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Abstract: Novel high technology devices built to restore impaired peripheral nerves should be
biomimetic in both their structure and in the biomolecular environment created around regenerating
axons. Nevertheless, the structural biomimicry with peripheral nerves should follow some basic
constraints due to their complex mechanical behaviour. However, it is not currently clear how
these constraints could be defined. As a consequence, in this work, an explicit, deterministic, and
physical-based framework was proposed to describe some mechanical constraints needed to mimic
the peripheral nerve behaviour in extension. More specifically, a novel framework was proposed
to investigate whether the similarity of the stress/strain curve was enough to replicate the natural
nerve behaviour. An original series of computational optimizing procedures was then introduced to
further investigate the role of the tangent modulus and of the rate of change of the tangent modulus
with strain in better defining the structural biomimicry with peripheral nerves.

Keywords: biomimicry; nerve biomechanics; peripheral nerves; numerical optimization; strain
energy function

1. Introduction

Biomimetic materials are able to behave similar to materials originating from living
organisms and can effectively replicate selected characteristics of natural materials. They
could replace biological materials, restoring natural functions when the biological counter-
parts are unpaired, absent, or unable to correctly perform [1]. Biomimetic materials were
often used to build scaffolds promoting the regeneration of the natural tissue: biomimetic
3D-printed scaffolds for spinal cord injury repair were built [2], as well as electrically
conductive scaffolds mimicking the hierarchical structure of cardiac myofibers [3]. Again,
in the literature, biomimetic scaffolds for tendon tissue regeneration were described [4–7].
More generally, some research groups focused on biomimetic approaches for bone tissue
engineering [8–10], while others obtained a supramolecular biomimetic skin [11]. Some
scientists succeeded in building a biomimetic nerve platform using cell line as neuronal
population [12,13], while others provided some general design principles for a biomimetic
artificial nerve [14]. More specifically, as “desired biomimetic devices and scaffolds for
neurotrophic biomolecules to be implemented in a future PNI-repair scaffold”, they de-
scribed a three-dimensional scaffold architecture designed to improve the regeneration of
sensory and motor fibers. The internal channels were described as able to guide a very
small group of axons through scaffolds, which were biofunctionalized to bind the receptors
expressed at the surface of the growth cone. Interestingly, all the previous structures were
enveloped by a material, which formed the outer sheet of the biomimetic artificial nerve,
and which was identified as “semipermeable”, “semirigid”, or “flexible”. Nevertheless,
the mechanical characteristics of this “material” were not described and are not currently
clear, since it should mimic the mechanics of the natural outer sheet of connective tissue
enveloping peripheral nerves. In other words, the knowledge of the peripheral nerve
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mechanical response to axial strain was needed to allow this material to be properly de-
signed. Indeed, peripheral nerves are physical objects [15], which react to elongation by
increasing their stiffness to keep the axons integrity and to protect endoneural structures
from longitudinal overstretch [16]. The study of the mechanical behaviour of peripheral
nerves was performed at different scale levels. Thus, the relationship between macro-
scopic tensile loads and micro-scale deformations [17] was investigated. Again, the nerve
was studied as a complex structure showing the characteristics of an isotropic material,
providing a deterministic elastic [18,19] or hyperelastic response [20–24] as a function of
the strain magnitude. Differently, a stochastic iterative fibril-scale mechanical model was
implemented to reproduce the straightening of wavy fibrils and to account for the effects
of interfibrillar crosslinks on the overall properties of the tissue [25,26]. Recently, an ex-
plicit and deterministic framework was proposed to model the behaviour of peripheral
nerves under longitudinal stretch [27]. This framework was applied here to investigate the
main mechanical constraints to the behaviour of a material, which could mimic the axial
response of peripheral nerves. The governing equations were proposed in polynomial form
together with an original procedure to decrease their overall complexity in physiologically
relevant cases. Finally, the minimum number of constraints to achieve an acceptable level
of biomimicry with peripheral nerves was presented.

