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Abstract: A multi-objective evolutionary algorithm based on decomposition (MOEA /D) serves as
a robust framework for addressing multi-objective optimization problems (MOPs). However, it is
widely recognized that the applicability of a fixed offspring-generating strategy in MOEA /D can
be limited, despite its foundation in the MOEA /D methodology. Consequently, hybrid algorithms
have gained popularity in recent years. This study proposes a novel hyper-heuristic approach
that integrates the estimation of distribution (ED) and crossover (CX) strategies into the MOEA /D
framework based on the view of successful replacement rate (SSR) and attempts to explain the
potential reasons for the advantages of hybrid algorithms. The proposed approach dynamically
switches from the differential evolution (DE) operator to the covariance matrix adaptation evolution
strategy (CMA-ES) operator. Simultaneously, certain subproblems in the neighbourhood denoted
as B(i) employ the Improved Differential Evolution (IDE) operator to generate new individuals for
balancing the high evaluation costs associated with CMA-ES. Numerical experiments unequivocally
demonstrate that the suggested approach offers distinct advantages when applied to a three-objective
test suite. These experiments also validate a significant enhancement in the efficiency (SRR) of the
DE operator within this context. The perspectives and experimental findings, with a focus on the
Success Rate Ratio (SRR), have the potential to provide valuable insights and inspire further research
in related domains.

Keywords: evolutionary multi-objective optimization (EMO); MOEA /D; hyper-heuristic approach;
CMA-ES; IDE; operator switching mechanism; efficiency inspection

1. Introduction

A multi-objective optimization model can be defined as follows [1]:

min F(X) = [f1(x), f2(x),. ., fim(x)]" (1)
<0,i

s.t.gi(x) =12,...,p

where f;(x),{i =1,2,...,m}(m > 2) is the objective function; g;(x) is the constraint function;
x = {xq,..., xn}Tisdimensionaldesignvariables, and X = {x|]x € R",g; (x) <0,i=1,2,..,p}
is the feasible region of the above formula. The design variable x = {x1, ..., xn}T is a certain
set of vectors corresponding to a point on R” which is a n-dimensional Euclidean design space;
f (x) corresponds to a point on R™ which is a m-dimensional Euclidean objective space. In other
words, the objective function f(x) represents a mapping as follows:

f:R" — R™ @)

The multi-objective evolutionary algorithm based on decomposition (MOEA/D,
Zhang and Li, 2007) [2] is a state-of-the-art algorithm that provides a framework for
solving multi-objective optimisation problems (MOPs, Coello and Lamont, 2004; Deb,
K., 2011) [3,4]. Figure 1 is used to demonstrate the basic concepts of MOEA/D. In the
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MOEA/D, a set of evenly weighted vectors in the objective space is used to decompose
one MOP into multiple subproblems. Each subproblem is treated as a scalar optimisation
problem, where a scalarisation function (e.g., the weighted-sum or Tchebycheff approach
proposed by Miettinen (1999)) [5] and weight vectors are utilised to coordinate the relation-
ships among the objective functions. Therefore, it is reasonable to utilise genetic evolution
algorithms originally designed to solve single-objective optimisation problems (SOPs),
especially crossover (CX)-based algorithms such as the differential evolution (DE) and its
variants [6-9], to generate new solutions.

Schematic of MOEA/D
s 4 by Object space

W

Feasible region

minimization

Pareto front

minimization fi
Ideal point

Figure 1. Schematic of MOEA /D. Uniformly generated weight vectors w decompose one MOP into
several sub-problems.

Hansen et al., (2003) acknowledged that the evolution strategy with covariance matrix
adaptation (CMA-ES) [10] was an effective algorithm based on the estimation of distribution
(ED) (Springer Science & Business Media, 2001) [11] that has been widely applied in various
domains. CMA-ES enhances the search process by estimating a more promising region
utilising the distribution information of the current population. Although CMA-ES was
originally utilised for single-objective optimisation, it can be applied to solve MOPs, as
demonstrated by Igel et al., (2007) and Zapotecas-Mart'mez et al., (2015) [12,13].

As a further comparison between the CX and ED strategies, it was observed that CX
was efficient and effective for a global search but tended to become stagnant and was
not well suited for problems with strong variable dependence (non-separable problems).
Conversely, ED was effective for problems with dependent variables but incurred a huge
evaluation cost.

DE and its variants use crossover (CX) and mutation strategies to generate new
solutions. In particular, CX is recognised as an efficient approach for creating promising
individuals by combining information from two or more existing individuals (parents).

Generally, new individuals (children) are compared to one of their parents, and the
children replace their parents if they demonstrate better evaluation values. This is referred
to as a successful replacement scenario. Similar to but different from the feasibility ratio
(FR) [14], the overall successful replacement rate (SRR) is expressed as follows:

success ful replacementtimes

SRR = —
max evaluationtimes

®)

The results of numerical experiments revealed that the SRR in pure MOEA /D-DE
exhibited a low level of efficiency for the Walking Fish Group (WFG) [15] test suite, as
listed in Table 1. That is, a significant portion of the evaluation cost did not contribute to
the final solution. Also, there is an inherent problem when using ED strategies especially
CMA-ES to solve MOPs that significantly increases the evaluation cost. This is because
many sampling points are required to obtain the probability distribution in the objective
space. Based on the above analysis, a hybrid approach was proposed, called MOEA /D-
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HH, for which Table 1 presents the average SRRs in two-, three-, and five-objective WFG
problems. The numerical experiment was initialised with 300 subproblems and 30 variables
(1000 subproblems and 32 variables in WFG_5D problems). The iterations were repeated
21 times, aiming to dynamically switch between different generating operators based on
the search situation within the MOEA /D framework, with the core concept of ‘recycling-
redistribute’.

Table 1. Average SRRs in two-, three-, and five-objective WFG problems (where # indicates the number
of subsequent hyperparameter). The numerical experiment was initialised with 300 subproblems and
30 variables (1000 subproblems and 32 variables in WFG_5D problems). The iterations were repeated
21 times.

# Objectives (M)

Problems Two Three Five
WEG1 0.1833 0.0963 0.2120
WEG2 0.2579 0.1152 0.2452
WEG3 0.2667 0.1333 0.2177
WEG4 0.1273 0.0541 0.1494
WEG5 0.1370 0.0632 0.2006
WEFG6 0.1752 0.0687 0.1556
WEG7 0.2457 0.0726 0.1957
WEGS8 0.2488 0.0759 0.2019
WEG9 0.1122 0.0594 0.1383

Specifically, when a CX operator in a subproblem fails to generate new nondominated
individuals for several generations, this indicates that CX cannot be expected to discover
a new nondominated individual within a finite number of generations. At this time,
MOEA /D-HH switches from the CX to the CMA-ES operator for recycling inefficient
evaluation costs.

