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Abstract: Cognitive assessment plays a vital role in clinical care and research fields related to cognitive
aging and cognitive health. Lately, researchers have worked towards providing resolutions to measure
individual cognitive health; however, it is still difficult to use those resolutions from the real world,
and therefore using deep neural networks to evaluate cognitive health is becoming a hot research topic.
Deep learning and human activity recognition are two domains that have received attention for the
past few years. The former is for its relevance in application fields like health monitoring or ambient
assisted living, and the latter is due to their excellent performance and recent achievements in various
fields of application, namely, speech and image recognition. This research develops a novel Symbiotic
Organism Search with a Deep Convolutional Neural Network-based Human Activity Recognition
(SOSDCNN-HAR) model for Cognitive Health Assessment. The goal of the SOSDCNN-HAR model
is to recognize human activities in an end-to-end way. For the noise elimination process, the presented
SOSDCNN-HAR model involves the Wiener filtering (WF) technique. In addition, the presented
SOSDCNN-HAR model follows a RetinaNet-based feature extractor for automated extraction of
features. Moreover, the SOS procedure is exploited as a hyperparameter optimizing tool to enhance
recognition efficiency. Furthermore, a gated recurrent unit (GRU) prototype can be employed as a
categorizer to allot proper class labels. The performance validation of the SOSDCNN-HAR prototype
is examined using a set of benchmark datasets. A far-reaching experimental examination reported
the betterment of the SOSDCNN-HAR prototype over current approaches with enhanced precision
of 86.51% and 89.50% on Penn Action and NW-UCLA datasets, respectively.

Keywords: human activity recognition; cognitive health assessment; deep neural networks;
hyperparameter tuning; deep convolutional neural network; metaheuristics

1. Introduction

Cognitive impairment is a brain condition arising from trauma like road accidents
or sports injuries, old age, or other reasons, which include inflammatory or vascular in-
sults. Certain signs of cognitive impairment are memory concerns or other cognitive
complaints [1]. Non-memory triggers have changes in personality, depression, and wors-
ening of chronic disease and balance or fall problems. Elderly persons, individuals with
dementia, and people with mild cognitive impairment require permanent observation by
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a nurse or doctor every time [2]. Thus, there is a necessity for automatic and sustainable
resolutions for assessing the health condition of a person efficiently and rapidly [3]. Human
action recognition (HAR) is a crucial perspective of people-to-people interaction since
this offers information regarding the nature of humans. For instance, a person’s identity,
personality, and mental condition become tough to derive. In recent times, there has been a
rise in deaf–mute people [4]. It is understood that deaf–mute people are not able to com-
municate with non-deaf–mute people, whereas non-deaf–mute people do not understand
the meanings of gestures.

Human action popularity makes for a pleasant verbal interchange platform for such
humans to interact with non-deaf–mute persons [5]. In this study, cognizance in vision was
primarily related to a hand reputation technique that was larger natural and convenient for
informative hand gestures. Many feature extraction policies exist as well as categorization
policies. Among them, selecting appropriate strategies for usage becomes a complicated
problem [6]. The most significant methodology was segmentation; in this method, the fore-
ground was detached from the background [7]. This separation demands feature extraction
approaches for computation, like angle computation, accuracy calculation, and outcome
estimation. In this video, in action detection, each hand movement has a distinct purposeful
text format [8]. It can be slightly different from still images, due to human activities that
have a collection of moving components or ever-changing motions [9]. Therefore, finding
meaningful text for a suitable gesture becomes significant. So, it is necessary to scrutinize
changing spatial–temporal highlights for action acknowledgement [10].

HAR serves as a core technology to improve various aspects of day-to-day life, in-
cluding healthcare monitoring and assisting individuals with physical disabilities. By
automating the identification and classification of human behaviors and actions, it allows
for the development of ground-breaking applications that improve health, safety, and
overall quality of life. Deep learning (DL) techniques are instrumental in human activity
recognition due to their ability to efficiently analyze and process complex sequences and pat-
terns in sensor data [11]. With the abundance of sensor-generated data and the proliferation
of wearable devices, DL techniques can discern intricate features in motion and physio-
logical signals, enabling accurate detection and classification of human activities [12,13].
These models have the potential to improve applications in sports analysis, healthcare,
security, and many other fields, offering a more versatile and sophisticated approach to
understanding human behavior and movement patterns.