2. Methods

The mechanical response of the peripheral nervous tissue was assumed to be ruled
by an SEF (Strain Energy Function, for unit of volume) affected by the strain measure as
well as by the initial direction of the collagen fibrils. In particular, the SEF was written as
W = W(C, M⊗M), where F was the deformation gradient and C = FTF was the right
Cauchy–Green strain tensor, while M was a unit vector field accounting for the direction of
the collagen fibrils in the reference configuration. The mean Cauchy–Green stress tensor
was, then, written as:

σ = J−1F
∂W
∂F

(1)

and J = det(F). In general, the strain energy function could be written as a function of
invariants as W = W(I1, I2, I3, I4, I5), where, I1 = tr(C), I2 = 1

2 [I
2
1 − tr(C2)], I3 = det(C),

I4 = M · (CM), I5 = M · (C2M). As usual, the peripheral nervous tissue was considered
incompressible, and thus, I3 = det(C) = 1 [16,22–24,28,29]. In addition, since its main
structural components are the ground matrix [30,31] and the collagen fibrils [32], the strain
energy function was rewritten as W = W(I1, I4), where the I1 invariant accounted for the
action of the matrix, and the I4 invariant modeled the reinforcing action of the collagen
fibrils. Therefore, the mean Cauchy–Green stress tensor was:

σ = − p̃I + 2W1B + 2W4m⊗m (2)

where p̃ was the pressure, B = FFT was the left Cauchy–Green tensor, Wi =
∂W
∂Ii

, i = 1, 4,
and m = FM. In particular, the energetic contributions, deriving from the ground matrix
and from the collagen fibrils were chosen, as in the recent literature [27].

The nerve underwent to axial strain (z-direction), and thus, its lateral surface was
stress-free. Then, the determination of the mean axial stress as a function of the axial
strain (εzz) was performed through Equation (2) solved with the boundary conditions
σxx = σyy = 0 [28,29]. A polynomial form of the mean Cauchy stress was, then, written as:

σzz(K1, A, D, p, q, εzz) = 2K1[(εzz + 1)2 −
p

∑
n=0

(−1)nεn
zz] + 4ADεzz(2 + εzz){

q

∑
n=0

[Dε2
zz(2 + εzz)2]n

n!
− 1} (3)

the tangent modulus was written as:
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Et(K1, A, D, p, q, εzz) = (4K1 − 8AD)(εzz + 1)− 2K1

p

∑
n=0

n(−1)nε
(n−1)
zz + 8AD(εzz + 1)

q

∑
n=0

Dnε2n
zz (εzz + 2)2n

n!
+

+4ADεzz(εzz + 2)
q

∑
n=0

ε2n
zz (εzz + 2)2n(4Dnnεzz + 4Dnn)

n!ε2
zz + 2n!εzz

(4)

while the rate of change of the tangent modulus with strain was:

E′t(K1, A, D, p, q, εzz) = 4K1 − 8AD− 2K1

p

∑
n=0

[(n2 − n)(−1)nεn−2
zz ] + 8AD

q

∑
n=0

(Dnε2n
zz (εzz + 2)2n)

n!
+

+4ADεzz(εzz + 2)
q

∑
n=0

ε2n
zz (εzz + 2)2n((16Dnn2 − 4Dnn)ε2

zz + (32Dnn2 − 8Dnn)εzz + 16Dnn2 − 8Dnn)
(n!ε4

zz + 4n!ε3
zz + 4n!ε2

zz)
+

+16AD(εzz + 1)
q

∑
n=0

ε2n
zz (εzz + 2)2n(4Dnnεzz + 4Dnn)

(n!ε2
zz + 2n!εzz)

(5)

In Equations (3)–(5) the indexes p, q ∈ N should be determined in order to minimize
the functional:

Φ(K1, A, D, p, q) =
∫ εzzmax

0
|σzz(K1, A, D, p, q, εzz)− σzz(K1, A, D, ∞, ∞, εzz)|dεzz (6)

where σzz(K1, A, D, ∞, ∞, εzz) = limp→∞,q→∞ σzz(K1, A, D, p, q, εzz). The sensitivity of
the mean Cauchy stress in Equation (3) to each parameter was evaluated through the
following indexes:

SK1(1 + ∆K1, p, q) =

∫ εzzmax
0 |σzz(1 + ∆K1, 1, 1, p, q, εzz)− σzz(1, 1, 1, p, q, εzz)|dεzz

∆K1
(7)

SA(1 + ∆A, p, q) =

∫ εzzmax
0 |σzz(1, 1 + ∆A, 1, p, q, εzz)− σzz(1, 1, 1, p, q, εzz)|dεzz

∆A
(8)

SD(1 + ∆D, p, q) =

∫ εzzmax
0 |σzz(1, 1, 1 + ∆D, p, q, εzz)− σzz(1, 1, 1, p, q, εzz)|dεzz

∆D
(9)

where ∆K1 = ∆A = ∆D = 99. In addition, the best combination of the parameters p, q was
chosen through the maximization of the metric:

Ω(K1, A, D, p, q) =
|log[Φ(K1, A, D, p, q)]|1.7

(p + 1)(q + 1)
(10)

3. Results
3.1. Error Evaluation for Different Polynomial Stress Functions

The logarithm (base 10) of the functional defined in Equation (6) was used to quantify
the error of Equation (3) with respect to the limit values of p → ∞ and q → ∞ for each
combination of finite values for p and q. More specifically, in Figure 1 the magnitude of
errors is shown for K1 = 1 and different values of the A and D. In particular, the value of
logΦ is shown for D = 1 and A = 1, 10, 100 (Figure 1a–c), for D = 10 and A = 1, 10, 100
(Figure 1d–f), and for D = 100 and A = 1, 10, 100 (Figure 1g–j). Similarly, in Figure 2,
the error magnitude is shown for K1 = 10. More specifically, the magnitude of errors
is shown for D = 1 and A = 1, 10, 100 (Figure 2a–c), for D = 10 and A = 1, 10, 100
(Figure 2d–f), and for D = 100 and A = 1, 10, 100 (Figure 2g–j). In the same way, in Figure 3
the magnitude of the errors are shown for K1 = 100. The values are shown for D = 1
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and A = 1, 10, 100 (Figure 3a–c), for D = 10 and A = 1, 10, 100 (Figure 3d–f), and, finally,
for D = 100 and A = 1, 10, 100 (Figure 3g–j).
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Figure 1. Magnitude of errors (logΦ) for K1 = 1 and different ranges of A and D parameters.
(a–c) Magnitude of errors for D = 1 and A = 1, 10, 100, respectively. (d–f) Magnitude of errors for
D = 10 and A = 1, 10, 100. (g,h,j) Magnitude of errors for D = 100 and A = 1, 10, 100, respectively.
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Figure 2. Magnitude of errors (logΦ) for K1 = 10 and different ranges of A and D parameters.
(a–c) Magnitude of errors for D = 1 and A = 1, 10, 100, respectively. (d–f) Magnitude of errors for
D = 10 and A = 1, 10, 100. (g,h,j) Magnitude of errors for D = 100 and A = 1, 10, 100, respectively.
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Figure 3. Magnitude of errors (logΦ) for K1 = 100 and different ranges of A and D parameters.
(a–c) Magnitude of errors for D = 1 and A = 1, 10, 100, respectively. (d–f) Magnitude of errors for
D = 10 and A = 1, 10, 100. (g,h,j) Magnitude of errors for D = 100 and A = 1, 10, 100, respectively.

