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Abstract: Circular motion phenomena, akin to fish milling, are prevalent within the animal kingdom.
This paper delineates two fundamental mechanisms underlying such occurrences: forward following
and circular topological communication. Leveraging these pivotal concepts, we present a multi-agent
formation circular model based on a second-order integrator. This model engenders the attainment
of homogeneous intelligence convergence along the circumferential trajectory. The convergence
characteristics are intricately linked to the number of agents and the model parameters. Consequently,
we propose positive and negative solutions for ascertaining the convergent circle property and
model parameters. Furthermore, by integrating our proposed formation control methodology with
a robotic fish dynamics model, we have successfully implemented simulations and experiments,
demonstrating the circular formation of multiple biomimetic robotic fish. This study provides a
mathematical explication for the circular motion observed in animal groups and introduces a novel
approach to achieving circular formation in multiple robots inspired by biological phenomena.

Keywords: circular motion; fish milling; multi-robot formation; biomimetic robotic fish

1. Introduction

An intertwined and causal progression relationship exists between biological collec-
tives, collective models, and multi-robot formation. Researchers draw inspiration from
biological collective phenomena, establish corresponding group models, and apply them
to multi-robot formation tasks. Among these, the step from natural collective phenomena
to artificial group models is the most crucial. During this process, group models based on
simple rules serve as a bridge to explore the mechanisms of animal collective motion. It
is generally believed that the closer the simulation results of group models align with the
observations of reality, the closer these simple rules that constitute the models come to the
essence of biological collective motion.

Since Rynalods introduced the Boids rules (cohesion, separation, and alignment) in
1987, many studies in the field of animal collective behavior have considered “alignment”,
which refers to the consistency of movement direction, as a critical factor in the formation of
group behavior [1]. As a result, numerous related models have emerged [2-5]. Among them,
the most influential is the group model proposed by Vicsek in 1995, whose model considers
self-propelled particles moving on a plane and coordinates neighbors’ interactions within a
certain distance based on the alignment rule to achieve overall consistency motion [2].

In the research field of control theory, starting from the Vicsek model, Morse et al. used
non-negative matrices and stability theory to discuss the consensus problem of discrete sys-
tems with time-varying topology in 2003 [6]. Subsequently, in 2004, Murray et al. researched
the consensus problem of switching topology and time-delay systems [7]. The studies by
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Morse and Murray ignited a research trend in the field of control theory for multi-agent
systems, which has been widely applied to multi-robot formation tasks. This has led to
the development of centralized leader—follower approaches, virtual structure methods,
and various distributed methods. With the continuous research on consensus theory,
various orderly formation methods for multi-robot formation have been developed [8-11].

It is essential to note that the Vicsek model based on the Boids rules only reproduces
the polarized phenomenon in fish schools. In addition, typical ordered collective motion
in fish schools also includes phenomena such as milling and bait balls. Some studies
have explored models that do not adhere to the Boids rules and have achieved various
group patterns. Romanczuk et al. developed a biologically motivated model based on
only pursuit and escape interactions, which achieved spatial migration and vortex-like
structures [12]. Similarly, Strémbom et al. proposed a model based solely on mutual
attraction, which formed structures resembling milling and chain rotations by limiting
the individual'’s field of view [13]. Barberis proposed a group model based on position
attraction, introducing a conical field of view, which resulted in linear structures, rod-like
structures, milling-like structures, and gas-like structures by changing the opening angle
of the cone [14]. Robert et al. presented a model with short-range velocity matching and
long-range anti-alignment rules. This model generated directed ordered states, periodic
vortex patterns, and medium-scale turbulence, resembling observations of swimming
bacteria in dense suspensions [15]. Bastein et al. proposed a general collective model
based on visual projection, which accounted for visual occlusion without requiring explicit
velocity matching. By varying model parameters, this model exhibited behaviors such as
aggregation, polarization, milling, and swarming under different conditions [16]. In our
previous research, we proposed a fellow-following principle, established a collective model,
and quantitatively compared it with the real fish school, demonstrating the similarity
between the model and the real fish school [17].