According to its characteristics, the CMA-ES operator has a high probability of esti-
mating the correct search direction for a sub-problem if there are sufficient sampling points.
The evaluation cost of evaluating these sampling points comes from the redistribution of
the evaluation cost occupied by CX. After switching to CMA-ES, CMA-ES is continued if a
new individual can be nondominated. However, CMA-ES switches back to CX if it fails
to update the individual to save evaluation costs. The sampling points generated by the
CMA-ES are based on the distribution of the current subproblem and its neighbourhood.
Even if the sampling points are not nondominated, they still contain useful information
regarding the evolutionary process.

To make the most of the evaluation cost of the CMA-ES, the operators of some of
the other subproblems in are switched to the improved differential evolution (IDE, Tang
et al., 2014) [16] operator when the operators of subproblem are switched to CMA-ES.
The IDE is recognised as a powerful algorithm for solving SOPs, but it also requires a
higher evaluation cost to solve MOPs. The sampling points generated by the CMA-ES are
sufficient for the IDE operator, so there is no need for additional evaluation costs. The IDE
reuses the sampling points generated by CMA-ES, which dilutes the high evaluation cost
of CMA-ES, thus achieving the purpose of mitigate the evaluation cost.

More details about the CMA-ES and IDE are introduced in Section 2. The workflows
of the proposed approach, MOEA /D-HH, and necessary modifications to the CMA-ES and
IDE in this framework are discussed in Section 3. The results of the numerical experiments
are presented to demonstrate the effectiveness of the proposed approach in Section 4.
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This paper aims to present an effective method of combining CX and EX and demon-
strate its usefulness through numerical experiments. The proposed approach is designed
to synergistically harness the inherent advantages of CX and ED.

The main contributions of this paper are follows:

(1) Concept of re-emphasising the necessity for a hybrid algorithm: Different from the
previous hybrid algorithms that combine CX and ED strategies, we dynamically
‘recycle’ the inefficient evaluation cost occupied by CX and ‘redistribute’ it to ED from
the point of view of successful replacement rate (SRR).

(2) Reuse of evaluation costs: Although various evolutionary algorithms based on CX or
ED have been proposed in existing studies, most of them focus only on non-dominant
individuals. Based on the underlying logic of the ED strategy, those dominated solu-
tions are also considered containing information relevant to evolution. Therefore, in
the proposed algorithm, dominated solutions generated by the ED strategy are reused
as archive populations, which contributes to new ideas for maintaining diversity and
balancing the high evaluation cost of ED strategies in hybrid algorithms.

(8) Framework adaptation: In this study, we propose an operator switching mecha-
nism depend on the Efficiency Inspection. Different from the switching mechanism
in other hybrid algorithms, our proposal is tailor-made, which fully considers the
characteristics of the neighbourhood in the MOEA /D framework.

2. Related Works

The basic concepts of the CMA-ES operator and IDE algorithm are discussed in this
section. CMA-ES and IDE were originally designed and are commonly used to solve SOPs.
However, the necessary modifications were made to incorporate CMA-ES and IDE into the
MOEA/D framework to solve MOPS, which will be explained in the following subsections.

2.1. CMA-ES

The CMA-ES is known to be an effective evolutionary algorithm for single-objective
problems. In CMA-ES, a population of new search points is generated by sampling a
multivariate normal distribution. The basic equation for sampling the search points in
generation g 4 1 is expressed as follows (Hansen, 2006) [17]:

x’({g+1) NN(m(g), (0(8)>2C(g)>

fork=1,...,A

4)

where ~ denotes the same distribution on the left and right side, xlggﬂ) € R" denotes
the kth offspring (search point) from generation g + 1, m(8) € R" denotes the mean value

of the search distribution at generation g, C8) € R™" denotes the covariance matrix
at generation g, and A > 2 for the population size, sample size, and number of off-

2
spring. N <m<g>, (o) c<g)) ~ 9 4 N (0,C9) ~ mls) + o BODON(O, ) is
the multi-variate normal search distribution.
Calculating m(8+1), C&*1), and ¢(8*Y) for the next generation g + 1 is required to de-
fine the complete iteration step. The equations for updating the parameters for distribution
are expressed as the following:

1) u g
m8 Y = Y Wik x| ®)

(g+1) ) b S~
P = (1= enpl + el =¥ L w0 S @
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e [ [P
(g+1) — (&) i fof L2 1
o 08/ xexp | min| 1, i, \ EN D] 1 (7)

(8+1) _ 1,(8)
P = (L= epl a2 = o™ ©

T
T " x;g x|~ m(g) x‘lg x|~ m(g)
CED = (1= 1 — ey +¢c)C8) +e1p (p) Fad e o o ©)

A=4+3|Inn] (10)
A
B= {ZJ (11)
" -1
Hw = (Z(wi2)> (12)
i—0
. Hwt2
C"_n+yw+3 13
_ pw—1
dy =1+ ¢, + 2max(0, — 1) (14)
4
=g (15)
o 2 +min(1,2/\/6) (16)
(n+1.3)"uw
. 2(pw —2+pw 1)
— min(1 — ¢y, 17
¢y =min(l — ¢ \/ 127 - ) (17)

where 7 is the number of design variables.

MOEA /D-HH was optimised to introduce CMA-ES into the MOEA /D framework.
First, it was assumed that the current generation ¢ was the last generation that used DE
to provisionally generate a new individual. In generation g + 1, the current sub-problem
i uses CMA-ES to generate new individuals. MOEA /D-HH uses the neighbourhood of the
current subproblem i to initialise the parameters of CMA-ES, setting X8 = B(i)? at the end
of generation g. Subsequently, A sampling points are generated and evaluated in generation

g + 1, where a provisional archive population A(i)(gH) is set up to store the sampling
points. It is worth noting that even if a new sampling cannot be found that dominates the
(+1)
i
contribute to finding the direction of evolution. Therefore, X (81111 = B(i)&*/) U A(i)&*7)
was set where j € Z,..

current individual, x . This implies that the information contained in A(7) &+1) can still

2.2. IDE

The original DE strategy can be summarised as follows:
DE/rand/1: Vig = X10,¢ + F;- (xﬂ,g — er,g) (18)

where vj,¢ TEpresents the mutation vector. The indices 70, r1, and 72 in the MOEA /D
framework are distinct integers uniformly chosen from B(i)¢. However, x,1,¢ and x2 ; are
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randomly selected. Therefore, the difference vector x,1 ¢ — X2 ¢ will occasionally appear
in the opposite direction of evolution. IDE is utilised to divide the parent solution into a
superior group (SG) and inferior group (IG) using numerical sorting in the objective space
to overcome this problem. This strategy is expressed as follows:

DE /base/differ/cross :v;; = xj ¢ + F- (xsgo/g — x,'gl,g) (19)

where x540,¢ is selected from the SG and xjq1 ¢ is selected from the IG. The difference vector
Xsg0,g — Xigl,g €nsures that the correct direction of evolution is not reversed.