3.2. Sensitivity of Different Polynomial Stress Functions to Parameters K1, A, D

The sensitivity of Equation (3) to parameters K1, A, D was studied through
Equations (7)–(9). More specifically, in Figure 4a, the influence of the change of K1 from
1 to 100 was studied for all combinations of 0 ≤ p ≤ 10 and 0 ≤ q ≤ 10, when both the
other parameters were kept constant (i.e., A = 1, D = 1). The value of sensitivity SK1

(for sake of simplicity all the dependencies from parameters were dropped out) ranged
from 1.314× 10−2 to 1.954× 10−2. In the first column, there were the minimum values,
while in the second column there were the maximum ones. The value of sensitivity was
almost constant (i.e., SK1 oscillated around 1.192× 10−2) over all the other combinations.
Similarly, in Figure 4b, the influence of the change of the parameter A from 1 to 100 was
studied, keeping constant both K1 = 1 and D = 1. In this case, the sensitivity SA ranged
between 0 and 3.635× 10−4. The fist row was the minimum one, the value of sensitiv-
ity was SA = 3.602× 10−4 in the second row, while its value was almost constant (i.e.,
SA = 3.635× 10−4) over all the other combinations. Finally, in Figure 4c, the influence of
the change of the parameter D from 1 to 100 was studied, while the other parameters were
constant K1 = 1 and A = 1. The sensitivity SD ranged between 0 and 11.503× 10−2. In this
case, the sensitivity increased with the value of q. The fist row was the minimum one, while
the value of SD progressively increased from 3.638× 10−2 to 11.503× 10−2 starting from
the 2nd row to the 10th one.
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a

SK1

SA

SD

b

c

Figure 4. Sensitivity of Equation (3) to parameters K1, A, D. (a) Sensitiveness of Equation (3) to the
increment of K1 from 1 to 100 (A = 1, D = 1). (b) Sensitivity of Equation (3) to the increment of A
from 1 to 100 (K1 = 1 and D = 1). (c) Sensitivity of Equation (3) to the increment of D from 1 to 100
(K1 = 1 and A = 1).

3.3. Minimization of the p and q Values

Once studied, the sensitivity of Equation (3) to general values of parameters K1, A, D,
the attention was narrowed to their physiological values. In particular, literature values
were used both for peroneal and vagus nerves [27]. The metric Ω in Equation (10) was
used to identify the best combination of parameters (with finite and integer values ranging
between 0 and 10) for Equation (3) with physiological parameters for peroneal nerve
(K1 = 3.018 kPa, A = 0.014 kPa, and D = 66.893). The maximization of this metric
resulted in Ω = 0.883 for p = 1 and q = 4. Therefore, to further compare the evolution
of σzz(1, 4, ε) to the σzz(∞, ∞, ε) (the dependence of parameters was dropped out for sake
of simplicity), both their difference and their ratio were studied. More specifically, their
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difference started from 0 and increased up to 1.57 × 10−2 kPa for ε = 0.058, while it
decreased up to −1.24× 10−1 for ε = 0.08 (Figure 5b). Similarly, their ratio started form
1 for ε = 0 and increased up to 1.0000033 for ε = 0.069, while it decreased up to 0.974
for ε = 0.08 (Figure 5c). In a similar way, the maximization of the metric in Equation (10)
resulted in Ω = 0.612 for p = 7 and q = 7 when the mean physiological value for vagus
nerve were used (K1 = 9.731 kPa, A = 5.277 kPa, D = 10.171). The difference between
σzz(7, 7, ε) and σzz(∞, ∞, ε) (the dependence of parameters was dropped out for sake of
simplicity) started from 0 for ε = 0 and increased up to 7.183× 10−9 for ε = 0.074, while it
decreased up to −5.955× 10−9 for ε = 0.08 (Figure 5e). Their ratio started from 1 for ε = 0
and oscillated from 1.0000000006 for ε = 0.071 and 0.9999999996 for ε = 0.08 (Figure 5f).
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Figure 5. Suitability assessment of combinations with finite values of p and q. (a) The metric Ω
identified as best candidate the stress function with p = 1 and q = 4 (in yellow) for the peroneal
nerve. (b) Evolution of the difference between stress functions with p = 1, q = 4, and p = ∞, q = ∞.
(c) Evolution of the ratio between stress functions with p = 1, q = 4, and p = ∞, q = ∞. (d) The
metric Ω identified as best candidate the stress function with p = 7 and q = 7 (in yellow) for the
vagus nerve. (e) Evolution of the difference between stress functions with p = 7, q = 7, and p = ∞,
q = ∞. (f) Evolution of the ratio between stress functions with p = 7, q = 7, and p = ∞, q = ∞. In all
relevant plots εzz = ε for sake of simplicity