This research develops a novel Symbiotic Organism Search with a Deep Convolu-
tional Neural Network-based Human Activity Recognition (SOSDCNN-HAR) model for
Cognitive Health Assessment. The goal of the SOSDCNN-HAR model is to recognize
human activities in an end-to-end way. For the noise elimination process, the presented
SOSDCNN-HAR model involves the Wiener filtering (WF) technique. In addition, the pre-
sented SOSDCNN-HAR model follows a RetinaNet-based feature extractor for automated
extraction of features. Moreover, the SOS procedure is exploited as a hyperparameter opti-
mizing tool to enhance recognition efficiency. Furthermore, the Gated Recurrent Unit (GRU)
prototype can be employed as a categorizer to allot proper class labels. The performance
authentication of the SOSDCNN-HAR prototype is examined by implementing a set of
benchmark databases.

In short, the influence of the research is detailed in the following.

• Develop a new SOSDCNN-HAR prototype for activity recognition and categorization.
• Implement WF-based preprocessing and RetinaNet-based feature-extracting process

to produce feature vectors.
• Present the SOS algorithm as a hyperparameter-optimizing tool to enhance the recog-

nition efficiency of the RetinaNet prototype.
• Employ the GRU classification model for accurate and proficient classification of

human activities.
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The remaining sections of the study are provided in the subsequent sections. The
existing HAR prototypes are provided in Section 2, and the suggested prototype is elabo-
rated on in Section 3. Then, Section 4 bestows performance authentication, and Section 5
concludes the study.

2. Related Works

The authors in [14] concentrate on the DL-precipitated HAR in an IoHT atmosphere. A
semi-supervised DL construction was developed and constructed to further accurate HAR
that efficaciously investigated and implemented the feebly tagged sensor dataset in training
the categorization learning models. To resolve the challenge of the insufficiently tagged
trials, a smart automatic labelling structure relying upon a Deep Q-Network (DQN) was
constructed by a recently developed distance-based rewarding rule that could precipitate
learning effectiveness in the IoT atmosphere. Hassan et al. [15] presented a smartphone
inertial node-founded technique for HAR. Firstly, an efficient feature is extracting raw
information. The feature includes mean, median, autoregressive coefficients and more.
Furthermore, the feature is processed by employing an LDA and kernel PCA (KPCA) to
make them very powerful. At last, the feature is trained by a Deep Belief Network (DBN)
for effective HAR.

Gumaei et al. [16] introduced robust multiple node-based architectures for HAR
with a fusion DL technique that incorporated Simple Recurrent Units (SRUs) with the
GRU of a NN. The study utilized a deep SRU for processing the sequence of multiple
modal input datasets by utilizing the ability of the memory’s internal state. Moreover, the
researcher used a deep GRU to learn and stock the historical data to be sent to the upcoming
state for resolving instability or fluctuation in precision and gradient-disappearing issues.
Mukherjee et al. [17] developed a group of three classifier techniques, CNN-LSTM, CNN-
Net, and Encoded-Net, i.e., called EnsemConvNet. All of this categorization model is
founded on simple 1D-CNN; however, it is diverse in terms of other key alterations from
the infrastructure, kernel size, and number of dense layers. All the models accept the time
sequence information as a 2D matrix by taking a window of information at a time for
inferring records that ultimately forecast the kinds of human activities.

Abdel-Basset et al.’s [18] project was a supervised dual-channel prototype that encom-
passed attention and LSTM models for temporal integration of an inertial sensor dataset
coexisting with convolution ResNet for spatial integration of the sensor dataset. Likewise,
the scientists presented an adaptive channel-squeezing process for fine-tuning CNN feature
extraction capability by using multi-channel dependencies. Zahin et al. [19] developed a
new method using CNN by varying kernel dimensional and BiLSTM to take aspects at
diverse resolutions. The innovation of this research exists within the effective selection of
optimal video depiction and extracts spatial and sequential characteristics from sensory
information by making use of BiLSTM and conventional CNN. Though the existing works
exploit DL models for HAR, most of the works do not focus on the hyperparameter opti-
mization process. Therefore, in this work, the hyperparameter tuning technique is achieved
by the usage of the SOS procedure.

