited fault data and low diagnostic accuracy of certain new aircraft
fuel pumps by deploying the transfer learning method. This approach enabled feature
extraction from similar fault data and established an auxiliary dataset to bolster fault
diagnosis accuracy, despite the dearth of available data.

This study proposes a cloud-edge collaborative monitoring method specifically for
aircraft fuel pumps, incorporating multiple types of information to ensure real-time moni-
toring effectiveness and accuracy. The main work is as follows:

1. Divide the different tasks on the sensor side, the edge side, and the cloud side to
achieve collaborative monitoring;

2. The anomaly judgment method and fault diagnosis algorithm are designed for edge-
side state detection and cloud fault classification;
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3. The feasibility and effectiveness of the proposed method are verified by fuel pump
simulation experiments.

2. Fault Diagnosis Framework for Fuel Pumps Based on Cloud Edge Collaboration
2.1. General Framework

A fault diagnosis method for aircraft fuel pumps based on cloud-edge collaboration
was established. The methodology comprises three principal components: the cloud side,
the edge side, and the sensor side. Each component assumes distinct responsibilities and
engages in collaborative relationships, as elucidated in Figure 1.
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Figure 1. Fuel pump fault diagnosis framework based on cloud-edge collaboration.

1. Sensor side: At critical measurement locations of the fuel pump, multiple sensors
(e.g., vibration, pressure, etc.) are strategically positioned to capture real-time op-
erating data. These sensors facilitate the collection of comprehensive information
regarding the fuel pump’s performance. The acquired real-time data are subsequently
transmitted via wired connections to the edge side for further processing and analysis.

2. Edge side: Upon receiving the uploaded data from each sensor, the location infor-
mation of the corresponding measurement points is recorded, and the characteristic
values are extracted simultaneously. Subsequently, the threshold method is employed
to identify anomalies within the dataset. Segments of data that meet the abnormal
condition are wirelessly transmitted to the cloud for further analysis. In the ground
and airborne visual interfaces, both the abnormal alarm information and the respec-
tive positions of the measurement points are presented, providing a comprehensive
overview of the detected anomalies.

3. Cloud side: The fault segment information transmitted by each edge is stored in the
historical database, which facilitates subsequent fault history tracing. An intelligent
classification model is employed to identify the types of fault data detected by the
system. Additionally, uploading more fault data are used to update and train the
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model parameters, thus enhancing its migration ability. Ultimately, the classification
and diagnosis results are presented through the ground and airborne visual interfaces.

2.2. Data Acquisition on Sensor Side

In order to develop a specialized cloud-edge collaborative fault diagnosis system
for fuel pumps, this study establishes a ground-based experimental setup that closely
emulates the operational characteristics of an authentic aircraft fuel system. The schematic
representation of this apparatus is presented in Figure 2. Given the imperative need to
capture vibration and pressure data, a pressure sensor is installed at the oil outlet. Owing
to the constrained space within the fuel pump, the direct installation of a vibration sensor
poses a challenge. As a result, the vibration sensor is positioned on the motor connected to
the fuel pump. The arrangement of the vibration sensor is depicted in Figure 3.
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2.3. Anomaly Detection on Edge Side
2.3.1. Detection Index

The sensor side is responsible for collecting a range of signals, which are subsequently
transmitted to the edge side for preliminary data analysis. On the edge side, an initial
analysis is conducted, utilizing the vibration and pressure signals obtained from the sensor
side as the primary basis for establishing distinct detection indices.

The direct analysis of the original vibration signals presents certain drawbacks that
primarily stem from the large volume of signals collected within a given time frame. These
concerns include an increased computational burden at the edge side due to the sheer
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quantity of original signals, as well as delayed upload speed and subsequent high latency in
real-time cloud monitoring when transmitting fault data for pattern recognition at the cloud
level, owing to the increased data volume. In order to address these concerns, time-domain
indicators are adopted as the fundamental criteria for anomaly detection, allowing for the
upload of sample data to the cloud. A comprehensive analysis evaluating the sensitivity
and stability of time-domain features is presented in Table 1.

Table 1. Sensitivity and stability of time domain features.

Time Domain Index Sensitivity Stability

Peak Preferably Common
Peak-to-peak Common Common

Mean Worse Preferably
Root-mean-square Preferably Preferably

Kurtosis factor Well Common
Waveform factor Bad Well

Margin factor Well Common
Skewness Common Worse

Pulse factor Common Common
Peak factor Common Common

Based on the information presented in the aforementioned table, it can be observed
that the kurtosis factor and margin factor exhibit high sensitivity and are particularly re-
sponsive to the occurrence of faults. On the other hand, the root-mean-square demonstrates
good stability and effectively assesses changes in vibration signals. The comprehensive
performance of the peak and peak-to-peak indices is superior. Taking into account the
overall computational complexity, five key indices, namely peak, peak-to-peak, root mean
square, kurtosis factor, and margin factor, are selected as the primary characteristics for
determining abnormal conditions in fuel pump assessment.