However, most studies mentioned above have yet to extend the models into multi-
robot formation applications. This paper aims to apply the models established in previous
works to multi-robot formation, not only to achieve bio-inspired multi-robot formation
but also to delve deeper into the mechanism of fish school’s milling behavior. In fact,
as depicted in Figure 1, milling, or the so-called circular group motion, is not exclusive to
fish. It is prevalent among various animal groups, including ants [18], chickens, ducks [19],
cows, and sheep, among other animals [20]. Therefore, further investigation of the general
mechanism behind such milling-like motion holds significance both in enhancing our un-
derstanding of animal collective behavior and inspiring robotic swarm formation. On the
one hand, in terms of animal behavior, while the previously proposed model accomplishes
the group milling, it does not explicitly elaborate on its formation mechanism or explain
why milling structures take on a circular shape [17]. This is due to the self-organizing
nature of the model’s process, resulting in a certain level of randomness in the outcomes.
Establishing a direct causal relationship between the proposed rules and the milling motion
is challenging. Thus, in pursuit of a deeper understanding of animal collective mecha-
nisms, proposing a group model with a concise mathematical representation becomes
necessary [21]. On the other hand, within the field of biomimetics, entirely self-organized
group models can not be directly applicable to robot formation tasks, especially when
dealing with a small robot group.

Considering these two points, the proposed model was analyzed and abstracted,
leading to the development of the multi-robot circular formation method presented in this
paper. The main contributions of this paper can be summarized as follows:

1.  Inspired by fish milling and our previous model, it is assumed that the formation of
milling is the cause of the circular communication topology and forward-following
rule. Based on the proposed hypothesis, the first-order and second-order kinematics
models are established, and the convergence characteristics are analyzed.
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2. Based on the second-order kinematics model, combined with the robotic fish dynamics
model, a robotic fish circular formation controller is proposed, and the simulation and
multi-robotic fish circular formation experiment are carried out.

The remainder of this paper is organized as follows. The kinematics model and its
analysis are presented in Section 2. In Section 3, the circular formation method based on the
dynamics model of robotic fish is established and verified by simulation. Several groups of
circular formation experiments were carried out based on robotic fish in Section 4, followed
by a discussion in Section 5.

(a) Deer herd milling-like movement. (b) Ant mill.

Figure 1. Photographs of animal milling-like movements.

2. Kinematics Models

Inspired by the phenomenon of fish school and the group model proposed in our
previous research, this section presents a group control protocol designed for kinematics
models in a circular communication topology context. In the communication topology,
where agents form a circular chain, each agent communicates with its neighboring agents
in the front (or front and back) and adheres to the following rule. Through simulation,
this protocol achieves a circular formation in which all agents are evenly distributed along
the circumference. Protocol parameters determine the convergence radius of the circle,
and the center position is related to the system’s initial state. Agents only communicate
with their adjacent neighbors, rendering the proposed control protocol highly scalable. It
can form a circular formation with as few as three agents to an infinite number of agents.
The formation approach holds significant inspirational value for circular formation tasks
involving robots. Interestingly, upon further literature review, we discovered a rule-based
circular formation approach that, while slightly different in its mathematical formulation
compared to our approach, shares a similar underlying concept. These studies will be
mentioned in the subsequent stability analysis.

2.1. First-Order Kinematics Model

Considering the scenario in which agents follow a first-order kinematics model, define
N,y as a set of n agents. This group of agents exhibits a circular communication topology.
In a system composed of five agents, as shown in Figure 2, the agents are sequentially
connected, forming a closed loop and creating a circular undirected graph. Information
propagates between adjacent agents. The communication topology of the agents is repre-
sented by a connectivity matrix A:
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Figure 2. Communication topology of the first-order model.

In the kinematics model, the agents are treated as particles without collisions and
orientations. Their state is represented by x, and, in this paper, the agents move within
a two-dimensional plane, with the state x being a point in that plane. The state update
equation for the agents is depicted in Formula (2).

A R
X = Xty

ué = g(x’t_l,'xi,'xlfl),i €23, ..,n-1], o)
uy = {(xf, xj, qci”),i =1,
up = g(x’fl,xlt,x}),i =n.

where x! represents the position of agent i at time ¢, u} indicates the control input for agent
i at time ¢, and  is the control protocol function that depends on the positions of agents
i—1,i,and i 4+ 1 at time ¢. For the first-order model, the control protocol (xf;_l, xi, xi“)
for the i-th agent is defined as follows:

Ol g, 4 = ve- 0,
8 =k 8+ (1-kp)- 5},
5} = xi” —xt,

[ i—1
Op =xp—x; .

®)

where 5} is defined as the forward-following vector of agent i, 5{7 represents the backward-

repulsion vector of agent i, and &' is the weighted sum of these two vectors. k ¢ indicates

the weight for the forward-following vector, and §'* is the normalized unit direction vector
of §'. The motion step size for each update of the agent is a constant v,.