However, there are some awkward situations for directly setting the parent solution
as B(i)® when using the IDE strategy to solve MOPs. On one hand, the selections of Xsq0,
and X;¢1,¢ are based on numerical sorting. For the diversity of new individuals, the size of
B(#)# cannot be too small. On the other hand, according to the characteristics of MOEA /D,
a large B(i)¢ leads to lower relevance between individuals in B(i)$. An ideal situation is
that there are enough individuals related to the corresponding subproblem, but obviously,
evaluating additional individuals to meet this requirement is not efficient.

Fortunately, the CMA-ES strategy provides an ideal scenario for IDE. A(7) (g+1) pro-
vides sufficient individuals to act as the parent solution. At the same time, the sampling

points in A(i)(g'H) are closely related to each other. Therefore, as assumed above, the
current subproblem i uses the CMA-ES strategy to generate new individuals in generation
g + 1. In addition, some of the subproblems in B(i) will use the IDE strategy to generate
new individuals. The subproblems that use IDE will share B(i) ™) U A(i)$*1) as their
parent solution.

3. The Proposed Algorithm MOEA/D-HH

This study introduces a hyper-heuristic approach called MOEA /D-HH that combines
CX and ED strategies within the MOEA /D framework to generate new solutions. The most
important aspect of the MOEA /D-HH approach is the incorporation of an adaptive switch-
ing mechanism for generator operations. Additionally, the challenge of applying CMA-ES
and IDE strategies to solve MOPs in MOEA /D-HH is addressed because CMA-ES and IDE
were originally designed for SOPs.

An overview of the MOEA /D-HH flow and the details of important mechanisms are
discussed in the following sections.

3.1. MOEA/D-HH Framework

The MOEA /D framework can be easily explained using a simple flowchart, as shown
in Figure 2. The framework is divided into three main parts: initialisation, reproduction, and
updating. These parts are represented by dotted rectangles of different colours. Classical
algorithms based on this framework utilise genetic operators to generate an offspring
population (new individuals) during the reproduction phase. Subsequently, the newly
generated individuals are used to update the current population. The reproduction and
update processes continue to iterate until the stopping criteria are satisfied.
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Initialization

Generate Initial Population
X = (X1, 000, Xp)
Number of subproblems(N)

—

Stopping
criteria is
satisfied?

EP=0

I

Setting of Neighbourhood
Assigning weight vectors to
subproblems

Generate a new solution y from X by

|

Initialise reference point :
using genetic operator \
1

|

Z=(z, ...,zm)T

Reproduction

Figure 2. Flowchart of MOEA /D framework.

Most approaches, such as MOEA /D-DE, utilise a single fixed operator throughout
the search process to generate new individuals. Conversely, MOEA /D-HH, which is built
upon the MOEA /D framework and shares the same hyper-parameter initialisation method
as MOEA /D-DE, introduces the integration of multiple distinct operators for generating
offspring. Therefore, an operator selector was necessary during the reproduction phase
of MOEA /D-HH. This selector not only determined the mating population but also chose
the appropriate generating operator based on the current search condition. An efficiency
inspection was performed on the subproblem after the regular update phase to evaluate the
current search condition. The results of this inspection served as the criteria for switching
between CX- and ED-based operators. This switching mechanism involved two components:
a selector operator and efficiency inspection. Further details of this mechanism are presented
in Section 3.4. The core process of MOEA /D-HH is illustrated in Figure 3.

Initialisation

Reproduction

————————— 1

CX based operator | Initialising/Updating distribution

(DE of IDE)

ED based operator
(CMA-ES)

No N R ———

Update of EP
Update of Neighbourhood
Update of Z

!

Efficiency inspection

_________________ 1

Updating

Stopping
criteria is
satisfied?

Figure 3. Core process of MOEA /D-HH.
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3.2. ED Based Operator (CMA-ES) in MOEA/D-HH

In MOEA /D-HH, different sub-problems may utilise different operators to generate
new solutions. Initially, all the subproblems employ the DE1 operator, as specified in
Equation (18). However, a decline in DE operator effectiveness is indicated if it encounters
difficulties in identifying the appropriate evolutionary direction for several generations as the
search progresses. In such cases, MOEA /D-HH switches the operator from DE1 to CMA-ES.
The CMA-ES operator is known for its ability to identify correct search directions by utilising
distribution information. Therefore, is expected to be more effective in generating new
non-dominated individuals. The parameters of CMA-ES will be initialised assuming that the
operator of subproblem i is switched to CMA-ES at generation g, as shown in Table 2.

Table 2. Initialised parameters of CMA-ES in MOEA /D-HH.

Parameters Values
m mean value of B(i)$
pPo 0
o 0.5
Pc 0
C 1

At the same time, MOEA /D-HH will create a provisional archives population A(i)$ =
@ to store new individuals that are subsequently generated. After the initialisation, the
procedure for CMA-ES in MOEA /D-HH is shown as Algorithm 1:

Algorithm 1: CMA-ES in MOEA /D-HH Framework

Input: Setting solution to X = B(i)% U A(i)3.
Step 1: Sorting X using the fitness value of the scalarising function.
Step 2:Updating distribution parameters using sorted X.
Step 3: Generating new solutions :
New solutionsset Y = .Fori=0,1,..., Ucount X A, do:
Y < YUy; =m+0Cry, wherez ~ N(0,1).
Step 4: Repairing : if an element of y; € Y is out of the boundary, its element value is reset to the
boundary.
Step 5: Storing : A(i)$T! «— A(i)SUY
Output: yy,5;, which is the individual with best fitness value in set Y.

The method in Step 3 is equivalent to Equation (4). Specifically, Ucount = 1,2, ..., Upax
€ Z represents the number of unsuccessful replacements. If 1,5; cannot replace the current
best x;8, then Ucoyni+ = 1.

The CMA-ES strategy generates several new individuals based on the dominance
distribution. Obviously, y,s; can be generated as long as enough individuals are generated
that are not dominated by x;$. However, considering the practical evaluation cost, the
volume of set Y cannot be expanded without limit. Therefore, in this study, Uuax = 3.

3.3. CX Based Operator (IDE) in MOEA/D-HH

Based on the characteristics of the MOEA /D framework, subproblems within the
neighbourhood have similar solutions. Moreover, set Y (similar to A(i)) is strongly depen-
dent on B(i), indicating that the individuals in Y are influenced by the current subproblem
i and the entire neighbourhood. In addition, archived individuals improve the diversity of
the population.