The peak and peak-to-peak indices capture the maximum amplitude of the vibration
wave pattern, making them well-suited for detecting surface stripping faults. These types
of faults generate signals with significant values within a short time period, which can be
mathematically described by Equations (1)–(3):

Xmax = max(xi) (1)

Xmin = min(xi) (2)

Xpeak =
1
2
(Xmax − Xmin) (3)

where xi is the signal for a period of time, and Xpeak is the peak value.
The root-mean-square reflects the energy distribution of the signal in the time domain,

expressed by Equation (4):

Xrms =

√
1
n

n

∑
i=1

x2
i (4)

where Xrms is the root-mean-square value.
The kurtosis factor is sensitive to shock characteristics in the signal, as expressed by

Equations (5) and (6):

Xk =
∑n

i=1 x4
i

n
(5)

Xk f =
Xk

X4
rms

(6)
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where Xk is kurtosis and Xkf is the kurtosis factor.
The margin factor is more suitable for early impact faults, and its expression is as in

Equations (7) and (8):

Xr =

(
∑n

i=1|xi|
1
2

n

)2

(7)

Xcl =
Xpeak

Xr
(8)

where Xr is the margin factor and Xcl is the root amplitude.
In the context of anomaly detection, pressure signals exhibit a higher degree of dis-

cernibility compared to vibration signals. During normal operation of the fuel pump,
pressure information tends to fluctuate around the expected normal value. However, in the
presence of anomalies, such as instances of low or high pressure, the pressure information
deviates significantly, reaching excessively high levels or persisting at abnormal values for
a prolonged duration. Consequently, the analysis of pressure signals primarily revolves
around assessing the amplitude and duration of such deviations.

It has been observed that pressure signals exhibit a higher degree of discernibility
compared to vibration signals. In normal operational scenarios, pressure information tends
to fluctuate around the expected normal value. However, in the presence of anomalous
events, such as instances of low or high pressure, the pressure information deviates signifi-
cantly from the norm, reaching excessively high levels or persisting at abnormal values for
prolonged periods. Therefore, the analysis of pressure signals primarily revolves around
assessing the amplitude and duration of such deviations.

2.3.2. Threshold Detection

For the abnormal judgment of a vibration signal, the 3σ threshold judgment method is
used, which can be expressed as Equation (9):

f (x) =
1

σ
√

2π
exp[−1

2
(

x− µ

σ
)

2
], −∞ < x < ∞ (9)

where σ is the population standard deviation and µ is the population mean.
By examining the properties of the probability density curve associated with a normal

distribution, it becomes evident that the likelihood of a random variable following a
normal distribution outside the interval (µ − 3σ, µ + 3σ) is merely 0.26%. This probability,
commonly known as the 3σ rule, characterizes the occurrence of values within this range in
a normal distribution. Figure 4 presents a schematic representation depicting the threshold
judgment of vibration signals.
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Upon reaching the predetermined warning threshold value Fpre, it signifies the emer-
gence of a fault trend at the specific measurement point. Consequently, timely attention or
maintenance is necessary during subsequent operations. Conversely, when the indicator
surpasses the alarm threshold value F, it indicates that the measurement point is unlikely
to meet the requirements for stable operation. In such cases, prompt remedial measures
should be taken to rectify the fault.

The pressure detection is shown in Figure 5.
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During the normal operation of fuel pumps, internal pressure is anticipated to remain
in close proximity to a predetermined fixed value. Therefore, the establishment of upper
and lower thresholds assumes paramount importance for evaluating whether the pressure
deviates excessively, indicating abnormal functioning. Nonetheless, the assessment process
must factor in the presence of pressure pulsation phenomena [29]. Such pulsations can
cause pressure excursions beyond the upper threshold or lower than the lower threshold,
as demonstrated by location A in Figure 5. To prevent false-positive occurrences resulting
from pressure anomalies induced solely by pressure pulsations, an additional condition
is introduced. Specifically, an alarm trigger is activated when the pressure surpasses
the threshold and remains beyond a specified duration, thus ensuring more accurate
identification of abnormal pressure instances.