2.2. Second-Order Kinematics Model

Considering the case in which agents follow a second-order motion model, the set
of agents N,j; exhibits a circular communication topology. In a system composed of five
agents, as illustrated in Figure 3, the agents are connected sequentially, forming a closed
loop and creating a circular directed graph. Information is transmitted from the forward
agents to the adjacent agents behind them. The communication topology of the agent set
can be represented by a connectivity matrix A:
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Figure 3. Communication topology of the second-order model.

In terms of the second-order case, consider a second-order unicycle model for the
agents’ motion. The agents move within a two-dimensional plane, and their state is
represented by x and v, where x is the position and v is the velocity. The state update
equation for the agents is as follows:

xé+l = xé +oc-ofty,
v;+1‘: ut' ) (5)
{ ul = Z(x, ™, 0l),i € [1,2,..,n — 1],

up = {(x,x},0}),i =n.

where xi and v} are the position and velocity direction of agent i at time ¢. v'* represents the
unit vector of v'. u! denotes the control input for agent i at time f. v, indicates the motion
step size for the agent. { is the control protocol for the second-order motion model, which
depends on the position and velocity of agent 7 at time t and the position of agent i+1.
For the second-order model, the control protocol ¢ for the i-th agent is defined as:

5= kg 5}* .(1 — kf) - pl* ©)
5} = x’t+1 —x}

where 5} represents the forward-following vector of agent i. &' indicates the weighted sum
of JJ’} and the normalized direction vector v™*. k r 1s the weight for the forward-following

vector. §* represents the normalized direction vector of &'.

2.3. Stability Analysis of Kinematics Models

The presented first-order and second-order models both adhere to a circular com-
munication topology and the forward-following rule. In the context of the second-order
model, it is evident from Equation (7) that, at each step, it weights the heading vector of
the forward agent and its own to derive the subsequent updating direction, which can be
expressed as follows:

¢, € (min(¢l, ¢i), max(¢f, ¢} 1)) @)

where ¢! 1 represents the direction angle of the i-th agent at time t+1, ¢! and /™! denotes
the direction angle of the i-th and i+1-th agent at time ¢, respectively.

The first-order model can be seen as a specific case of the second-order model, where
the difference between the positions of the i-th agent and i—1-th agent is defined as the
direction for agent i. As a result, the first-order and second-order models are unified, consis-
tent with the concept of nonlinear pursuit equations proposed in the related works [22-24].
Therefore, the stability of the introduced first-order and second-order models can be justi-
fied using the stability analysis provided in their paper. Referring to Lemma 4 in Marshall’s
paper, it can be inferred that agents asymptotically converge to a regular n-sided polygon,
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implying that both the first-order and second-order kinematics models proposed here
achieve uniform convergence on the circular trajectory [22].

2.4. Convergent Circle Analysis for First-Order Model

Simulation experiments and stability analysis indicate that for the first-order kinemat-
ics model, when the forward-following weight k is less than or equal to 0.5, the model fails
to converge. In fact, as can be seen from Figure 4, even if the system eventually converges
to a circle, when ky is less than or equal to 0.5, the position of the i-th agent at the next
moment will definitely fall outside the convergent circle instead of on the circle and will
eventually be far away from the convergent circle. While k¢ is more significant than 0.5,
the agents converge to a circle with a fixed center, forming a regular n-sided polygon
evenly distributed along the convergent circle [22]. When the model’s step size v, and
the forward-following weight k; are determined, the radius of the convergent circle is
also determined. Based on the geometric relationship between agents during convergence,
the following derivation is conducted.

Figure 4. Schematic diagram of the convergent circle of the first-order model.

Based on the stability analysis, the agents converge to a circle with a fixed center,
denoted as circle O, and the agents are positioned to form a regular n-sided polygon on this
circle. The schematic diagram of the convergent circle is shown in Figure 4. In the diagram,
the solid arc represents the convergent circle with center O. xi, xi_l, and xi“ are located
on the convergent circle, representing the positions of agent i, its neighbor i—1, and its
neighbor i+4-1 at time ¢, respectively. Dashed lines represent the connections between them.

x; ., represents the position of agent i at time t+1, and the connection between xiand i 1

is represented by a solid line. The angle ZxiOx! 41 corresponds to the angle that the agent
rotates along the convergent circle in one time step, denoted as 6. The distance covered by

the agent in each time step is constant and denoted as v, so xix! 41 = Ve

Indeed, due to the movement of agents along circle O, x’t'xi " is a chord on the circle,
and 0 represents the corresponding angle along the circumference. Based on this, the radius
of the convergent circle can be determined as

Oc
= 8)
2sin( % )