3.4. Evolution of Stress, Tangent Modulus, and Rate of Change of the Tangent Modulus with Strain

The analysis performed through Equation (10) was able to identify the best combina-
tion of finite values of parameters p and q with physiological parameters. In particular,
the evolution of Equation (3) with K1 = 3.018 kPa, A = 0.014 kPa, D = 66.893, p = 1,
and q = 4 is shown in Figure 6a for the porcine peroneal nerve. The mean Cauchy stress
increased monotonically and non linearly starting from 0 kPa for ε = 0 up to 4.676 kPa for
ε = 0.08. Similarly, the evolution of tangent modulus was non linearly increasing from
18.018 kPa for ε = 0 to 229.125 kPa for ε = 0.08 (Figure 6b), while the rate of change of
the tangent modulus with strain started from 12.072 for ε = 0 and non linearly increased
up to 13, 357.327 for ε = 0.08 (Figure 6c). Furthermore, the evolution of Equation (3) with
K1 = 9.731 kPa, A = 5.277 kPa, D = 10.171, p = 7, and q = 7 is shown in Figure 6d for
the canine vagus nerve. The Cauchy stress increased monotonically in a non linear way
starting from 0 kPa for ε = 0 up to 16.300 kPa for ε = 0.08, while the tangent modulus non
linearly increased from 58.386 kPa for ε = 0 to 555.722 kPa for ε = 0.08 (Figure 6e). Finally,
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the rate of change of the tangent modulus with strain started from 0 for ε = 0 and non
linearly increased up to 16, 479.238 for ε = 0.08 (Figure 6f).
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Figure 6. Evolution of stress, tangent modulus, and rate of change of tangent modulus with strain.
(a) Evolution of the mean Cauchy stress with strain for the porcine peroneal nerve. (b) Evolution of
the tangent modulus with strain for the porcine peroneal nerve. (c) Evolution of the rate of change of
the tangent modulus with strain for the porcine peroneal nerve. (d) Evolution of the mean Cauchy
stress with strain for the canine vagus nerve. (e) Evolution of the tangent modulus with strain for the
canine vagus nerve. (f) Evolution of the rate of change of the tangent modulus with strain for the
canine vagus nerve.

3.5. Analysis of the Correlation among Longitudinal Stress, Tangent Modulus, and Rate of Change
of the Tangent Modulus with Strain

In order to investigate possible relationships among the previously described quanti-
ties, a further analysis is shown in Figure 7. More specifically, in Figure 7a, the evolution
of the mean Cauchy stress with strain was compared to the evolution of the tangent
modulus with strain for the porcine peroneal nerve. These quantities were positively
correlated (R2 = 0.9997, p-value = 1.88× 10−15, α = 0.05, two-tailed t test) through the non
linear expression:

Et(1, 4, εzz) = −1.574σ3
zz(1, 4, εzz) + 15.548σ2

zz(1, 4, εzz) + 6.575σzz(1, 4, εzz) + 16.839 (11)
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Similarly (Figure 7b), the rate of change of the tangent modulus with strain was
positively correlated (R2 = 0.9999, p-value = 4.34× 10−10, α = 0.05, two-tailed t test) to the
mean Cauchy stress through the non linear formula:

E′t(1, 4, εzz) = −93.852σ3
zz(1, 4, εzz) + 943.702σ2

zz(1, 4, εzz) + 468.751σzz(1, 4, εzz) + 4.126 (12)

Again (Figure 7c), the evolution of the rate of change of the tangent modulus with
strain was positively correlated (R2 = 0.9999, p-value = 5.27× 10−10, α = 0.05, two-tailed t
test) to the tangent modulus through the linear expression:

E′t(1, 4, εzz) = 62.838Et(1, 4, εzz)− 1036.407 (13)