2.3.3. 3/5 Strategy

The identification of abnormal signals plays a crucial role in facilitating the early
detection of anomalies, thereby triggering warning and alarm systems. However, when
dealing with multiple measuring points within the fuel pump, each equipped with different
indicators, relying on a single instance of abnormality per indicator to trigger alarms can
lead to considerable confusion for monitoring personnel and result in increased extraneous
workload.

Considering these factors, the employed abnormal alarm strategy in this investigation
adopts the following approach: treating the measuring point as the fundamental unit,
alarms are repetitively triggered when multiple indicators within the vibration signals
exhibit abnormal behavior. In the context of pressure signals, alarms are activated only
when abnormalities persist for an extended period of time.

To account for potential variations among the five indicators within the random vibra-
tion signal, where it is possible for not all indicators to simultaneously exceed the alarm
threshold, a methodology is devised to ensure comprehensive detection of anomalies.
Specifically, when four out of the five indicators concurrently surpass the alarm threshold,
it is recorded as an occurrence of an anomaly. It is important to note that individual indica-
tors, such as the margin factor, may occasionally exceed the threshold value even under
normal operating conditions. To prevent such instances from hindering accurate anomaly
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identification, a “3/5 strategy” is formulated. This strategy involves the establishment of
five storage windows, collectively forming a detection stage, in which the detection results
from each instance are stored within their respective window. Subsequently, if three out of
the five consecutive detection results indicate anomalies, an alarm is triggered, and relevant
feedback is transmitted to the designated terminal.

Regarding the pressure information, its assessment involves determining whether the
pressure amplitude exceeds the upper or lower thresholds and maintaining this condition
for a duration of time denoted as t. If the duration t exceeds a predefined threshold value
t0, the pressure information at the measuring point is classified as abnormal.

2.4. Cloud Fault Pattern Recognition Algorithm Based on Convolutional Auto-Encoder

While real-time anomaly detection and alarm notifications on a human-computer
interaction platform can serve as initial steps towards effective data monitoring, they
prove inadequate for the development of a comprehensive health monitoring system. The
scarcity and value of fault data pertaining to aircraft fuel pumps emphasize the need for
an intelligent fault classification model within a cloud-based environment. This approach
offers multiple benefits by maximizing the utilization of uploaded data and providing more
comprehensive fault information, including the category and severity of abnormalities.
Such detailed information supports subsequent maintenance tasks with enhanced precision.

The convolutional auto-encoder (CAE) is a commonly employed technique for unsu-
pervised feature extraction and the preservation of feature invariance [30]. Expanding upon
this notion, the present study introduces a fault classifier constructed using a cloud-based
CAE. The architectural framework of the proposed model is illustrated in Figure 6.
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Figure 6. Structure diagram of a cloud fault diagnosis algorithm based on CAE.

The fault data uploaded from the edge devices originates from the fuel pump during
normal operational conditions, hence incorporating some degree of noise within the data
samples. CAE is an effective way to mitigate the disruptive impact of noise on the sample
characteristics. It is structured with an input layer, multiple hidden layers, and an output
layer, enabling effective utilization of unsupervised learning techniques to extract efficient
representations of the input samples. Its operational procedure primarily consists of two
stages: feature extraction and feature reconstruction. During feature extraction, the input
samples are transformed into high-dimensional feature information through operations
such as convolution and pooling. Subsequently, in the process of feature reconstruction,
the high-dimensional encoded information is deconvolved, thereby converting it into low-
dimensional information. Importantly, it should be emphasized that the reconstructed
sample information exhibits more pronounced features compared to the input data, render-
ing it more amenable to distinguishing fault categories. The specific process of the fault
diagnosis algorithm in this paper is as follows:
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The fault data uploaded from the edge devices originates from the fuel pump dur-
ing normal operational conditions, which introduces some degree of noise into the data
samples. To mitigate the disruptive effects of this noise on the sample characteristics, CAE
is an effective approach that is structured with an input layer, multiple hidden layers,
and an output layer, which enable unsupervised learning techniques to extract efficient
representations of the input samples. Its operational procedure primarily consists of two
stages: feature extraction and feature reconstruction. During feature extraction, the input
samples are transformed into high-dimensional feature information through operations
such as convolution and pooling. Subsequently, in the process of feature reconstruction,
the high-dimensional encoded information is deconvolved, thereby converting it into low-
dimensional information. It is worth noting that the reconstructed sample information
exhibits more pronounced features compared to the input data, rendering it more suitable
for distinguishing fault categories. The specific process of the fault diagnosis algorithm in
this paper proceeds as follows:

1. Feature extraction process

A convolution operation is performed to initialize k convolution kernels, each of
which is paired with a paranoid. After the convolution of the input fault sample x, k
features are generated. The ReLU function is used as the activation function, expressed by
Equation (10):

hk = σ(x ∗Wk + bk) (10)

where W is the convolution kernel and b is paranoid.
Following the generation of features using multiple convolution operations, these

features undergo pooling while retaining their position relation matrix. This facilitates
subsequent de-pooling operations. After multiple convolution and pooling operations, the
sample information is transformed into high-dimensional feature information. This high-
dimensional information is then subjected to de-convolution and de-pooling operations,
resulting in its reconstruction into a new sample.