In [20], the authors considered DL-improved HAR in IoHT platforms. A semisuper-
vised DL approach was developed and made for highly accurate HAR that proficiently
implemented and examined the weakly labelled sensor data for training the classifier
learning method. In [21], an efficient technique was introduced that could recognize human
activities in videos utilizing a single decisive pose. For accomplishing the task, a decisive
pose was removed, employing optical flow, and then feature extraction was achieved by a
two-fold transformation of wavelet. The two-fold transformation could be attained through
Ridgelet Transform (RT) and Gabor Wavelet Transform (GWT). Tan et al. [22] developed an
ensemble learning algorithm (ELA) to execute activity identification employing the signals
recorded via smartphone sensors. This developed ELA incorporated a gated recurrent unit
(GRU), a CNN stacked with the deep neural network (DNN), and a GRU.
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Most of the existing HAR techniques do not focus on the hyperparameter selection
approach, which mostly affect the performance of classification algorithm. Especially, the
hyperparameters, including batch size, epoch count, and learning rate selection, are crucial
to obtain effectual outcome. As the trial-and-error model for hyperparameter tuning is
an erroneous and tedious process, metaheuristic algorithms can be applied. Thus, in this
work, we apply the SOS algorithm for the parameter selection of the RetinaNet model.

3. The Proposed Model

In this research, a novel SOSDCNN-HAR approach was presented for the automatic
recognition of the actions of humans. Figure 1 shows the block diagram of the SOSDCNN-
HAR procedure. It includes a series of processes, namely, frame conversion, WF-based
preprocessing, RetinaNet feature extraction, SOS-based hyperparameter tuning, and GRU-
based classification. Primarily, the proposed model enables the frame conversion process,
where the videos are transformed into a set of frames. The proposed SOSDCNN-HAR
model applied the WF-based noise elimination method to eradicate the noise. Addition-
ally, the RetinaNet-based feature extractor and SOS-based hyperparameter optimizer are
applied. In addition, the GRU prototype is enforced for the process of categorization.
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3.1. Image Pre-Processing

Firstly, the suggested SOSDCNN-HAR prototype was initially applied to the WF-
founded noise removal approach to eliminate the noise. The Wiener function uses a
WF (variety of linear filtering) to an image adaptively, modifying itself to local image
discrepancy. When it is small, the Wiener carries out further smoothing. Once the variance
is larger, the Wiener carries out a little smoothing. This technique frequently generates good
outcomes when compared to linear filtering. The adaptive filter was additionally selective
when compared to a comparable linear filter, which preserved edge, and another higher
frequency part of the image. Additionally, there were no tasks for this design; the Wiener2
function managed each primary computation and performed the filter for the input images.
It necessitated additional computational time when compared to linear filtering. Wiener
executes as superior if the noising is constant-power (“white”) additive noising, namely,
Gaussian noise.

3.2. RetinaNet-Based Feature Extractor

After pre-processing the imagery, the RetinaNet-founded factor extractor and SOS-
based hyperparameter optimizer are applied. RetinaNet comprises a Feature Pyramid
Network (FPN), ResNet, and two Full Convolution Networks (FCNs) [23]. ResNet employs
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a dissimilar network layer. A significant part of ResNet is the idea of RL that allows raw
input datasets to be transmitted to the following levels. Select 101 layers with optimum
training efficacy. Next, extract the features of echocardiography using ResNet and then
transfer them to the subsequent subnetwork. FPN is a technique to efficiently extract the
features of every dimension in an image using a CNN. Initially, employ single dimensional
image as the input to ResNet. Then, starting from other layers of the convolutional net-
works, the features of every layer are designated using the FPN and then incorporated to
generate the concluding outcome. The class subnets in the FCN execute the categorizer
technique. The focal loss can be a revised edition of the binary and cross-entropy form
given by:

CE(p, y) =
{
− log (p), i f y = 1,
− log (1− p), or else,

(1)

where y ∈ [±, 1] describes the ground truth, and p ∈ [0, 1] indicates the contemplation
possibility of technique for y = 1.

pt =

{
p, i f y = 1,

1− p, otherwise,
(2)

The aforementioned formula is expressed by

CE(p, y) = CE(pt) = − log (pt) . (3)

To overcome the challenge of the dataset imbalance amongst the positive and negative
examples, the novel version is transformed into a succeeding form:

CE(pt) = −αt log (pt), (4)

Amongst them,

αt =

{
α, i f y = 1
l − α, otherwise

(5)

Whereas α ∈ [0, 1] describes the weight factor. To overcome the shortcomings, the C
variable was projected to attain the concluding procedure of focal loss.

FL (pt) = −αt(1− pt)
γ log (pt). (6)

3.3. Hyperparameter Optimization

At this stage, the SOS algorithm is applied to regulate the hyperparameters associated
with the RetinaNet prototype. SOS is nature inspired, population based, and benefits from
randomness to some degree [24]. Two kinds of symbiotic connections might exist among
any two different organisms: facultative or compulsory. Initially, the existence of two
species is based on one another, whereas, in the last case, two species could non-essentially
cohabitate in commonly advantageous relationships. In SOS, the searching technique was
initialized using an N-random population. Next, the population member is enhanced by
utilizing three real-time symbiotic stages: parasitism, mutualism, and commensalism.

3.3.1. Mutualism Phase

This SOS stage reproduces the mutualistic relationships that are beneficial for organ-
isms, i.e., all the organisms are affected positively by other activities. Assume Xi as ith

organisms and Xj as an arbitrarily chosen organism where j 6= i, and use mutualistic sense
to improve the existence probability in an ecosystem. Consequently, novel trial solutions
Xinew and Xjnew are evaluated by the following expression, and it is replaced by Xj and Xj
if the fitness value is more efficient.

Xinew = Xj + rand(0, 1)× (Xbest −Mutual−Vector× BF1) (7)
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Xjnew = Xj + rand(0, 1)× (Xbest −Mutual−Vector× BF2) (8)

Mιltllal_−Vector =
Xi + X .

j

2
(9)

In Equations (7) and (8), rand (0, 1) returns an arbitrary number in the uniform
distribution within [0, 1], Xbest denotes the ecosystem optimal organism, and BF1 and BF2
benefit factors arbitrarily allocated to 1 (partially beneficial) or 2 (fully beneficial), which
determine the degree of advantage to all the organisms. The balance between exploitation
and exploration largely depends on an arbitrary value of the benefit factor.

3.3.2. Commensalism Phase

In the commensalism stage, a single organism attains benefits, whereas the rest is not
impacted by the engagement either positively or negatively. Similar to the mutualism stage,
Xi is arbitrarily chosen. Now, Xi indicates the organism whose aim is to benefit from the
interaction, whereas Xj denotes the neutral one, insensitive to relationship types. The novel
experimental outcome Xinew is computed, and the process is forwarded using Xinew when
it is superior to Xi.

Xinew = Xi + rand(−1, 1)×
(
Xbest − Xj

)
(10)

It can be noted from Equation (10) that the novel trial organism is attained according
to the difference Xbest − Xj multiplied using a random value, compared to −1 and 1, to
extend the searching space compared to the rand (0, 1).

3.3.3. Parasitism Phase

It is a type of symbiotic association in which a single organism, such as a parasite,
adapts for sustenance by benefiting from other organisms, such as a host, which causes
minor damage. Here, the artificial parasite organism named Parasite−Vector was generated
by altering and duplicating arbitrary elements of Xi with arbitrary values from the lower
LB and upper UB search boundary. Next, an organism Xj is allocated as a host organism to
parasites. The organism tries to eliminate one another, and the one with the best fitness
value will destroy the other one and defeat their location in the ecosystem.