In Equations (11)–(13), the explicit dependence of K1 = 3.018 kPa, A = 0.014 kPa, and
D = 66.893 was neglected for sake of simplicity. In a similar way (Figure 7d), for the canine
vagus nerve, the evolution of the tangent modulus was positively correlated with the
longitudinal strain (R2 = 0.9994, p-value = 4.75× 10−21, α = 0.05, two-tailed t test) through
the non linear expression:

Et(7, 7, εzz) = −0.036σ3
zz(7, 7, εzz) + 0.800σ2

zz(7, 7, εzz) + 27.432σzz(7, 7, εzz) + 47.594 (14)

The rate of change of the tangent modulus (Figure 7e) was positively correlated
(R2 = 0.9997, p-value = 1.11 × 10−19, α = 0.05, two-tailed t test) to the longitudinal
stress through the non linear expression:

E′t(7, 7, εzz) = 2.442σ3
zz(7, 7, εzz)− 81.481σ2

zz(7, 7, εzz) + 1694.064σzz(7, 7, εzz) + 130.716 (15)

Finally, the evolution of the rate of change of the tangent modulus with strain was
positively correlated (R2 = 0.9972, p-value = 1.24× 10−19, α = 0.05, two-tailed t test) with
the evolution of the tangent modulus (Figure 7f) with the non linear relationship:

E′t(7, 7, εzz) = 0.000116E3
t (7, 7, εzz)− 0.124E2

t (7, 7, εzz) + 68.524Et(7, 7, εzz)− 2788.716 (16)

In Equations (14)–(16), the explicit dependence of K1 = 9.731 kPa, A = 5.277 kPa, and
D = 10.171 was neglected for the sake of simplicity.
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Figure 7. Correlation between relevant quantities for peroneal and vagus nerves. (a) Correlation
between the mean Cauchy stress and the tangent modulus for the peroneal nerve (R2 = 0.9997,
p-value = 1.88× 10−15, α = 0.05, two-tailed t test). (b) Correlation between the mean Cauchy
stress and the change of the tangent modulus with strain for the peroneal nerve (R2 = 0.9999,
p-value = 4.34× 10−10, α = 0.05, two-tailed t test). (c) Correlation between the tangent mod-
ulus andthe change of the tangent modulus with strain for the peroneal nerve (R2 = 0.9999,
p-value = 5.27× 10−10, α = 0.05, two-tailed t test). (d) Correlation between the mean Cauchy
stress and the tangent modulus for the vagus nerve (R2 = 0.9994, p-value = 4.75× 10−21, α = 0.05,
two-tailed t test). (e) Correlation between the mean Cauchy stress and the change of the tangent
modulus with strain for the vagus nerve (R2 = 0.9997, p-value = 1.11× 10−19, α = 0.05, two-tailed
t test). (f) Correlation between the tangent modulus and the change of the tangent modulus with
strain for the vagus nerve (R2 = 0.9972, p-value = 1.24× 10−19, α = 0.05, two-tailed t test).

4. Discussion

In this work, some basic mechanical constraints were investigated to design a material
biomimetic to the connective tissue of peripheral nerves. This material was anticipated as
required to build a biomimetic artificial nerve [14]. However, no quantitative information
was up to now provided about its mechanical characteristics. As a consequence, since
the peripheral nerves are mainly exposed to axial elongations, here, the characteristic for
a material to behave like peripheral nerves in extension are quantitatively explored. An
original polynomial framework was also provided, in order to simplify as much as possible
the writing of the governing equations. To this aim, some different numerical analyses of
the behaviour of Equations (3)–(5) were performed.