Defining the tangent vector of point x. on the convergent circle as 4}, its direction
aligns with &% + §;. Based on the geometric relationship between u; and the vector 7},
the angle between them is ¢/2, which can be calculated using the following formula:
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o_ arccos(
5=

0 ui "Yi
~ = arccos(——1-). ©)
2 [t ||

where u} = k f5} + (1—k f)(S,i, ¥l = 5} + (5;;. Then, expanding this formula, we have

i |2 i|2 i || si
k|05 | + (1=kp) |83 *+cos(m—a) |t || .
.12 . . ) 12 . . .
\/(kf2 S| (1 = kg2 |8} |2k (1—kp) cos(r—a) | 4|85 ) (|8} + 8} |*+2 cos(m—a) |7 |} )

where « is the angle Axiﬂx’;xij formed by (5} and 6}, and, by using the polygon interior
angle sum formula, we obtain
(n—2)m

x = Y (11)

Substituting Formula (11) into Formula (10), it can further simplified by using basic
properties of trigonometric functions as

1+ cos(rt—a)
V(@ +2c0s(m—)) (k2 + (1 — kp)? + 2kp(1 — kp) cos(—a))

). (12)

6 = 2arccos(

Hence, the radius of the convergent circle and the convergent adjacent distance are
calculated by the following formulas:

2sin(9)

Adeo = 270 sin(z)
n

Too

(13)

By choosing a step size of v, =1, from Formula (13), the relationship between k¢
and the parameters of the convergent circle is derived, as shown in Figure 5. In this
study, the distance between neighboring agents during convergence is defined as the
convergence adjacent distance. The radius and the convergence adjacent distance can
be used to characterize the properties of the convergent circle. For the convenience of
indication, the vertical axis in Figure 5a represents the reciprocal of the radius of convergent
circle rw. Figure 5b represents the reciprocal of the convergent adjacent distance Adc.
It can be observed that, with a constant number of agents, as the forward-following
weight k¢ increases, the radius of the convergent circle monotonically decreases, and the
convergent adjacent distance also decreases. When k¢ =1, the convergent adjacent distance
is independent of the number of agents and remains at one. Under the same k¢, with an
increasing number of agents, the convergent circle becomes larger, and the convergent
adjacent distance also increases but approaches a limit.

2.5. Convergent Circle Analysis for Second-Order Model

For the second-order case, simulations demonstrate that for the second-order kine-
matics model given in Equations (5) and (7), the model can converge when the forward-
following weight ks € (0,1]. Similar to the first-order model, the agents converge to a
fixed-center circle, and the agents form a regular n-sided polygon evenly distributed on
the converging circle. When the model’s step length v, and the forward-following weight
k¢ are determined, the final converging circle’s radius is also determined. Similar to the
derivation for the first-order model, based on the schematic diagram of the converging
circles of neighboring agents at two consecutive time steps during the convergence of the
second-order model, as shown in Figure 6.
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2.5
—— Number of agents: 3 Number of agents: 7 1.4 —— Number of agents: 3 Number of agents: 7
—— Number of agents: 4 Number of agents: 10 — Number of agents: 4 Number of agents: 10
20 12 —— Number of agents: 5 f agents: 15
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1.0 0.6
0.4
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0.2
0.0 0.0
0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9 1.0
kr ky
(a) (b)

Figure 5. Relationship between convergent circle and parameters in the first-order model. (a) Rela-
tionship between convergent circle radius, k % and the number of agents. (b) Relationship between
convergent adjacent distance, k¢, and the number of agents.

Figure 6. Schematic diagram of convergent circle of second-order model.

As shown in Figure 6, the intelligent agents converge to the circle O, forming a regular
n-sided polygon. Points x;_;, x}, x;_ 1, x’fl, and x’t+1 represent the positions of agent i and

its neighbors at times t — 1, t, and 4 1, respectively, which are located on the convergent

circle. Thus, ! is collinear with xi AxiOxi 1 represents the angle that an agent rotates
on the convergent circle within a one-time step, denoted as 6. Since the distance the agents

move in each time step is constant, equal to v, it follows that xix! 41 = Uc. In addition,

due to the agents’ movement on the circle O, the distance xix! 41 corresponds to a chord,
and 6 corresponds to the central angle subtended by this chord. Hence, the formula for
the convergent circle’s radius matches the one in Equation (8). Denoting the central angle

corresponding to the chord x’txfrl as a, we have

X = Py (14)