2. Feature reconstruction process

In order to de-pool the high-dimensional feature matrix that is generated during the
process of feature extraction, it is necessary to restore the data to its original size and
position by utilizing the retained position relation matrix. This is achieved by performing a
convolution operation on the transposition of each feature and its corresponding convolu-
tion kernel, followed by the summation of the results and the addition of the bias term c.
The ReLU activation function is still employed, and its mathematical expression is given by
Equation (11):

y = σ(Σkhk ∗W−k + c) (11)

where c is paranoid.
The minimum mean square error (MSE) function is used as a loss function to update

network weights. MSE can be expressed as:

E(θ) =
1

2n

n

∑
i=1

(xi − yi)
2 (12)

where θ is network weight.

3. Classifier

After CAE, the input sample is updated into a new sample with more obvious features,
and then three linear layers L1, L2, and L3 are connected. The linear layer can be expressed
as Equation (13):

yi = wij ∗ xi−1 + bij (13)

where xi−1 is the input data, yi is the output data, and wij and bij are the weights and biases,
respectively.
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Finally, the diagnosis result will be output by connecting to the softmax classifier.

3. Experiment and Result Analysis
3.1. Experimental Setup

The experimental platform employed in this study is established within the framework
of the Key Laboratory of Aeronautical System Integration and Aviation Technology at the
Nanjing Mechanical Hydraulic Engineering Technology Research and Development Center.
The platform encompasses various components, including a centrifugal gasoline pump, oil
supply tank, oil storage tank, vibration sensor, pressure sensor, and other related apparatus.
Its primary function entails facilitating the transportation of fuel from the storage tank
to the supply cylinder. At the edge level, the Raspberry Pi 3B+ (depicted in Figure 7) is
utilized for data anomaly detection. Moreover, the cloud-based fault diagnosis algorithm is
developed using the PyTorch deep learning platform. Upon processing the collected data,
a total of 800 samples are obtained, which are subsequently partitioned into 600 training
samples and 200 test samples. Notably, each sample consists of 2048 data points, thereby
providing a comprehensive dataset for subsequent analysis and evaluation.
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The experimental platform utilized in this research is situated within the framework
of the Key Laboratory of Aeronautical System Integration and Aviation Technology at the
Nanjing Mechanical Hydraulic Engineering Technology Research and Development Center.
This platform comprises a range of components, including a centrifugal gasoline pump,
oil supply tank, oil storage tank, vibration sensor, pressure sensor, and other relevant
equipment. Its primary purpose is to facilitate the transfer of fuel from the storage tank
to the supply cylinder. At the edge side, the Raspberry Pi 3B+ (depicted in Figure 7) is
employed for data anomaly detection. Furthermore, the fault diagnosis algorithm deployed
in the cloud is developed using the PyTorch deep learning platform. After processing the
collected data, a total of 800 samples are acquired, which are subsequently divided into
600 training samples and 200 test samples. Notably, each sample comprises 2048 data
points, thereby furnishing a comprehensive dataset for subsequent analysis and evaluation.

3.2. Result of Edge Side Detection

Concurrently with the acquisition of vibration data, the time-domain index of the
signal is computed at regular intervals of 0.1 s to ensure real-time monitoring of each index.
Specifically, Figure 8 illustrates the temporal evolution of several parameters, including
peak, peak-to-peak, root mean square, kurtosis factor, margin factor warning threshold, and
alarm threshold, over a designated time period. As observed in the figure, the peak, peak-
to-peak, root mean square, and margin factor all exceed their respective alarm thresholds
within this period, while the kurtosis factor does not. Consequently, this instance is
classified as an anomaly and recorded within the storage window for further analysis.
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3.3. Performance Comparison of Different Fault Diagnosis Algorithms for Fuel Pumps

To validate the efficacy of the CAE-based fuel pump fault diagnosis algorithm, this
study conducts a comparative analysis with other techniques, including support vector
machines (SVM), extreme learning machines (ELM), convolutional neural networks (CNN),
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and long short-term memory networks (LSTM). The evaluation criteria employed for this
analysis comprise accuracy, precision, recall, and F1 score, which are defined by (14)–(17):

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

Precision =
TP

TP + FP
(15)

Recall =
TP

TP + FN
(16)

F1− score =
2TP

2TP + FP + FN
(17)

where TP represents the number of positive samples correctly classified as positive samples
and FP represents the number of negative samples misclassified as positive samples; TN
represents the number of negative samples correctly classified as negative samples; FN
represents the number of positive samples that are misclassified as negative.

