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Abstract: In this study, we focused on using microarray gene data from pancreatic sources to detect
diabetes mellitus. Dimensionality reduction (DR) techniques were used to reduce the dimension-
ally high microarray gene data. DR methods like the Bessel function, Discrete Cosine Transform
(DCT), Least Squares Linear Regression (LSLR), and Artificial Algae Algorithm (AAA) are used.
Subsequently, we applied meta-heuristic algorithms like the Dragonfly Optimization Algorithm
(DOA) and Elephant Herding Optimization Algorithm (EHO) for feature selection. Classifiers such as
Nonlinear Regression (NLR), Linear Regression (LR), Gaussian Mixture Model (GMM), Expectation
Maximum (EM), Bayesian Linear Discriminant Classifier (BLDC), Logistic Regression (LoR), Softmax
Discriminant Classifier (SDC), and Support Vector Machine (SVM) with three types of kernels, Linear,
Polynomial, and Radial Basis Function (RBF), were utilized to detect diabetes. The classifier’s perfor-
mance was analyzed based on parameters like accuracy, F1 score, MCC, error rate, FM metric, and
Kappa. Without feature selection, the SVM (RBF) classifier achieved a high accuracy of 90% using the
AAA DR methods. The SVM (RBF) classifier using the AAA DR method for EHO feature selection
outperformed the other classifiers with an accuracy of 95.714%. This improvement in the accuracy of
the classifier’s performance emphasizes the role of feature selection methods.

Keywords: microarray gene data; type II DM; dimensionality reduction (DR); classification
techniques; feature selection; LR; AAA; DOA; EHO

1. Introduction

According to the latest data from the International Diabetes Federation (IDF) Diabetes
Atlas in 2021, diabetes affects around 10.5% of the global adult population aged between
20 and 79. Alarmingly, nearly half of these individuals remain unaware of their diabetes
status. The projections indicate that by 2045, the number of adults living with diabetes
worldwide will increase by 46% to reach approximately 783 million, which corresponds to
around one in eight adults [1]. Type II DM accounts for over 90% of all diabetes cases and is
influenced by several factors, including socio-economic, demographic, environmental, and
genetic factors. The increase in type II DM is connected to urbanization, a growing elderly
population because of higher life expectancy, reduced levels of physical activity, and a high
overweight and obesity rate. To address the impact of diabetes, preventive measures, early
diagnosis, and proper care for all types of diabetes are crucial. These interventions can help
individuals with diabetes prevent or delay the complications associated with the condition.

According to estimates from 2019, approximately 77 million adults in India were
affected by diabetes [2]. Unfortunately, the prevalence of type II DM in the country is
rapidly escalating. By 2045, the number of adults living with diabetes in India could
reach a staggering 134 million, with younger people under 40 being particularly affected.
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Several risk factors like genetic predisposition, sedentary lifestyles, unhealthy dietary
habits, obesity, urbanization, and mounting stress levels increase the risk of type II diabetes.
India’s southern, urban, and northern regions exhibit higher rates compared to the eastern
and western regions [3]. Many cases are undiagnosed until complications arise. Diabetes
continues to be the seventh leading cause of death in India, taking a toll on both human
lives and the economy. It is estimated that diabetes costs the Indian economy approximately
USD 100 billion annually [4].

Genesis of Diabetes Diagnosis Using Microarray Gene Technology

Creating precise and effective techniques for identifying type II diabetes mellitus holds
the potential to facilitate early identification and intervention. By analyzing microarray
gene data, it becomes possible to identify specific genetic markers or patterns associated
with diabetes [5]. This provides opportunities for personalized medicine, where treatment
plans can be tailored based on an individual’s genetic profile, leading to more targeted
and effective interventions. Robust and reliable methods for detecting diabetes from
microarray gene data can be developed and integrated into existing healthcare systems [6].
Novel dimensionality reduction techniques, classification algorithms, and feature selection
methods can be explored, and other omics data can be integrated to further enhance the
accuracy and reliability of diabetes detection methods. Such research could advance the
state of the art in machine learning [7]. The proposed method could be used to detect other
diseases that are characterized by changes in gene expression.