Then, denote the angle between the velocity direction vector v} of agent i at time ¢ and
the forward-following vector 5} of agent i at time ¢ as By. Using the second-order control
protocol from Equations (5) and (7), we can derive

oyl
Bo = arccos(%), (15)
o[ ui]
u’t:kf-5}+(1fkf)'v§ (16)
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Further, we have
kol 6L+ (1 —ks)|o}
B1 = arccos( > A > alicl ) (17)
\/kj% 5} + (1 —ky)? v} + 2k (1 —kyf)o} - 5;;

1.75

1.50

1.25

0.50

0.25

0.00

= Number of agents:
——— Number of agents:
Number of agents:
——— Number of agents:
Number of agents:

——— Number of agents:

0.0 0.2

where B is the angle between v! and 5}, and B, is the angle between ui and 5}. Clearly,
Bo = B1 + B2. Using the property of the sum of interior angles in a triangle, we obtain

a—0
pr=—— (18)

Furthermore, at time ¢ + 1, the velocity direction of agent i has shifted to vector ui;
therefore, 6 = B. In addition, considering that v; and (5} are unit vectors, Equation (17) can
be simplified as

kpcos(242) + (1 — k)
\/k2 (1— k)2 +2kp(1 — kf) cos(“42)

6 = arccos(

(19)

Equation (19) is an implicit equation that can be solved numerically to obtain the angle
6 by using a solver. Then, the calculation of the radius of the convergent circle and the
convergence adjacent distance follows the same approach as in Equation (13).

By selecting a step length v, = 1, the relationship between k; and the convergent
circle’s parameters can be obtained, as shown in Figure 7. In Figure 7a, the relationship
between k¢ and the reciprocal of the convergent circle radius is depicted, while Figure 7b
shows the relationship between k¢ and the reciprocal of the adjacent distance during
convergence. As can be observed, similar to the first-order model, the convergent circle
size decreases with an increasing forward-following weight k. Furthermore, under the
same k¢, more agents result in a larger convergent circle.

1.0 —— Number of agents: 3

~—— Number of agents: 4
0.8 Number of agents: 5
——— Number of agents: 7

0.6 Number of agents: 10

-1
©

Number of agents: 15

Ad

0.4
0.2

0.0

0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
kr kr

(@) (b)

Figure 7. Relationship between convergent circle and parameters in the second-order model. (a) Re-
lationship between the radius of convergent circle, k¢, and the number of agents. (b) Relationship
between convergence adjacent distance, k¢, and the number of agents.

2.6. Convergent Speed Analysis of the First-Order Model

Convergence speed is a significant metric in multi-agent formation tasks, particularly
in multi-robot formation. Setting control parameters reasonably and dynamically is essen-
tial to ensure the model converges quickly to the target circle. To quantify the relationship
between convergence speed and model parameters, this section comprehensively analyzes
convergence speed under various parameters.

Simulations were conducted by varying parameters and the number of agents. The
number of agents n and parameter ks were selected from the Cartesian product of the
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il Stepeony )
— — ©
= o 2

Convergence speed (Aeiy

=

0.0

0

In(Aéiif/Stepeony)

5

-7

following two sets: n € [3,4,5,6,7,8,9,10] and kf € [0.55,0.60,0.65,0.70,0.80,0.90, 1]. Each
set of parameters was repeated 20 times. The convergence speed was calculated using the
following formula:

__&
 Stepe

€e (20)
where € denotes the convergence threshold, in this section, € = 0.001. ¢y represents
the initial average absolute error of the group, and Step. denotes the convergence step.
From Figure 8a,b, it can be observed that with an increase in the number of agents, the over-
all trend of convergence speed is decreasing, while with the increase in k¢, the overall trend
of convergence speed is increasing. In Figure 8c,d, taking the natural logarithm of the
convergence speed shows that as the number of agents increases, the convergence speed
decreases exponentially.

2.7. Convergent Speed Analysis for the Second-Order Model

In the subsequent part, we will perform a convergence speed analysis for the second-
order model. Similar to the analysis of convergence speed for the first-order model,
the model’s convergence speed is calculated based on Equation (20), with € set to 0.001.
The number of agents  and the parameter k are chosen from the Cartesian product of the
following two sets: n € [3,4,5,6,7,8,9,10] and ks € [0.55,0.60,0.65,0.70,0.80,0.90, 1]. Each
set of parameters is repeated in 20 simulations. In Figure 9a,b, it can be observed that with
an increase in the number of agents, the overall trend in the convergence speed is decreas-
ing, while, with an increase in k, the overall trend in the convergence speed is increasing.
In Figure 9¢,d, taking the natural logarithm of the convergence speed shows a consistent
pattern with the first-order model. As the number of agents increases, the convergence
speed decreases exponentially. For the three-agents case, the convergence speed does not
strictly increase with k¢ but instead shows a slight decrease when k¢ > 0.9.
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¢ g ¢ 2
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* S
§ & . 4
L4 - - 0.0 = - = = -
3 4 5 6 7 8 9 10 4 5 6 7 8 9 10