A first analysis of the magnitude of errors, expressed through the logarithm of the
functional Φ(K1, A, D, p, q) in Equation (6), was able to show that different patterns arose
for different values of parameters. In other words, the distribution of errors for all the
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combinations of integers values of p, q ∈ N and 0 ≤ p ≤ 10, 0 ≤ q ≤ 10 changed as a
function of K1, A, D parameters. More specifically, for K1 = 1, D = 1, and q ≥ 5 (Figure 1),
the magnitude of errors depended only of p and decreased from about −4 to −13 when
p increased from 0 to 10. For K1 = 100 and D = 100, instead, the magnitude of errors
practically only depended of q, ranging from −1 to −4, when q ranged between 0 and
10, while A = 1. It is worthy to notice that the error value ranged between 2 and −2 for
A = 10 and between 3 and −1 for A = 100. For D = 10 the pattern of errors was hybrid
between the two previous cases. Similarly, when K1 = 10 (Figure 2) for D = 1 the values of
the logarithm of the functional in Equation (6) were independent of q and ranged between
about −2 and −12 when p increased from 0 to 10. For D = 100, the values of error were
practically not dependent of p and ranged between 1 and −3 for A = 1, between 2 and −2
for A = 10, while between 3 and−1 for A = 100, when p ranged from 0 to 10. Furthermore,
in this case, for D = 10 the error pattern was hybrid between the two previous cases. Finally,
for K1 = 100 the distribution of errors was similar (see Figure 3), while the magnitude of
errors (absolute value) was slightly decreased for D = 1 and D = 10.

This kind of analysis was useful to learn about the distribution of errors among differ-
ent combinations. However, because of the previously described dependency of parameters
K1, A, D and the possible lack of dependency of p or q, several different combinations re-
sulted in the same amount of error. As a consequence, a further sensitivity analysis was
performed (see Figure 4) in order to clarify the influence of each parameter on the amount
of error. In particular, the influence of the parameter K1 was studied through the sensitivity
index in Equation (7) and underlined a lack of dependency of q for p ≥ 2, where the
sensitivity was the same for all combinations of p and q. In a similar way, the sensitivity
index defined in Equation (8) showed a lack of dependency of q for p ≥ 1, where the
sensitivity pattern was flat. Moreover, the sensitivity index in Equation (9) clearly showed
the total lack of dependence of p together with the increase of q. In addition, in general,
the order of magnitude of SD was 5.56 times SK1, while it was 333.334 times SA. Thus,
the D parameter had the maximum influence on the evolution of Equation (3), followed by
K1 and then by the parameter A. However, also in this case, several combinations had the
same amount of sensitivity with respect to these parameters, which means this analysis
was not enough to choose the best combination of p and q for Equation (3).

As a consequence, the metric in Equation (10) was used to account for at the same time
both the value of the functional in Equation (6) and the values of p and q. Indeed, from a
side, this metric was directly proportional to the absolute values of the logarithm of errors,
which means it was able to found the combinations resulting in small errors. From the
other side, this metric was inversely proportional to the values of p and q, then it was able
to identify good candidates with small values of p and q. The use of this metric resulted
also dependent of the values of parameters K1, A, D. Therefore, to perform an accurate
selection of the best possible combinations related to a given biological tissue, previously
identified values [27] were used, both for the porcine peroneal nerve and for the canine
vagus nerve. This procedure resulted in the clear selection of the values p = 1 and q = 4 for
the porcine peroneal nerve. The maximum difference between the evolution of the mean
Cauchy stress in Equation (3) with p = 1 and q = 4 with respect to the same equation with
p→ ∞ and q→ ∞ was within the 2.66%, as well as the ratio, which was 0.974. Therefore,
Equations (3)–(5) were greatly simplified in their writing, keeping a good level of accuracy.
On the contrary, for the canine vagus nerve the use of the Ω metric in Equation (6), resulted
in the selection of the values p = 7 and q = 7. In this last case, the errors for the difference
and the ratio between the reduced polynomial expression and the complete one were both
in the order of 1× 10−9, while together a single best combination, some other suboptimal
combinations were found, as shown in Figure 5d (diagonal values).