The structure of the article is as follows: in Section 1, an introduction to the research is
discussed. Section 2 presents the literature review. Section 3 presents the methodology. In
Section 4, the materials and methods are reviewed. Section 5 explains the dimensionality
reduction techniques with and without a feature extraction process. In Section 6, the feature
selection methods are discussed, and Section 7 focuses on the classifiers used. The results
and discussion are presented in Section 8, and the conclusion is given in Section 9.

2. Literature Review

Type II DM is a chronic disease that affects people worldwide irrespective of age.
The early detection and diagnosis of DM in patients is essential for effective treatment
and management. However, traditional methods for detecting DM, such as blood glucose
testing, are often inaccurate and time consuming [8]. In recent years, there has been growing
interest in the use of microarray gene data to detect DM. Microarray gene data can provide
a comprehensive overview of gene expression patterns in the pancreas, which can be used
to identify patients who are at risk of DM [9]. Jakka et al. [10] conducted an experimental
analysis using various machine learning classifiers, including KNN, DT, NB, SVM, LR,
and RF. The classifiers were trained and evaluated on the Pima Indians Diabetes dataset,
which consists of nine attributes and is available from the UCI Repository. Among the
classifiers tested, Logistic Regression (LR) exhibited the best performance, achieving an
accuracy of 77.6%. It outperformed the other algorithms in terms of accuracy, F1 score,
ROC-AUC score, and misclassification rate. Radja et al. [11] carried out a study to evaluate
the performance of various supervised classification algorithms for medical data analysis,
specifically in disease diagnosis. The algorithms tested included NB, SVM, decision table,
and J48. The evaluation utilized measurement variables such as Correctly Classified,
Incorrectly Classified, Precision, and Recall. The predictive database of diabetes was used
as the testing dataset. The SVM algorithm demonstrated the highest accuracy among the
tested algorithms at 77.3%, making it an effective tool for disease diagnosis. Dinh et al. [12]
analyzed the capabilities of machine learning models in identifying and predicting diabetes
and cardiovascular diseases using survey data, including laboratory results. The NHANES
dataset was utilized, and various supervised machine learning models such as LR, SVM, RF,
and GB were evaluated. An ensemble model combining the strengths of different models
was developed, and key variables contributing to disease detection were identified using
information obtained from tree-based models. The ensemble model achieved an AUC-ROC
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score of 83.1% for cardiovascular disease detection and 86.2% for diabetes classification.
When incorporating laboratory data, the accuracy increased to 83.9% for cardiovascular
disease and 95.7% for diabetes. For pre-diabetic patients, the ensemble model achieved an
AUC-ROC score of 73.7% without laboratory data, and XGBoost performed the best, with a
score of 84.4% when using laboratory data. The key predictors for diabetes included waist
size, age, self-reported weight, leg length, and sodium intake.

Yang et al. [13] conducted a study that aimed to develop prediction models for diabetes
screening using an ensemble learning approach. The dataset was obtained from NHANES
from 2011 to 2016. Three simple machine learning methods (LDA, SVM, and RF) were
used, and the performance of the models was evaluated through fivefold cross-validation
and external validation using the Delong test. The study included 8057 observations and
12 attributes. In the validation set, the ensemble model utilizing linear discriminant analysis
showcased superior performance, achieving an AUC of 0.849, an accuracy of 0.730, a sensi-
tivity of 0.819, and a specificity of 0.709. Muhammed et al. [14] conducted a study utilizing
a diagnostic dataset of type 2 diabetes mellitus (DM) collected from Murtala Mohammed
Specialist Hospital in Kano, Nigeria. Predictive supervised machine learning models were
developed using LR, SVM, KNN, RF, NB, and GB algorithms. Among the developed mod-
els, the RF predictive learning-based model achieved the highest accuracy at 88.76%. Kim
et al.’s [15] study aimed to assess the impact of nutritional intake on obesity, dyslipidemia,
high blood pressure, and T2DM using deep learning techniques. The researchers devel-
oped a deep neural network (DNN) model and compared its performance with logistic
regression and decision tree models. Data from the KNHANES were analyzed. The DNN
model, consisting of three hidden layers with varying numbers of nodes, demonstrated
superior prediction accuracy (ranging from 0.58654 to 0.80896) compared to the LoR and
decision tree models. In conclusion, the study highlighted the advantage of using a DNN
model over conventional machine learning models in predicting the impact of nutritional
intake on obesity, dyslipidemia, high blood pressure, and T2DM.