In MOEA /D-HH, the operator of other subproblems i’ € {i — %, i) U (z’, i+ %}
within the neighbourhood will switch to the IDE operator after the operator of subproblem

i switches to CMA-ES, where A described in Equation (10) is the size of CMA-ES offspring.
The IDE procedure in MOEA /D-HH is shown as Algorithm 2:
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Algorithm 2: IDE in MOEA /D-HH Framework

Input: Setting solution to X = B(i")8 U A(i)S.
Step 1: Sorting and Partitioning;:
Step 1.1: Sorting X using fitness value of scalarising function.
Step 1.2: Superior group S < top 30% of X.
Step 2: Generation of mutation vector.
Randomly select X¢8 and X;€ from groups S and I, respectively.
Generate new mutation vector as V8 = X;:€ + F-(X¢8 — X;9).
Step 3: Crossover as :
. v;g,,]., if (rand(0,1) < CR, o j = jrand)
i x;'g’,j
where u‘lg j denotes the trial vector, F denotes the mutation factor, and CR denotes the crossover
probability.
Step 4: Updating : Iffit(llf> < fit(X;g), then Xig,+1 = LIlg

. v8tl
Output: X5, .

3.4. Operator Switching

As described in Section 3.1, the operator switching mechanism in MOEA /D-HH consists
of two components: selection and efficiency inspection. MOEA /D-HH initialises an empty
list Ljj40¢ = to store the indices of these subproblems, which facilitates the tracking of
subproblems using CMA-ES. The subproblems execute the CMA-ES strategy if the current
subproblem i is present in L;;4.,. Additionally, the current subproblem i will use the IDE

strategy for generating new individuals, if subproblem i is not included in L;;, 4., and there is
a subproblem i" € {i — %, i) U (i, i+ %} in Lj,4.1, as discussed in Section 3.3. When neither

of the above conditions is satisfied, the subproblems execute the DE1 strategy. The selection
part of the operator-switching mechanism is summarised in Figure 4.

|

Index i
Lindex

True

ED operator
(CMA-ES)

i €[i-NM2, i)U (I,
i+M2]in Lingex

True
CX operator CX operator
(DEI) (IDE)

Generating mating population

|

Figure 4. Operator selection strategy in MOEA /D-HH.

Efficiency Inspection is the other component of the operator-switching mechanism that
is responsible for managing the members in L;;4.,. The fundamental concept is illustrated
in Figure 5. The criterion for identifying inefficiency is when a newly generated individual
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fails to outperform the current best solution, and this situation persists for a specified
number of generations. This specified number of generations is considered a threshold.
In our study, we established thresholds of five and three generations for the CX and ED
strategies, respectively.

CX operator
(DEI or IDE)

ED operator
(CMA-ES)

False False

Current subproblem
inefficiency

Figure 5. Efficiency inspection concept in MOEA /D-HH.

The threshold for the ED strategy was the same as the setting of Ucoun: that was
proposed in Section 3.2. This was because the evaluation cost of the ED strategy was much
higher than that of CX. The criterion during the efficiency inspection of a subproblem using
CMA-ES is whether the threshold is exceeded. If the threshold is exceeded, the index of
the subproblem is removed from L;,4,., and its provisional archive population is cleared
simultaneously. Unlike the ED strategy, the CX strategy has a lower evaluation cost that
allows for higher tolerance for inefficient situations.

In numerical experiments, it is common to observe stagnation in the search progress of
a certain subproblem for several generations, whereas other subproblems in its neighbour-
hood continue to update non-dominated individuals with new solutions during the same
time period. Therefore, the focus is on the subproblem itself and all other subproblems in
its sub-neighbourhood that may exceed the inefficiency threshold when inspecting the effi-
ciency of a subproblem using DE1 or IDE. In this study, the size of the sub-neighbourhood
was set to parameter A.

4. Experiments

Experiments were conducted using the WFG test suite (Huband et al., 2005) [15]
to assess the effectiveness of the proposed MOEA /D-HH and compare its performance
with that of the original MOEA /D-DE. Furthermore, a reference version called MOEA /D-
HHEF was introduced that utilised fixed operators to examine the efficacy of the switching
mechanism in MOEA /D-HH.

In MOEA /D-HHE, the index of a subproblem is represented by i and the size of the
neighbourhood is denoted by T. The ith subproblem employs the CMA-ES strategy to
generate new individuals only when i%T == 0. Subproblem i’ € [i - %, i) U (i, i+ %}
uses the IDE strategy, while the remaining subproblems utilise the DE1 operator.

In this experiment, 21 trials were conducted for each approach and the average values
were calculated. The penalty-based boundary intersection (PBI) [18,19] scalarising function
and WEFG test suite were employed as the set of problem instances. The performances of
these approaches were evaluated using the inverted generational distance plus (IGD+)
metric (Ishibuchi et al., 2015) [20].

The details of the problem instances used in the experiment, measurement method
using the IGD+ metric, parameter settings, and analysis of the results obtained from the
experiments are provided in the following sections.

4.1. Instances and Measuring Methods

The WEFG test suite was utilised as a problem instance in these experiments, which has
been widely used and offers flexibility in adjusting the number of objectives and decision
variables as needed. Test functions and a true Pareto front for two-, three-, and five-objective
problems (referred to as WFG_2D, WFG_3D, and WFG_5D, respectively) were generated
following the methodology outlined by Huband et al., (2006) [21].
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The position and distance parameters were set to k = 2 and I = n — k, respectively,
for the WFG_2D problems, where n represents the number of variables. The position
parameter was set to k = 4 for WFG_3D and WFG_5D.

IGD+ was employed as a performance indicator to evaluate the performance of the
approaches. The IGD+ metric measures the distance between the obtained solutions and
true Pareto front. A lower IGD+ value indicates that the solutions are closer to the true
Pareto front, implying better performance.

4.2. Parameter Settings

The parameters used for CMA-ES in MOEA /D-HH are described in Section 2.1 and
listed in Table 2. The parameters used for the MOEA /D framework are listed in Table 3.
The neighbourhood size T in the MOEA /D framework is generally set to be less than 10%
of the population size N. This is because having a large neighbourhood can result in a loss
of necessary similarity between subproblems. However, the CMA-ES algorithm requires
a certain number of individuals in the neighbourhood, and there is a hidden condition
regarding the number of offspring, which is expressed as follows:

T > A, where A =4+ 3|Inn| (20)

Table 3. Hyper-parameter compositions in the MOEA /D framework, where indicates the number of
subsequent hyperparameter.

Parameters Values
# Objectives (M) 2 3 5
Population size (N ) 150 300 300 1000
# Design variables (1) 30 50 30 50 100 30 50 100 32
Neighbourhood size (T) 15 21 21 51
Terminal criteria (# evaluate) 100,000

Therefore, MOEA /D-HH cannot be applied when the parameters are set to N = 150,
T =15, and n = 100. The conditions for the CMA-ES were not met in this case.

For the WFG problems, the position parameter k must be a multiple of M — 1. Addi-
tionally, the distance parameter I = n — k must be divisible by k. Consequently, the number
of design variables was set as n = 32 for the WFG_5D problems, which was the closest
number to 30 and satisfied the aforementioned conditions.

The parameter for the PBI scalarising function was set to § = 5. The mutation factor
F and crossover probability CR were set to 0.5 and 0.9, respectively, for the DE1 and IDE
operators.