A total of five experiments were conducted for each of the fault diagnosis algorithms,
and the resulting average values for each index were computed. The confusion matrixes
are presented in Figure 9, and the comparative outcomes are presented in Table 2. As
demonstrated in the table, the CAE-based fuel pump fault diagnosis algorithm proposed
in this study demonstrates superior performance on four indices. In terms of accuracy rate,
for instance, compared to LSTM, CNN, ELM, and SVM, the proposed approach achieved
improvements of 4.35%, 6.40%, 17.65%, and 19.35%, respectively. The noteworthy results
can be mainly attributed to the potent feature extraction and reconstruction capabilities
of the CAE. In the presence of the challenging operational conditions of the fuel pump,
direct signal feature extraction may result in the fusion of noise information with useful
data, leading to inaccurate fault diagnosis outcomes. However, the proposed methodology
integrates the CAE to reconstruct the extracted deep features into new samples, which
contain more informative details and prominent features and are less susceptible to noise
interference. During the classification process, the weight of noise information is mitigated,
leading to improved diagnostic accuracy.
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Table 2. Performance comparison of fuel pump fault diagnosis algorithms.

Model Accuracy Precision Recall F1-Score

SVM 76.70 ± 1.67 80.12 ± 1.39 76.70 ± 1.28 76.40 ± 1.20
ELM 78.40 ± 0.97 82.35 ± 0.71 78.40 ± 1.32 77.63 ± 1.25
CNN 89.65 ± 0.77 89.99 ± 0.96 89.65 ± 1.02 89.75 ± 0.86
LSTM 91.70 ± 1.04 92.69 ± 0.87 91.70 ± 2.06 91.45 ± 1.65

CAE (proposed) 96.05 ± 0.62 96.46 ± 0.63 96.05 ± 0.99 96.03 ± 0.33

3.4. Analysis of the Influence of Sample Number on Cloud Diagnosis Algorithm

Following anomaly detection at the edge, the data segments associated with faults
are transmitted to the cloud for fault classification and severity diagnosis. Subsequently,
the diagnosis outcomes, along with the corresponding fault data and labels, are stored
in the historical database. This database serves as the primary data source for training
and enhancing model performance. As the training data volume increases, the diagnostic
model acquires a greater knowledge base from the samples, thereby impacting its diagnostic
accuracy. This study investigates the influence of varying numbers of training samples on
the model’s detection accuracy. A series of experiments were conducted, testing additional
sets of 40 samples each, ranging from 320 to 600 samples. Five experiments were performed
for each test, and the results were averaged. Figure 10 illustrates the diagnostic accuracy
results achieved by training the model with different sample sizes. The analysis reveals
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that the model’s detection accuracy rate improves with an increasing number of training
samples within the range of 320 to 480. However, beyond 480 training samples, the growth
rate of accuracy diminishes, fluctuating between 95% and 96%.
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As the detection time extends, the quantity of fault data uploaded to the cloud not
only increases but also encompasses the same faults occurring under different working
conditions. Incorporating these fault samples for updating the cloud model can enhance
the model’s capability to detect faults across diverse working conditions and improve its
overall generalization performance.

4. Conclusions

In this study, a cloud-edge collaborative intelligent monitoring scheme is proposed
for the purpose of monitoring aircraft fuel pumps. The scheme leverages edge and cloud
computing to perform anomaly detection and fault diagnosis tasks, respectively. This
approach effectively reduces the computational burden associated with performing real-
time monitoring under all-weather conditions. To maintain high alert accuracy while
minimizing false positives, the 3σ threshold is combined with a “3/5 strategy” at the edge.
To classify and identify fault features, the cloud employs the CAE machine learning method.
Experimental testing conducted on a fuel pump experiment platform demonstrates that
CAE outperforms other methods such as SVM, ELM, CNN, and LSTM in terms of accuracy
and stability. The proposed cloud-edge intelligent monitoring scheme for aircraft fuel
pumps successfully addresses issues such as large data volumes, low detection efficiency,
and difficulty in fault identification often encountered with traditional fault diagnosis
methods. As such, this scheme provides a promising foundation for establishing a robust
aircraft fuel pump health monitoring system.
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