Ramdaniah et al. [16] conducted a study utilizing microarray gene data from the
GSE18732 dataset to distinguish between different classes of diabetes. The study consisted
of 46 samples from diabetic classes and 72 samples from non-diabetic classes. Machine
learning techniques, specifically Naïve Bayes and SVM with Sigmoid kernel, were em-
ployed for classification, achieving accuracy rates of 88.89% and 83.33%, respectively. The
PIMA Indian diabetic dataset has been widely used by researchers to classify and analyze
diabetic and non-diabetic patients. However, the use of microarray gene-based datasets for
diabetic class identification has received less attention. As a result, a variety of performance
metrics, such as accuracy, sensitivity, specificity, and MCC, have been investigated in the
context of this microarray gene-based dataset.

The main characteristics and contributions of this paper are as follows:

• The work suggests a novel approach for the early detection and diagnosis of diabetes
using microarray gene expression data from pancreatic sources.

• Four DR techniques are used to reduce the high dimensionality of the microarray
gene data.

• Two metaheuristic algorithms are used for feature selection to further reduce the
dimensionality of the microarray gene data.

• Ten classifiers in two categories, namely nonlinear models and learning-based classi-
fiers, are used to detect diabetes mellitus. The performance of the classifiers is analyzed
based on parameters like accuracy, F1 score, MCC, error rate, FM metric, and Kappa,
both with and without feature selection techniques. The enhancement of classifier
performance due to feature selection is exemplified through MCC and Kappa plots.

3. Methodology

Figure 1 shows the methodology of the research. The approach includes four DR
techniques: the Bessel function (BF), Discrete Cosine Transform (DCT), Least Squares
Linear Regression (LSLR), and Artificial Algae Algorithm (AAA). Following this, feature
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selection techniques, either with or without classification of the data, are used. In terms
of those with feature selection, two optimization algorithms are used: Elephant Herding
Optimization (EHO) and Dragonfly Optimization (DFO). Moreover, ten classifiers are
used, namely NLR, LR, GMM, EM, BLDC, LoR, SDC, SVM-L, SVM-Poly, and SVM-RBF, to
classify the genes as non-diabetic and diabetic.
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Figure 1. Workflow diagram.

Role of Microarray Gene Data

Microarray gene data play a critical role in this research. The data can be used to
identify patterns of gene expression that are associated with diabetes. The data are used to
train and evaluate machine learning models and to identify the most relevant features for
classification. The machine learning models are then used to predict whether a patient has
diabetes or not. The models are trained on a dataset of microarray gene data [17] labeled
with the patient’s diabetes status.

4. Materials and Methods

Microarray gene data are readily available from many search engines. We obtained
human pancreatic islet data from the Nordic Islet Transplantation program (https://www.
ncbi.nlm.nih.gov/bioproject/PRJNA178122). The data has accessed on 20 August 2021.
The dataset included 28,735 genes from 57 non-diabetic and 20 diabetic patients. The
data were preprocessed to only select the 22,960 genes with the highest peak intensity per
patient. The logarithmic transformation was applied with a base 10 to standardize the

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA178122
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA178122
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individual samples, with a mean of 0 and a variance of 1. The data were then used to train
and evaluate a machine learning model for the detection of diabetes. The model was able to
achieve an accuracy of 90%, which is a significant improvement over the baseline accuracy
of 50%. The results of this study suggest that microarray gene data can be used to develop
effective methods for the detection of diabetes. The data are readily available and can be
easily processed to identify the most relevant features for classification.

Dataset

This study focused on utilizing microarray gene data to detect diabetes and explore
the features associated with the condition based on p-values using probability functions.
Additionally, we aimed to address the issue of false positive errors in the selection of
significant genes. The data we used for our analysis are available through multiple portals
and comprised a total of 28,735 human genes as shown in the Table 1. We specifically
considered 50 non-diabetic and 20 diabetic classes, selecting those with the greatest minimal
intensity across 70 samples. To handle the high dimensionality of the dataset, we employed
four dimensionality reduction techniques, namely BF, DCT, LSLR, and AAA. This allowed
us to reduce the dimensions of the data while maintaining their informative content. The
resulting dimensions were [2870 × 20] for the diabetic group and [2870 × 50] for the
non-diabetic group. To further refine the dataset and improve classification accuracy, we
applied feature selection techniques.