4.3. WFG_2D Experiments

Numerical experiments were conducted on the WFG_2D problem using five sets of
hyper-parameters. The average IGD+ values obtained from these experiments are presented
in Table 4, where the parameters N and n represent the number of subproblems and
variables, respectively. The DE1 column represents the results of the original MOEA /D-DE,
which served as a baseline control and was generated using the jMetalpy library (Benitez-
Hidalgo et al., 2019) [22]. Columns HH and HHF represent the results for MOEA /D-HH
and MOEA /D-HHEF, respectively. The results indicated that the original MOEA /D-DE
outperformed MOEA /D-HH and MOEA /D-HHF in most cases. However, MOEA /D-
HH demonstrated better performance in WEG5 (N = 300,n = 30, 50,100), WFG6 (N =
150,n = 50; N = 300, n = 30,50, 100), and WFG9 (N = 300, n = 100). However, MOEA /D-
HHE, which served as a control to evaluate the effectiveness of the switching mechanism,
performed better than MOEA /D-HH for WEG2 (N = 150, n = 30,50), WEG6 (N = 150,n =
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30), and WFG9 (N = 150,n = 30; N = 300, n = 30). These results provided preliminary
evidence of the effectiveness of the adaptive switching mechanism.

Table 4. Average value of IGD+ in WFG_2D problems.

N =150 N =300
DE1 HH HHF DE1 HH HHF
=30 1.1343 1.2215 1.2354 n =30 1.1682 1.2107 1.2359
WEG1 "o o by o =50 1.2057 1.2322 1.2463
= B : : 1 =100 1.2355 1.2456 1.2572
0.0757 0.0989 0.0966 0.0608 0.0766 0.0990
WFG2 o e N 0.1050 0.1260 0.1764
0.1262 : : 0.1800 0.1964 0.2437
0.1356 0.1616 0.1809 01394 0.1474 0.1810
WFG3 o oo N 0.1691 01761 0.2489
1650 : : 0.2368 0.2379 0.3229
0.1009 0.1051 0.1151
WEFGA4 % g'}ggg gﬁié 0.1207 0.1259 0.1442
01156 ' : 0.1484 0.150 0.1655
Table 4. Cont.
N =150 N = 300
DE1 HH HHF DE1 HH HHF
0.0672 0.0686 0.0729 0.0678 9:0665 0.0724
WEG5 Y oty o 0.0708 0.0683 0.0809
0.0692 : : 0.0752 0.0706 0.0990
0.0893 0.0889 0.0887 0.0924 0.0887 0.0949
WFG6 oo pypdin o 0.0645 0.0572 0.0883
: 0.0570 : 0.0513 0.0391 0.0633
0.0183 0.0481 0.0633 90259 0.0365 0.0598
WEG7 Y o Do 0.0464 0.0567 0.1112
0.0356 : : 0.0948 0.1010 0.1884
0.1058 0.1376 0.1799 91050 0.1185 0.1620
WFGS T o o o 0.1400 0.1499 0.2185
0.1390 : : 0.1959 0.2045 0.2757
0.0795 0.0890 0.0758 0.0816 0.0895 0.0715
WFG9 ppeie P o0 0.0682 0.0700 0.1000
0.0558 : : 0.0637 0.0331 0.1227

The evolutionary trajectory was analysed, and selected results are presented in
Figures 6-8. The x coordinate denotes the progress of iterations, whereas the y coor-
dinate represents the average IGD+ values. These figures demonstrate that MOEA /D-HHF
exhibited faster convergence during the initial stages of iteration, despite the significant
differences between the results of the HHF and the other two algorithms.
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IGD+ Value in WFG4_2D hyperparameters N=300 n=30
--- MOEAD-DE1
—— MOEAD-HH
—e=— MOEAD-HHF

0.30

IGD+ Value

o 20,000 40,000 60,000 80,000 100,000
Evaluation tiems in iteration process

Figure 6. Visual evolutionary trajectory of two-objective WFG4 problem with 300 subproblems and

30 variables.

IGD+ Value in WFG6_2D hyperparameters N=300 n=30
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\‘ —— MOEAD-HH
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IGD+ Value
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-» v
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0.2
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0 20,000 40,000 60,000 80,000 100,000
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Figure 7. Visual evolutionary trajectory of two-objective WFG6 problem with 300 subproblems and

30 variables.

IGD+ Value in WFG8_2D hyperparameters N=300 n=30

9.5 --- MOEAD-DE1
—— MOEAD-HH
—e— MOEAD-HHF
0.5
v 0.4
£
P
+
Q
9O 0.3
0.2
0.1

0 20,000 40,000 60,000 80,000 100,000
Evaluation tiems in iteration process

Figure 8. Visual evolutionary trajectory of two-objective WFG8 problem with 300 subproblems and

30 variables.

The impacts of MOEA /D-HH on the SRR is presented in Tables 5 and 6. The bold
entries in these tables compare the SRR values of MOEA /D-DE with those of MOEA /D-
HH. The rightmost columns provide the specific SRR and picked rate (PR) of each operator
in MOEA /D-HH. In these tables, it is a fundamental requirement that the sum of the PR in

each row equals one.
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Table 5. SRR and PR of operators in WFG_2D problems (1).

_ MOEA/D-DE  MOEA/D-HH MOEA/D-HH
Subproblem Number N=150 SRR SRR DE-SRR(PR)  IDE-SRR(PR) CMA-SRR(PR)
WEGL 0.1057 0.0637 0.2928 (0.3070)  0.0513 (0.6605)  0.0344 (0.0325)
0.0921 0.0604 03003 (0.2984)  0.0501 (0.6683)  0.0328 (0.0332)
WEGH 0.1482 0.1015 02830 (0.5539)  0.0405 (0.4211)  0.0541 (0.0249)
0 0.1579 0.1054 02883 (0.5627)  0.0455(0.4133)  0.0718 (0.0240)

n—=
WEG3 1 =50 0.1471 0.1117 02923 (0.5510)  0.0489 (0.4278)  0.0251 (0.0212)
0.1580 0.1246 02828 (0.5692)  0.0707 (0.4133)  0.0723 (0.0175)
WEG4 0.0641 0.0540 02269 (0.3278)  0.0510(0.6378)  0.0437 (0.0344)
0.0710 0.0589 0.2306 (0.3481)  0.0563 (0.6204)  0.0516 (0.0314)
WEGS 0.0726 0.0562 02619 (0.3339)  0.0424(0.6321)  0.0044 (0.0340)
0.0785 0.0611 02587 (0.3400)  0.0514(0.6302)  0.0071 (0.0299)
WEGE 0.0936 0.0780 02895 (0.3937)  0.0512(0.5786)  0.0028 (0.0277)
0.1015 0.0838 0.2895 (0.4078)  0.0567 (0.5680)  0.0025 (0.0243)
WEGY 0.1281 0.0990 0.2789 (0.4900)  0.0581(0.4869)  0.0479 (0.0231)
0.1378 0.1067 0.2686 (0.4978) 00765 (0.4819)  0.0830 (0.0203)
WEGS 0.1305 0.1057 02869 (0.4794)  0.0682 (0.4984)  0.0685 (0.0222)
0.1357 0.1073 02779 (0.4764)  0.0790 (0.5029)  0.0900 (0.0206)
WEGS 0.0658 0.0495 02283 (0.3155)  0.0432 (0.6498)  0.0211 (0.0347)
0.0737 0.0563 02316 (0.3690)  0.0466 (0.5989)  0.0246 (0.0321)

From these tables, particularly Table 6, it is clear that the HH-DE(PR) values were re-
markably high, while the SRR values of MOEA /D-DE were superior to those of MOEA /D-
HH. These high values indicate that MOEA /D-DE performed exceptionally well in the
experimental environment.