Parasite−Vector =
{

Xd
i i f rand (0, 1) < rand(0, 1)

LB + rand(0, 1)× (UB− LB) else
(11)

where X =
[
X1, X2, . . . , XD], and D implies the design variable count.

The parasitism stage presents random variations in the ecosystem by protecting
organisms in local minimal stagnation, and therefore it acts as a major component in
fulfilling the exploration ability of the technique or the global search performance.

Fitness selection is a considerable factor that influences the performance of the SOS
approach. The hyperparameter selection process involves the solution encoding approach
to evaluate the efficacy of the candidate solutions. In this work, the SOS algorithm considers
accuracy as the major criterion to design the fitness function, which can be formulated
as follows.

Fitness = max (P)

P =
TP

TP + FP
(12)

From the expression, TP represents the true positive, and FP denotes the false positive value.
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3.4. GRU Based Categorization

In the last stage, the GRU prototype can be implemented as a categorizer when
allocating proper class tags. A GRU is an enhanced version of a typical RNN and is a
basic version of LSTM. Therefore, a GRU is different from LSTM, and, sometimes, it can
generate similarly outstanding outcomes. Related to the LSTM, a GRU was planned to
adjustably reset/update its memory. Therefore, the GRU is a reset and update gate that
is the same as forgetting and input gates from LSTM. But, the GRU completely depicts
its memory contents from the always step and also balances it among the prior and new
content of the memory, utilizing leaky combination organized by gate updating. The GRU
infrastructure is the same as the LSTM framework, as some parameters allow it to simply
capture long-term dependency further. The update gate monitors the count of memory
contents, which is essential to be forgotten in the preceding time stages. In addition, it
controls the count of memory contents, which is necessary to add in the present time step.
Equation (13) calculates this performance.

zn = σ(Wz [hn−1, xn]) (13)

The method utilizes the reset gate for determining the count of records for forgets, as
provided in Equation (14).

rn = σ(Wr [hn−1, xn]) (14)

A novel memory content was established by employing the reset gate computed in
Equation (14), and associated past data were saved as illustrated in Equation (15).

ĥ = tanh(W · [rn × hn−1, xn]) (15)

Lastly, the network computes the concealed state hn, which is a vector that transmits
data to the present unit and permits it down to networking. Hence, the update gate was
important, as it chose the needful in the present memory content ĥn and the preceding step
hn−1. Equation (16) computes the value of hn.

hn = (1− zn)× hn−1 + zn × ĥ (16)

Therefore, GRUs save and filter the data, employing its upgrade and reset gates,
creating them as a chosen special when trained suitably.

4. Experimental Validation

The suggested prototype was duplicated by employing the Python 3.6.5 tool. The
suggested procedure was evaluated on with 16 GB RAM, a 250 GB SSD, an i5-8600k CPU, a
GeForce 1050Ti 4 GB, and a 1 TB HDD. The parameter setups were specified as follows:
learning rate: 0.01; dropout: 0.5; batch size: 5; epoch count: 50; and activation: ReLU.

This section validates the achievement of the SOSDCNN-HAR prototype on three
distinct datasets: the UCF-Sports Action Dataset [25], the Penn Action dataset [26], and the
NW-UCLA dataset [27]. The first dataset, the UCF-Sports Action Dataset, held samples
under distinct activities, such as Upper Head (H), Left Shoulder (LS), Left Hand (LD), Right
Shoulder (RS), Right Hand (RD), Right Hip (RH), Left Hip (LH), Right Knee (RK), Left
Knee (LK), Left foot (LF), Right foot (RF), and Torso (T).

4.1. Result Analysis on UCF-Sports Action Dataset

Table 1 offers a detailed accuracy investigation of the SOSDCNN-HAR prototype with
recent prototypes on the trial UCF-Sports Action Dataset [28–30]. The outcomes indicated
that the SVM and DT prototypes resulted in lower precision percentages of 77.81% and
78.18%, respectively. The CNN model reached moderate accuracy of 83.65%. After that,
the APAR-MMSHF prototype accomplished a slightly precipitated accuracy of 89.31%.
However, the SOSDCNN-HAR model attained a maximum accuracy of 93.52%.
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Table 1. Accuracy analysis of SOSDCNN-HAR approach with recent algorithms on the UCF-Sports
Action Dataset.