Table 1. Pancreatic microarray gene dataset for non-diabetic and diabetic classes.

Type Total Number Diabetic Class Non-Diabetic Class Total Classes

Pancreatic dataset 28,735 20 50 70

Specifically, we employed two techniques: EHO search and DOA. These techniques
helped identify the most relevant features in the dataset, leading to a further reduction in
dimensions to [287 × 20] for the diabetic group and [287 × 50] for the non-diabetic group.
To evaluate the performance and accuracy of the classification, we employed ten classifiers,
as already discussed.

5. Need for Dimensionality Reduction Techniques

Dimensionality reduction plays a crucial role in our research due to the high-dimensional
nature of the microarray gene data. As the number increases, the complexity and compu-
tational costs of analyzing the data also increase significantly. Dimensionality reduction
techniques allow us to reduce the number of features, making the subsequent analysis
more efficient and manageable. Then, dimensionality reduction helps mitigate the curse
of dimensionality [18]. In highly dimensional spaces, data points tend to become sparse,
leading to difficulties in accurately representing the underlying structure of the data.

5.1. Dimensionality Reduction

To reduce the dimensionality of the dataset, BF, DCT, LSLR, and AAA were used.

Bessel Function as Dimensionality Reduction

In this section, an overview of the Bessel function and its relevant relationships
and properties associated with these functions are represented [19]. Furthermore, we
investigate several valuable connections and characteristics related to these functions, as
Jn(x) possesses the following mathematical definition:

Jn(x) =
∞

∑
r=0

(−1)r

r!Γ(n + r + 1)

( x
2

)2r+n
(1)
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The Gamma function is represented as Γ(λ):

Γ(λ) =
∫ ∞

0
e−ttλ−1dt (2)

The series (Jn(x)) converges for all values of x ranging from negative infinity to
positive infinity. In fact, the Bessel function serves as a solution to a specific Sturm–Liouville
equation [20]. This equation helps to analyze the Bessel function.

x2y′′ (x) + x y′(x) +
(

x2 − n2
)

y (x) = 0 (3)

For x ∈ (−∞, ∞), (n ∈ R).
It is evident that the Bessel functions Jn(x) are linearly independent when n is an

integer. Additionally, there exist several recursive relations for Bessel functions that can be
utilized in their analysis [20]. These relations provide valuable insights into the properties
and behavior of Bessel functions in various mathematical contexts.

d
dx

(xn Jn(x)) = xn Jn−1(x) (4)

J′n(x) = Jn−1(x)− n
x

Jn (x) (5)

J′n(x) =
n
x

Jn(x)− Jn+1(x) (6)

Lemma 1. A significant recursion relation that proves useful in the analysis of the Bessel function
of the first kind is:

J′n(x) =
1
2

Jn−1(x)− 1
2

Jn+1(x) (7)

The Bessel functions can be derived using the following procedure: Consider the
vector Jn = [J0(x), J1(x), J2(x), . . ., Jn(x)]T, where J0, J1, J2, . . ., Jn denote the Bessel functions
evaluated at x. To obtain the derivative operational matrix, we start with the derivative of
J0(x) and denote it as J′0(x), where J′0(x) represents the derivative of J0(x) with respect to x.
By constructing a matrix D, known as the derivative operational matrix, we can express
Jn = DJ0, where D is a matrix that performs the differentiation operation on J0(x) to obtain
Jn(x). This recursion relation allows for the efficient calculation and evaluation of Bessel
functions, providing a valuable tool in various mathematical and scientific applications.

D =



0 −1 0 0 0 · · · · · · 0
1/2 0 −1/2 0 0 · · · · · · 0

0 1/2 0 −1/2 0 · · · · · · 0
0 0 1/2 0 −1/2 · · · · · · 0
...

. . .
...

...
. . .