Consequently, MOEA /D-HH adaptively selected a higher proportion of DE1 operators.
This observation is consistent with the MOEA /D-DE and MOEA /D-HH curves shown in
the figures.
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Table 6. SRR and PR of operators in WFG_2D problems (2).

Subproblem Number N=300 MOEA/D-DE MOEA/D-HH MOEA/D-HH
SRR SRR DE-SRR(PR)  IDE-SRR(PR) CMA-SRR(PR)
0.1833 0.1472 0.2907 (0.5575) 0.0937 (0.4295) 0.0533 (0.0130)
WEG1 0.1598 0.1332 0.2938 (0.5253) 0.0893 (0.4595) 0.0553 (0.0152)
0.1424 0.1276 0.2846 (0.5355) 0.0772 (0.4513) 0.0447 (0.0132)
0.2579 0.2225 0.3082 (0.8461) 0.0621 (0.1463) 0.0843 (0.0076)
WEFG2 n =230 0.2664 0.2252 03107 (0.8544)  0.0629 (0.1381)  0.1185 (0.0075)
n :15000 0.2650 0.2300 0.3002 (0.8761) 0.0581 (0.1186) 0.1295 (0.0053)
n=
0.2667 0.2480 0.3002 (0.9064) 0.0622 (0.0896) 0.0198 (0.0039)
WEFG3 0.2869 0.2757 0.3025 (0.9478) 0.1109 (0.0503) 0.1076 (0.0020)
0.2871 0.2888 0.2968 (0.9814)  0.1671 (0.0180)  0.1991 (0.0006)
0.1273 0.1129 0.2276 (0.5780) 0.0829 (0.4054) 0.0749 (0.0166)
WEFG4 0.1351 0.1196 0.2227 (0.6084) 0.0924 (0.3773) 0.0863 (0.0143)
0.1445 0.1317 0.2181 (0.6522) 0.0958 (0.3379) 0.1076 (0.0099)
0.1370 0.1148 0.2592 (0.5816) 0.0617 (0.4010) 0.0033 (0.0173)
WEFG5 0.1469 0.1294 0.2644 (0.6132) 0.0718 (0.3727) 0.0062 (0.0141)
0.1613 0.1420 0.2516 (0.6487)  0.0783 (0.3422)  0.0058 (0.0091)
0.1752 0.1509 0.2936 (0.6324) 0.0744 (0.3543) 0.0025 (0.0133)
WEFG6 0.2032 0.1905 0.3005 (0.7172) 0.0964 (0.2745) 0.0054 (0.0083)
0.2268 0.2179 0.2947 (0.7798)  0.1105 (0.2158)  0.0122 (0.0044)
0.2457 0.2265 0.2920 (0.8624)  0.0771(0.1323)  0.0358 (0.0053)
WEG7 0.2625 0.2473 0.2875 (0.9039) 0.1216 (0.0928) 0.1203 (0.0033)
0.2652 0.2567 0.2782 (0.9305)  0.1625 (0.0678)  0.2050 (0.0017)
0.2488 0.2316 0.2981 (0.8415) 0.1028 (0.1532) 0.0870 (0.0054)
WEFGS8 0.2539 0.2413 0.2930 (0.8660) 0.1259 (0.1299) 0.1262 (0.0041)
0.2531 0.2448 0.2838 (0.8845)  0.1395 (0.1127)  0.1663 (0.0028)
0.1122 0.0930 0.2168 (0.5046) 0.0739 (0.4760) 0.0525 (0.0194)
WEFG9 0.1361 0.1062 0.2259 (0.5521) 0.0817 (0.4312) 0.0642 (0.0167)
0.1649 0.1315 0.2294 (0.6444)  0.0844 (0.3459)  0.0427 (0.0098)
4.4. WFG_3D Experiments
Numerical experiments were conducted on the WEG_3D problems using three differ-
ent sets of hyper-parameters, and the average IGD+ values are listed in Table 7. In contrast
to the results observed for the WFG2_D problems, the original MOEA /D-DE only outper-
formed MOEA /D-HH in certain instances, such as WFG1 (n = 30, 50, and 100), WFG3
(n = 30), and WFG9 (n = 30).
Table 7. Average value of IGD+ in WFG_3D problems.
DE1 HH HHF
n =30 1.4392 1.4551 1.4489
WEFG1 n =50 1.4459 1.4610 1.4705
n =100 1.4516 1.4632 1.4789
0.3499 0.3114 0.3875
WEFG2 0.4195 0.3618 0.4525
0.5159 0.4161 0.5376
0.1334 0.1429 0.2299
WEFG3 0.2580 0.2390 0.3126
0.3920 0.3491 0.3988
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Table 7. Cont.

DE1 HH HHF
0.3000 0.2566 0.3289
WEFG4 0.3426 0.2779 0.3143
0.3839 0.2904 0.3151
0.1728 0.1521 0.1866
WEG5 0.1979 0.1604 0.2326
0.2323 0.1701 0.2698
0.1913 0.1792 0.2102
WEG6 0.1996 0.1421 0.2429
0.2367 0.1228 0.2404
0.3225 0.2580 0.3462
WEG7 0.4050 0.3072 0.3983
0.4842 0.3503 0.4083
0.4180 0.3846 0.4474
WEGS 0.4714 0.4126 0.4801
0.5202 0.4227 0.4671
0.1925 0.1968 0.2214
WEG9 0.2212 0.1809 0.2567
0.2651 0.1567 0.2814

The performance of MOEA /D-HHF was inferior to that of MOEA /D-HH, highlighting
the effectiveness of the operator-switching mechanism. Selected results for the evolutionary
trajectory are shown in Figures 9-13. MOEA /D-HH did not exhibit superior performance
compared to that of MOEA /D-DE in WFG1, WFG3, and WFG9 with n = 30, as shown in
Figures 9-11, respectively. However, the differences in their performances were exceedingly

small.
IGD+ Value in WFG1_3D hyperparameters N=300 n=30
--- MOEAD-DE1
= MOEAD-HH
2.2 —a— MOEAD-HHF
o 2.0 1
=2
P
+
[a]
O 1.8 4
. ‘X\_
1.4

0 20,000 40,000 60,000 80,000
Evaluation tiems in iteration process

100,000

Figure 9. Visual evolutionary trajectory of three-objective WFG1 problem with 300 subproblems and

30 variables.
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IGD+ Value in WFG3_3D hyperparameters N=300 n=30

0.8 --- MOEAD-DE1
—— MOEAD-HH
0.7 —e— MOEAD-HHF

0.6

0.5 1

IGD+ Value

0.4 1

0.3

0.2 1

0 20000 40000 60,000 80,000 100,000
Evaluation tiems in iteration process
Figure 10. Visual evolutionary trajectory of three-objective WFG3 problem with 300 subproblems

and 30 variables.