Methods Accuracy (%)

SVM Algorithm 77.81

DT Algorithm 78.18

CNN Algorithm 83.65

APAR-MMSHF 89.31

SOSDCNN-HAR 93.52

The Training Accuracy (TA) and Validation Accuracy (VA) achieved by the SOSDCNN-
HAR technique on the UCF-Sports Action Dataset are shown in Figure 2. The investiga-
tional result inferred that the SOSDCNN-HAR procedure attained maximal VA and TA
values. In particular, the VA appeared to be greater than TA.
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The Training Loss (TL) and Validation Loss (VL) accomplished by the SOSDCNN-HAR
approach on the UCF-Sports Action Dataset are recognized in Figure 3. The investigational
result implied that the SOSDCNN-HAR algorithm achieved minimum values of TL and
VL. In particular, the VL was lesser than the TL.



Biomimetics 2023, 8, 554 9 of 16Biomimetics 2023, 8, x FOR PEER REVIEW  9  of  16 
 

 

 

Figure 3. TL and VL examination of SOSDCNN-HAR procedure on UCF-Sports Action Dataset. 

A short-term ROC analysis of the SOSDCNN-HAR technique on the UCF-Sports Ac-

tion Dataset is depicted in Figure 4. The results show that the SOSDCNN-HAR technique 

showed its capability in classifying diverse techniques on the UCF-Sports Action dataset. 

 

Figure 4. ROC curve evaluation of the SOSDCNN-HAR procedure on the UCF-Sports Action Da-

taset. 

   

Figure 3. TL and VL examination of SOSDCNN-HAR procedure on UCF-Sports Action Dataset.

A short-term ROC analysis of the SOSDCNN-HAR technique on the UCF-Sports
Action Dataset is depicted in Figure 4. The results show that the SOSDCNN-HAR technique
showed its capability in classifying diverse techniques on the UCF-Sports Action dataset.
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4.2. Result Analysis on Penn Action Dataset

Table 2 provides a detailed precision examination of the SOSDCNN-HAR methodology
with the current prototypes on the test Penn Action Dataset. The outcomes depict that the
PAAP and JAR-PSV procedures have the capabilities to reduce the accuracies by 78.93%
and 86.51% subsequently. Next, the BJG-3D Deep Conv approach acquired a moderate
accuracy of 97.83%, followed by the BEP and ARC-VAPS approaches that accomplished
slightly enhanced exactness percentages of 98.74% and 98.92% subsequently. However, the
SOSDCNN-HAR procedure attained a maximum precision of 99.01%.

Table 2. Accuracy examination of SOSDCNN-HAR procedure with recent methods on Penn
Action Dataset.

Methods Accuracy (%)

JAR-PSV 86.51

PAAP 78.93

BJG-3D Deep Conv. 97.83

BEP 98.74

ARC-VAPS 98.92

SOSDCNN-HAR 99.01

The TA and VA acquired by the SOSDCNN-HAR technique on Penn Action Dataset
are portrayed in Figure 5. The investigational result denoted that the SOSDCNN-HAR
approach attained extreme TA and VA values. Exactly, the VA was larger than the TA.
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Figure 5. TA and VA examination of the SOSDCNN-HAR approach on the Penn Action Dataset.

The TL and VL obtained by the SOSDCNN-HAR algorithm on the Penn Action Dataset
are recognized in Figure 6. The investigational result concluded that the SOSDCNN-HAR
methodology has achieved minimum values of TL and VL. Especially, the VL appeared to
be lesser than the TL.
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Figure 6. TL and VL examination of SOSDCNN-HAR procedure on Penn Action Dataset.