(]
+

0.55

0.6

0.65

0
. y, & *
-2
. i Y
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i, £, ) v o
-3 > . t |y . RO
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(0 (d)

Figure 8. Relationship between the number of agents and ky with convergence speed for first-
order model. (a) Convergence speed of the adjacent distance. (b) Convergence speed of the polygon
angle. (c) Natural logarithm of the convergence speed of the adjacent distance. (d) Natural logarithm
of the convergence speed of the polygon angle.
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Figure 9. Relationship between the number of agents and k; with convergence speed for second-
order model. (a) Convergence speed of the adjacent distance. (b) Convergence speed of the polygon
angle. (c) Natural logarithm of the convergence speed of the adjacent distance. (d) Natural logarithm
of the convergence speed of the polygon angle.

3. Circular Formation Based on Dynamics Model of Robotic Fish

Although the proposed first-order model and the second-order model can both
achieve the circular formation of agents, their implementations are based on the kinematics
models of agents and cannot be directly applied to the formation of robots, especially for
robotic fish with nonlinear dynamics. For the implementation of robotic fish formation,
the dynamics characteristics need to be considered. Therefore, based on the dual-joint
robotic fish dynamics model established in [25], and combined with the second-order
model control protocol, a formation control scheme in a circular topology is designed.

It should be noted that the proposed method belongs to an indirect approach to circular
formation, which does not directly specify the size of the target circle but determines it
through model parameters. The size of the convergent circle is related to the forward-
following weight k¢, the number of agents, and the step v.. When the number of agents
is fixed, k¢ determines the angle 6 (corresponding to angular velocity) that agents rotate
on the circle during each update, and v, determines the distance (corresponding to linear
velocity) that agents move during each update. For the kinematics model, given the
number of agents, the desired convergent circle radius, and any three out of k f1 Ve, and 6,
the remaining parameter can be calculated using Equations (13) and (19). However, for the
dynamics model, its linear velocity and angular velocity are constrained and cannot directly
correspond to the parameters of the kinematics model. On the other hand, the dynamics
model updates in units of time, with a time step of 0.01 s. The kinematics model updates
in terms of a distance step, and there is no physical correspondence between “distance”
and “time”. Therefore, in order to make the circular formation based on the robotic fish
dynamics model match the parameters of the kinematics model when the number of agents
and k¢ are the same, it is necessary to design a circular formation controller for robotic fish
based on the proposed second-order model.
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3.1. Design of Circular Formation Controller

In the defined circular formation, the angular velocity of agents during convergence in
the robotic fish dynamics model is denoted as w;,,, = #1508, and the linear velocity is denoted
as vy = Hisvc. Here, 1745 is defined as the time scaling factor, which signifies how many
steps of the kinematics model correspond to one second of the dynamics model. Therefore,
for the circular formation of robotic fish based on the dynamics model, controlling the
swimming speed v,,, and angular velocity w,,, of the robotic fish allows us to match the
parameters of the kinematics model’s convergent circle.

Due to the negligible roll and pitch movements of robotic fish when swimming in
a plane, this paper focuses solely on motion control within a two-dimensional plane to
simplify the complexity of the formation problem. In this context, the control of the robotic
fish’s planar motion is broken down into yaw control, velocity control, and angular velocity
control. Figure 10 illustrates the control system diagram for planar motion.

Speed of robotic fish
velocity feedback
Reference
speed
Speed controller Frequency of CPG
. Caudal fin motor Robotic fish —>
Bias of CPG

— ) Yaw controller

Reference
angular I Position and yaw
velocity angle of robotic fish| position, yaw angle
and yaw angular
velocity feedback

Calculation of
yaw angle error

Yaw angular velocity

Figure 10. Control diagram of the robotic fish circular formation.

Velocity control aims to align the swimming speed of the robotic fish with the desired
speed. The fish’s swimming speed is influenced by the amplitude, frequency, and bias
of caudal fin oscillations, all of which are nonlinearly coupled. To simplify the controller
complexity, assume a constant caudal fin oscillation amplitude and adjust the frequency
of the caudal fin oscillations for the velocity control. A proportional integral (PI) control
method is employed as follows:

fi = kpprve +Kigy [ o 1)

where f; denotes the oscillation frequency of the caudal fin’s central pattern generator
(CPG), and kst and k;¢; are controller parameters. v, represents the velocity error.