Once simplified forms for Equations (3)–(5) were provided, their evolution with strain
was explicitly explored (Figure 6). Both for porcine peroneal nerve and canine vagus nerves,
the increase of the mean Cauchy stress with strain was highly non linear (see Figure 6a,d),
in accordance to the previous literature [20–24,27]. This phenomenon was related to the
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strain stiffening ability of peripheral nerves, which was likely developed to preserve the
integrity of their internal structures [33–38]. However, to provide a more complete picture
of the behaviour of peripheral nerves under axial elongations, the evolution of the tangent
modulus was investigated. Furthermore, in this case, for both nerves, the tangent modulus
evolved in a highly non linear way (see Figure 6b,e). In addition, the rate of change of the
tangent modulus with strain was explored. This further analysis was able to underline
the highly non linear instantaneous evolution of the tangent modulus with the strain (see
Figure 6c,f). It could be worthy to notice that even if the non linear evolution of the stress
with strain was quite well known in the literature [20–22], few works were provided to
describe the evolution of the tangent modulus, as well as the evolution of the rate of change
of the tangent modulus with strain [24].

Although, intuitively, a material should behave “like natural peripheral nerves” to
provide a good level of structural biomimicry, it is not clear whether only the similarity of
the stress/strain response is enough. To better investigate this point, a correlation analysis
was performed for both the previously described responses of both the porcine peroneal
and canine vagus nerves (see Figure 7). This analysis resulted in a highly non linear positive
correlations between the tangent modulus and the mean Cauchy stress both for the porcine
peroneal and the canine vagus nerves (see Figure 7a,d), as in Equations (11) and (14). Sim-
ilarly, a positive non linear correlation was found between the rate of change of the
tangent modulus and the mean Cauchy stress for both nerves (see Figure 7b,e), as in
Equations (12) and (15). Finally, for the porcine peroneal nerve a linear correlation was
found between the rate of change of the tangent modulus and the evolution of the tangent
modulus (see Figure 7c), as in Equation (13), while for the canine vagus nerve the same
correlation was non linear (see Figure 7f), as in Equation (16). The previous results sup-
ported the general need of a comparison with the complete dynamic state of the material,
namely evolution of stress, tangent modulus, and rate of change of the tangent modulus
with strain, to provide an acceptable level of biomimicry with peripheral nerves. The linear
correlation found between the rate of change of tangent modulus and the evolution of
tangent modulus for porcine peroneal nerve was likely due to the particular numeric values
of parameters (i.e., K1, A, D), which were used in this work, in particular the low value of
A. Indeed, different values of these parameters for the canine nerve were enough to show
that a comparison with only two quantities (stress and tangent modulus with strain, due to
the linear correlation between the rate of change of the tangent modulus and the evolution
of the tangent modulus with strain) was not enough in general.

5. Conclusions

Peripheral nerves under stretch behave in a complex way, increasing their instan-
taneous stiffness. As a consequence, in this work, an original and complete study was
provided to identify general and specific polynomial equations ruling the evolution of stress,
tangent modulus and rate of change of tangent modulus with strain. Different analyses
were provided to identify the simplest equations able to model the physiological behaviour
of different nerve specimens (porcine peroneal and canine vagus nerves). The complete
picture of the “static” and “dynamic” evolution of stress with strain was provided for
these two different cases. The comparison with all these three quantities was shown to be
the basic reference for an acceptable level of biomimicry with peripheral nerves. Indeed,
material mimicking the mechanical behaviour of nerves could be strategic in established
medical procedures [39,40], interactions with implantable devices [41,42], as well as in
novel technological applications as neural interfaces [43? ], stretchable electronics [45], and
direct connection between engineered biomaterials and nerves cells [46–50] or peripheral
nerves [51,52]. In addition, a good level of biomimicry with peripheral nerves could be
crucial to control the immune response of the nervous tissue [53,54] in response to the
stiffness mismatch between nervous tissue and biomaterials [45,55]. Indeed, this mismatch
is likely due to both the “static” actual difference between stress, but also to the “dynamic”
evolution of this difference with strain. Therefore, the investigation of the evolution of
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the tangent modulus, and of the rate of change of the tangent modulus with strain could
provide explicit and quantitative mechanical constraints for structural materials biomimetic
to peripheral nerves.
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