An elaborated ROC study of the SOSDCNN-HAR procedure on the Penn Action
Dataset is illustrated in Figure 7. The outcomes signify that the SOSDCNN-HAR procedure
revealed its competence in categorizing diverse methods in the Penn Action dataset.
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4.3. Result Analysis on NW-UCLA Dataset

Table 3 presents an elaborated precision examination of the SOSDCNN-HAR approach
with recent prototypes on the trial NW-UCLA Dataset. The resulting data showed that the
ETESPT-HAR and PCSTA-HAR methods had the capabilities for less precision percentages
of 75.76% and 85.01%, respectively. Subsequently, the BVA technique achieved a moderate
accuracy of 87.29%. Next, the BEP and ARC-VAPS methods established slightly enhanced
accuracies of 87.78% and 88.21%, respectively. However, the SOSDCNN-HAR algorithm
gained an extreme accuracy of 89.50%.

Table 3. Accuracy examination of SOSDCNN-HAR technique with recent procedures on NW-
UCLA Dataset.

Methods Accuracy (%)

ETESPT-HAR 75.76

PCSTA-HAR 85.01

BVA 87.29

BEP 87.78

ARC-VAPS 88.21

SOSDCNN-HAR 89.50

The TA and VA acquired by the SOSDCNN-HAR method on the NW-UCLA Dataset are
depicted in Figure 8. The investigational result implicated that the SOSDCNN-HAR technique
achieved the greatest values of TA and VA. In particular, the VA was greater than the TA.
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The TL and VL reached by the SOSDCNN-HAR procedure on the NW-UCLA Dataset
are recognized in Figure 9. The investigational outcome concluded that the SOSDCNN-
HAR procedure achieved minimum values of TL and VL. To be precise, the VL was lesser
than the TL.
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Figure 9. TL and VL examination of the SOSDCNN-HAR approach on the NW-UCLA Dataset.

A short ROC examination of the SOSDCNN-HAR procedure on the NW-UCLA Dataset
is represented in Figure 10. The resulting data depicted that the SOSDCNN-HAR algorithm
exhibited its capacity to classify diverse approaches on the NW-UCLA dataset. Therefore,
it is apparent that the proposed prototype can recognize diverse human activities.
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The higher performance of the SOSDCNN-HAR model over current methods can be
attributed to its complete technique that integrates deep convolutional neural networks
with human activity detection. This combination permits end-to-end detection of human
activities with improved noise removal over Wiener filtering, automated feature extraction
employing RetinaNet, and efficient hyperparameter optimization through the SOS process.
These united powers result in significantly enhanced precision, showcasing the technique’s
capacity to beat the present techniques and provide robust solutions for cognitive health
assessments. Hyperparameter optimization via the SOS process fine-tunes the model’s
settings, ensuring that it works at peak efficacy. This particular technique of parameter
tuning is vital in reaching the excellent precision reported in the experimental outcomes.

5. Conclusions

In the presented research, a novel SOSDCNN-HAR procedure was established for
the recognition of the actions of an individual automatically. It incorporates several sub-
processes, such as WF-based preprocessing, RetinaNet feature extraction, SOS-based hy-
perparameter tuning, and GRU-based classification. The SOSDCNN-HAR technique is
validated on three distinct datasets: the UCF-Sports Action Dataset, the Penn Action
dataset, and the NW-UCLA dataset. The SOSDCNN-HAR model developed a promising
solution for cognitive health assessment, leveraging deep convolutional neural networks
and human activity detection. The model’s robust noise recognition via Wiener filtering,
feature extraction utilizing RetinaNet, and hyperparameter optimization via SOS develop-
ment collectively contribute to its outstanding performance. With exciting exactness levels
attained on benchmark datasets, the SOSDCNN-HAR technique displays its possibilities to
advance the field of cognitive health assessment and provide valuable insights for medical
and study applications. Upcoming work for the SOSDCNN-HAR model concentrates
on many key avenues of enhancement and survey. Primarily, a model can be prolonged
to provide a wide variety of human activities, confirming its applicability in a broader
spectrum of scenarios. In addition to that, the incorporation of multi-modal data sources,
namely, sensor data and wearable technology, improves the model’s accuracy and offers
a more holistic view of cognitive health. Lastly, real-world deployment and validation of
the SOSDCNN-HAR model will be critical to evaluate its performance and usability in
experimental and healthcare settings.
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