The yaw control ensures that the robotic fish can track a target direction within the
horizontal plane. When the desired yaw angle remains constant, the fish’s direction
of motion should stabilize at the desired yaw angle. Yaw control is achieved using a
proportional-derivative (PD) controller:

br = kppeipe + kape (¥ — wrop) (22)

where by is the oscillation bias of caudal fin, and k; and kgp; are controller parameters. ¥
represents the yaw angle, and ¢, denotes the yaw angular error, which corresponds to the
azimuthal difference between &’ and the robot’s swimming direction v* in Equation (7).

For circular formation, since the desired yaw angle is continually changing, adjusting
the yaw angle velocity to stabilize at w,,), involves dynamically modifying k;;; through
integral control action to eliminate angular velocity residuals:

kapt = Kapt_, — ke(§p — wyop) At (23)

where kg | represents kgp,; at the previous time step, k. is the controller parameter, and At
denotes the control cycle.
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The velocity and yaw controller enables the robotic fish to form a convergent circle
and maintain stable movement along the circular path. By automatically adjusting the
parameter k;;; through yaw control, the angular velocity error can be eliminated, ensuring
that the convergent circle’s parameters match the calculation by Equations (13) and (19).

Figure 11 shows snapshots of the paths of five robotic fish in a circular formation with
parameter ky = 0.3, a kinematics model step size of 0.5, and the scaling factor 77:s = 0.6.

Robotic fish 1 \
—— Robotic fish 2 !
Robotic fish 3 \;‘3

— Robotic fish 4
Robotic fish 5

Figure 11. Circular formation simulation of five robotic fish.

3.1.1. Simulation Results of Changing Speed and Scaling Factor

This part will discuss whether the convergent circle of the dynamics model matches
the theoretical value. The proposed circular formation control algorithm will be validated
from four aspects: the number of robotic fish, the forward-following parameter k¢, the step
v, and the scaling factor #;s.

Firstly, verify whether the size of the convergent circle matches the formula given in
Equation (13) when the step v, and scaling factor 7;s vary. The steps are set to [0.3,0.35,0.4]
m/s, and the scaling factors 77s are in the range of [0.8, 1, 1.2]. k¢ is set to 0.5, and the number
of robotic fish is three. The simulation results are depicted in Figure 12. The dashed lines in
the figure represent the nearby convergent distance calculated according to Equation (13).
The results from Figure 12 indicate that the scaling factor #;s does not affect the size of
the convergent circle, while the step v, is directly proportional to the size of the conver-
gent circle.

3.1.2. Simulation Results of Changing k 1

Then, we will study the relationship between the size of the convergent circle and the
theoretical value when k; varies. The swimming speed of the robotic fish is set to 0.5 m/s,
and k ris varied within the range of [0.1,0.3,0.5,0.7,0.9, 1], corresponding to the angular
velocities w € [5.36°,19.27°,40°,71.92°,107.86°,120°]. Considering the thresholds of the
robotic fish’s swimming speed and turning angular velocity, the scaling factor #;; is set to
[1,1,0.6,0.4,0.4,0.4]. The simulation results are shown in Figure 13.

The dashed lines in the figure represent the nearby convergence distance calculated
based on Equation (13). These lines demonstrate that as k ¥ varies, the size of the convergent
circle in the robotic fish formation still conforms to Equation (13).
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Figure 12. Error diagrams of changing speed and scaling factor.
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Figure 13. Error diagram of changing k.
3.2. Simulation Results of Changing Number of Agents
Finally, we investigate the relationship between the size of the convergent circle and
the theoretical values when the number of robotic fish varies. For this analysis, we set k¢ to
0.5, the step v, to 0.5 m/s, and vary the number of robotic fish as [3,5,7,9]. The convergence
behavior is depicted in Figure 14.
—— Number of agents:3 ~ —— Number of agents: 6 180 —— Number of agents: 3 —— Number of agents: 6
—— Number of agents: 4 ~ —— Number of agents: 7 B e flacenis LR NUBenu  soents
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(a) Adjacent distance errors.
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(b) Convergent angular errors.

Figure 14. Error diagram of changing the number of agents.

In brief, by varying the number of robotic fish, the value of k fr the step v., and the
scaling factor 7745, the results demonstrate that the proposed control approach for robotic
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fish formation is equivalent to the second-order kinematics model in terms of forming the
convergent circle.