IGD+ Value in WFG9_3D hyperparameters N=300 n=30

--- MOEAD-DE1
0.9 4 -~ MOEAD-HH
—s— MOEAD-HHF

0.8 4

0.7 4

0.6

IGD+ Value

0.5 1

0.4 4

0.3 4

0.2

0 20000 40000 60,000 80,000 100,000
Evaluation tiems in iteration process
Figure 11. Visual evolutionary trajectory of three-objective WFG9 problem with 300 subproblems

and 30 variables.

IGD+ Value in WFG4_3D hyperparameters N=300 n=30
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—— MOEAD-HH
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0.55

0.50 1

0.45 4
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0 20,000 40,000 60,000 80,000 100,000
Evaluation tiems in iteration process

Figure 12. Visual evolutionary trajectory of three-objective WFG4 problem with 300 subproblems
and 30 variables.
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IGD+ Value in WFG8_3D hyperparameters N=300 n=30
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Figure 13. Visual evolutionary trajectory of three-objective WFG8 problem with 300 subproblems

and 30 variables.

In contrast, MOEA /D-HH exhibited a significantly better performance than those of
MOEA /D-DE and MOEA /D-HHF for WFG4, as shown in Figure 12. In addition, MOEA /D-
HH demonstrated superior performance on WFGS, as shown in Figure 13. WFGS8 can
be considered as a challenging problem owing to the variations in the distance-related
parameter values among the different Pareto optimal solutions.

Figure 14 displays the solutions obtained through optimization for the WFGS8 problem.
In this figure, the red points represent our proposed MOEA /D-HH algorithm, while
the blue and green points correspond to the reference MOEA /D-DE1 and MOEA /D-
HH, respectively. Upon careful observation, it becomes apparent that, regardless of the
projection on any dimension, the red points consistently cluster closer to the origin than the
points in other colours. In Pareto optimization terms, this indicates that the evolutionary
results of MOEA /D-HH have a greater dominance over the solutions obtained by other
methods. This result aligns with the outcomes of IGD+.
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Figure 14. Comparison of evolutionary results for the WFGS8 problem, including an overall 3D
performance graph and projections on each dimension.
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The SRR and PR results are listed in Table 8. Similar to the WFG_2D problems,
MOEA /D-HH generally exhibited lower SRR values than those of MOEA /D-DE. However,
the HH-DE-SRR values were significantly higher in the MOEA /D-HH group. The domi-
nance relationship between the solutions was less likely to be generated and the solutions
were more likely to be non-dominated as the number of objectives increased. This indicates
that searching is very difficult in multi-objective problems.

Table 8. SRR and PR of operators in WFG_3D problems.

MOEA/D-DE  MOEA/D-HH MOEA/D-HH
SRR SRR DE-SRR(PR)  IDE-SRR(PR) CMA-SRR(PR)
0.0963 0.0842 0.2664 (0.4828)  0.0512 (0.4892)  0.0283 (0.0281)
WFG1 0.0983 0.0850 0.2667 (0.4955)  0.0530 (0.4775)  0.0297 (0.0270)
0.0978 0.0861 0.2587 (0.5298)  0.0443 (0.4475)  0.0247 (0.0227)
0.1152 0.0998 0.2398 (0.5386)  0.0752 (0.4384)  0.0888 (0.0230)
WEG2 n =30 0.1143 0.0977 0.2378 (0.5321)  0.0786 (0.4453)  0.0933 (0.0225)
n :15000 0.1089 0.1000 0.2326 (0.5515)  0.0744 (0.4302)  0.0948 (0.0182)

n=
0.1333 0.1173 0.2357 (0.5140)  0.1084 (0.4631)  0.1527 (0.0229)
WEFG3 0.1267 0.1211 0.2574 (0.5221)  0.1185 (0.4565)  0.1764 (0.0214)
0.1190 0.1240 0.2503 (0.5368)  0.1163 (0.4462)  0.1806 (0.0170)
0.0541 0.0497 0.2363 (0.3399)  0.0455 (0.6184)  0.0481 (0.0418)
WEFG4 0.0534 0.0506 0.2362 (0.3492)  0.0484 (0.6108)  0.0481 (0.0400)
0.0533 0.0522 0.2244 (0.3690)  0.0480 (0.5980)  0.0529 (0.0330)
0.0632 0.0567 0.2698 (0.3327)  0.0468 (0.6307)  0.0104 (0.0367)
WEG5 0.0639 0.0586 0.2679 (0.3441)  0.0508 (0.6214)  0.0104 (0.0345)
0.0635 0.0587 0.2510 (0.3524)  0.0501 (0.6194)  0.0112 (0.0282)
0.0687 0.0670 0.2434 (0.3909)  0.0630 (0.5752)  0.0552 (0.0340)
WFG6 0.0735 0.0731 0.2349 (0.4199)  0.0736 (0.5501)  0.0614 (0.0300)
0.0785 0.0791 0.2140 (0.4489)  0.0812 (0.5286)  0.0752 (0.0225)
0.0726 0.0718 0.2502 (0.3962)  0.0697 (0.5849)  0.1573 (0.0389)
WFG7 0.0713 0.0714 0.2501 (0.4100)  0.0711 (0.5516)  0.1592 (0.0384)
0.0666 0.0703 0.2342 (0.4292)  0.0667 (0.5389)  0.1564 (0.0319)
0.0759 0.0755 0.2600 (0.4101)  0.0693 (0.5517)  0.1508 (0.0382)
WFGS 0.0716 0.0720 0.2562 (0.4195)  0.0676 (0.5419)  0.1516 (0.0386)
0.0680 0.0717 0.2424 (0.4397)  0.0639 (0.5281)  0.1543 (0.0323)
0.0594 0.0549 0.2044 (0.3834)  0.0540 (0.5818)  0.0380 (0.0348)
WEFG9 0.0650 0.0594 0.2051 (0.3815)  0.0648 (0.5868)  0.0536 (0.0317)
0.0719 0.0662 0.1927 (0.4206)  0.0687 (0.5561)  0.0587 (0.0233)

The random-based CX strategy incurs a high evaluation cost to explore a vast search
space in multi-objective problems. The distribution-based ED operator incurs a higher
evaluation cost for generating new individuals than the CX operator. However, the in-
dividuals generated by the ED strategy have a higher likelihood of being in the correct
search direction (promising regions). This is because the individuals generated by ED take
advantage of the approximate gradient information.

4.5. WFG_5D Experiments

Numerical experiments were conducted on the WFG_5D problem using a single set of
hyper-parameters, and the average IGD+ values are presented in Table 9. The experimental
results exhibited interesting patterns as the number of objectives increased. Although
MOEA /D-DE performed well in the WFG1 problem, MOEA /D-HHF demonstrated its
superiority for the first time in the WFG2, WFG5, and WFG6 problems.
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Table 9. Average value of IGD+ in WFG_5D problems.

DE1 HH HHF
WEG1 2.0336 2.0346 2.0403
WEG2 0.7278 0.6249 0.6214
WEG3 0.9334 0.7364 0.9091
WEFG4 0.7183 0.6825 0.7058
WEG5 0.6621 0.6579 0.6431
WEG6 1.1639 1.1193 1.1156
WEFG7 0.8753 0.7354 0.8351
WEGS 0.9514 0.8803 0.9610
WEG9 0.3865 0.3614 0.4929

To provide further insight, selected results of the evolutionary trajectory are presented
in Figures 15-17. MOEA /D-HHF achieved the best overall performance with a faster con-
vergence rate during the early iterations, as shown in Figure 15. However, the convergence
rate of MOEA /D-HH exhibited a significant improvement when the number of evaluations
exceeded 40,000, achieving a final result very close to that of MOEA /D-HHEF.

IGD+ Value in WFG2_5D hyperparameters N=1000 n=32

—-- MOEAD-DE1
—— MOEAD-HH

0.95 A
—e— MOEAD-HHF

0.90 A

0.85 A

0.80 A

IGD+ Value

0.75 A

0.70 A

0.65

0 20,000 40,000 60,000 80,000 100,000
Evaluation tiems in iteration process

Figure 15. Visual evolutionary trajectory of five-objective WFG2 problem with 1000 subproblems and
32 variables.
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Figure 16. Visual evolutionary trajectory of five-objective WFG3 problem with 1000 subproblems and
32 variables.
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Figure 17. Visual evolutionary trajectory of five-objective WFG8 problem with 1000 subproblems and
32 variables.

MOEA /D-HH presented substantial advancements in the search process, particularly
during the middle stage, as shown in Figure 16. Specifically, the evolutionary trajectory
of MOEA /D-HH was significantly different from those of the other methods after the
middle stage of the search. This behaviour can be attributed to the favourable compatibility
between the switching mechanism and characteristics of this problem.

The improvements and evolutionary trajectory observed in MOEA /D-HH clearly
indicate its superior performance compared to that of MOEA /D-DE.

The same is true for the difficult WFG8 problem, as shown in Figure 17. The SRR
and PR results are listed in Table 10. In contrast to previous results, the SRR values of
MOEA /D-HH were generally higher than those of MOEA /D-DE for WEG_5D problems,
and HH-DE(PR) achieved the highest values compared to those of the 2D and 3D problems.

Table 10. SRR and PR of operators in WFEG_5D problems.

MOEA/D-DE MOEA/D-HH MOEA/D-HH

SRR SRR DE-SRR(PR) IDE-SRR(PR) CMA-SRR(PR)

WEG1 0.2122 0.1916 0.2535 (0.8602) 0.0955 (0.1323) 0.1257 (0.0074)
WFG2 0.2342 0.3019 0.3134 (0.9508) 0.4769 (0.0465) 0.3647 (0.0027)
WEG3 0.2178 0.2218 0.3580 (0.7831) 0.1150 (0.2036) 0.0996 (0.0133)
WEG4 0.1494 0.1402 0.2636 (0.7645) 0.0506 (0.2185) 0.0134 (0.0170)
WFG5 0.2006 0.1893 0.3727 (0.7586) 0.0458 (0.2236) 0.0011 (0.0178)
WEG6 0.1556 0.1616 0.2765 (0.7340) 0.1306 (0.2490) 0.0987 (0.0167)
WEG7 0.1957 0.2117 0.3690 (0.7769) 0.1254 (0.1986) 0.3421 (0.0245)
WEGS 0.2019 0.2043 0.3731 (0.7672) 0.1024 (0.2075) 0.3159 (0.0253)
WEG9 0.1383 0.1521 0.2142 (0.7350) 0.1661 (0.2535) 0.1211 (0.0115)

HH-IDE(PR) and HH-CMA(PR) exhibited relatively lower values. Conversely, HH-
IDE-SRR and HH-CMA-SRR were even higher than HH-DE-SRR in some cases, which was
not observed in the 2D and 3D problems. These results are consistent with the expectations
for MOEA /D-HH.

5. Conclusions

Numerous studies have highlighted the limitations of relying on only one single
offspring-generation strategy in optimization algorithms, which has led to the increasing
popularity of hybrid evolutionary algorithms. In our paper, we introduce the MOEA /D-HH
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method, and we aim to elucidate the underlying factors contributing to the advantages of
hybrid algorithms. Within this proposed algorithm, we have devised an adaptive operator
switching mechanism rooted in the concept of operator efficiency inspection, specifically
focusing on the successful replacement rate (SRR). This mechanism takes into consideration
the specific characteristics of the MOEA /D framework and strives to balance the evaluation
costs between the CX and ED strategy. Empirical support for the effectiveness of this
switching mechanism is provided through experimental results.

Furthermore, the experimental results indicate that operators (DE1 and IDE) based on
the CX strategy take a mainstream in the hybrid algorithm MOEA /D-HH (they are selected
with a higher probability by the switching mechanism). Simultaneously, from the perspec-
tive of the SRR, the inclusion of non-mainstream operators (the ED operator) significantly
enhances the search efficiency of DE1. The significant improvement in the mainstream
strategy (or operator) at the SRR level can directly impact the overall performance of the
algorithm, even when the overall SRR of the hybrid algorithm does not exhibit substantial
fluctuations. This phenomenon is particularly evident when MOEA /D-HH is applied to
the 3-objective test suite. We hope that our research can provide fresh insights for related
studies.

However, we must point out that, since our research is based on the MOEA /D frame-
work, we give priority to comparing the proposed algorithm with the original MOEA /D
under several different combinations of hyperparameters. The comparison of MOEA /D-
HH with other dominant- and indicator-based algorithms is not mentioned in the paper.
This will also be the focus of our next work.

Furthermore, the experimental results revealed certain limitations. One limitation
was the fluctuation in the PR of the IDE operator under different experimental condi-
tions. This variability highlighted the need for further investigation and analysis to better
comprehend the factors that influence PR and to address the underlying causes of these
fluctuations. Additionally, this experiment only considered the PBI scalarisation function.
It is necessary to incorporate and explore alternative scalarisation functions in future stud-
ies to obtain a more comprehensive understanding of the effects of different scalarisation
functions. These limitations should be addressed in future work to refine and enhance the
proposed approach.
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