4. Circular Formation Experiments of Biomimetic Robotic Fish

Using the two-joint biomimetic robotic fish developed in [25], a circular formation
experiment was conducted with multiple robotic fish. The robotic fish takes a black koi
fish as the bionic object, which is about 25 cm long, 5 cm wide, 9 cm high and weighs
about 340 g. In this multi-robot circular formation experiment, the parameters were set as
follows: ks = 0.2, implying that the angular velocity of the robotic fish during convergence
was approximately 12°; the scaling factor was set to 1; the kinematics model step size was
0.12 for three robotic fish, 0.14 for four robotic fish, and 0.13 for five robotic fish, and the
swimming velocity was 0.12 m/s, 0.14 m/s, and 0.13 m/s, respectively. The experimental
scenario is depicted in Figure 15, and Figure 16 illustrates the paths of the three robotic fish
during the experiment, with the horizontal and vertical axes measured in meters.
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Figure 15. Experimental scenario of three robotic fish executing circular formation.
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Figure 16. Path diagram of three robotic fish executing circular formation.

According to Equation (13), for the three-robotic-fish formation, the convergent adja-
cent distance is 1.02 m, and the convergent angle is 60°. The experimental results of the
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three-robotic-fish circular formation are shown in Figure 17. After 30 s, the average error
in the adjacent distance is 0.12 m, and the average error in the convergent angle is 10.19°.
For the four-robotic-fish case, the convergent adjacent distance is 1.19 m, and the convergent
angle is 90°. The experimental results of the four-robotic-fish circular formation are shown
in Figure 18. After 30 s, the average error in the adjacent distance is 0.23 m, and the average
error in the convergent angle is 15.13°. For the five-robotic-fish formation, the convergent
adjacent distance is 1.11 m, and the convergent angle is 108°. The experimental results of
the multi-robot circular formation are shown in Figure 19. After 30 s, the average error
in the adjacent distance is 0.38 m, and the average error in the convergent angle is 22.69°.
The results verify the effectiveness of the circular formation approach.
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=
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Figure 17. Results of the circular formation experiment of three robotic fish.
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Figure 18. Results of the circular formation experiment of four robotic fish.
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Figure 19. Results of the circular formation experiment of five robotic fish.

5. Discussion

This study is inspired by the milling motion observed in fish schools and similar
behaviors in animals. For the task of circular formation in multi-robot fish systems, we
proposed a circular formation algorithm based on a circular communication topology and
the following rules. Specifically, we introduced first-order and second-order circular topol-
ogy control protocols based on kinematics models, enabling multiple agents to converge
uniformly to a target circle. Furthermore, we designed controllers for the robotic fish based
on their kinematics models, enabling the simulation of circular formation with multiple
robotic fish. The fish swarm demonstrated convergence to the target circle across various
parameter settings, consistently maintaining the same target circle size as the kinematics
model. Furthermore, we conducted experiments involving formation with three, four, and
five robotic fish, confirming the effectiveness of our algorithm on the robotic fish platform.
Through mathematical analysis, simulations, and experiments, we not only showcased
the proposed algorithm’s efficacy in addressing circular formation tasks for multi-robot
systems but also suggested that the phenomenon of milling, commonly observed in the
animal kingdom, is likely a result of creatures adhering to the following rule. This may
lead to the spontaneous or externally induced formation of a stable circular communication
topology, ultimately resulting in similar milling patterns across different species.

In Section 4, it can be observed that the errors in the convergence adjacent distance
and angles are relatively large. This is partly due to the inherent under-actuation of the
robotic fish and inconsistencies in the manufacturing of individual fish, which affect the
control efficiency of the collective formation. Improving the consistency of the robotic fish
and the control performance could lead to a smaller error in circular formation [26-28].

In the future, we will pursue research from two aspects. Firstly, we will delve further
into the underlying mechanisms of animal collective behaviors, such as the bait-ball forma-
tion observed in fish schools. These widespread biological phenomena undoubtedly have
principles that can be abstractly modeled. Based on the detailed study of the fish lateral line
system [29], modeling, analyzing, and abstracting are carried out to validate conclusions
drawn from the study of animal behaviors. Secondly, we will explore potential applications
for circular formation tasks. Animals lack efficient communication and typically rely on
passive perception rather than active communication for coordination. However, robots
often construct wireless communication networks, offering higher communication effi-
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ciency. Animal milling behaviors are based on passive perception, which does not directly
match the communication patterns of robots. Moreover, fish schooling behavior is a defense
mechanism against predators, utilizing rapid rotations to lower the predators’ efficiency.
However, robots do not need to replicate such behaviors in their task scenarios. Seeking
suitable application scenarios for the algorithm proposed in this paper remains a significant
challenge, which may provide more insight into pursuit-evasion problems of multi-agent
systems [30].
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