... · · · 0
a0 a1 a2 a3 · · · · · · 0 an


(8)

DCT—Discrete Cosine Transform

The Discrete Cosine Transform (DCT) is a DR technique that approximates the
Kernighan–Lin method. It aims to reduce the dimensions of the input data by elimi-
nating the most significant features, thereby simplifying further analysis. By applying the
DCT method [21], the input vector and its components are orthogonalized, resulting in a
reduction in complexity. This method extracts features by selecting coefficients, which is a
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crucial step with a significant impact on computation efficiency [22,23]. The DCT can be
denoted as:

k(x) =∝ (x)·
s−1

∑
u=0

a(u) cos
π(2u + 1)x

2s
(9)

Least Squares Linear Regression (LSLR) as Dimensionality Reduction

Another effective technique for reducing dimensionality is the LSLR. Hotelling [24]
initially introduced this concept, utilizing principal component analysis (PCA) as a regres-
sion analysis tool. It uses principal component analysis to reduce the dimensionality of
high-dimensional data before applying a linear regression model. The transformation is
learned by minimizing the sum of squared errors between the predicted lower-dimensional
representation and the actual high-dimensional data.

LSLR, as discussed in Hastie et al. [25], performs dimensionality reduction by identify-
ing the best-fit line that represents the relationship between the features of independent
variables and the target as a dependent variable. The objective of LSLR is to minimize
the sum of squared differences between the actual and predicted values of the target vari-
able. Considering a set of N observations in the form (x1, y1), (x2, y2), . . ., (xN, yN), where
xi represents the ith observation of the independent variables and yi corresponds to the
observation of the target variable, the LSR solution can be represented as a linear equation:

z = α0 + α1x1 + α2x2 + . . . + αpxp (10)

In the context of LSR, the linear model is characterized by the parameters α_1, α_2,
α_3, . . ., α_p, where p represents the number of independent variables. This minimization
process is expressed through the following equation:

SSE = ∑m
j=1

(
zi −

(
α0 + α1x1 + α2x2 + . . . + αpxp

))2 (11)

After applying dimensionality reduction techniques to the microarray gene data,
the resulting outputs are further analyzed using various statistical parameters such as
mean, kurtosis, variance, Pearson correlation coefficient (PCC), skewness, t-test, f-test,
p-value, and canonical correlation analysis (CCA). These statistical measures are used to
assess whether the outcomes accurately represent the intrinsic properties of the underlying
microarray genes in the reduced subspace.

Artificial Algae Algorithm (AAA) as Dimensionality Reduction

The Artificial Algae Algorithm (AAA) [26] is a nature-inspired optimization algorithm
that mimics the behavior and characteristics of real algae to solve complex problems. Each
solution in the problem space is represented by an artificial alga, which captures the essence
of algae’s traits. Like real algae, artificial algae exhibit helical swimming patterns and can
move towards a light source for photosynthesis. The AAA consists of three fundamental
components: the evolutionary process, adaptation, and helical movement as depicted in the
Figure 2. The algal colony acts as a cohesive unit, moving and responding to environmental
conditions. By incorporating the principles of artificial algae into the algorithm, the AAA
offers a novel approach to solving optimization problems.

Population =


X11 X12 · · · X1D
X21 X22 · · · X2D

...
...

. . .
...

Xn1 Xn2 · · · XnD

 (12)

where XnD is an algal cell in the Dth dimension of the nth algal colony.
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During the evolutionary process [27] of the AAA, the growth and reproduction of
algal colonies are influenced by the availability of nutrients and light. When an algal colony
is exposed to sufficient light and nutrient conditions, it undergoes growth and replicates
itself through a process like real mitotic division. In this process, two new algal cells are
generated at time t. Conversely, if an algal colony does not receive enough light, it can
survive for a certain period, but eventually perishes. It is important to note that µmax is
assumed to be 1, as the maximum biomass conversion should be equivalent to the substrate
consumption in unit time, following the conservation of mass principle. The size of the
ith algal colony at time t + 1 is determined by the Monod equation, as expressed in the
subsequent equation:

Ht
i = µt

i Ht
i (13)

where i = 1, 2, 3, . . ., N,
Ht

i represents in time with ith algal colony,
N represents number of algae.
In AAA, nutrient-rich algal colonies with optimal solutions thrive, and successful

traits are transferred from larger colonies to smaller ones through cell replication during
the evolutionary process.

Maximumt = max Ht
i , whereas i = 1, 2, 3, . . ., N,

Minimumt = min Ht
i , whereas i = 1, 2, 3, . . ., N,

Minimumt = maximumt, whereas m = 1, 2, 3, . . ., D.
In the AAA, algal colonies are ranked by size at time t. In each dimension, the smallest

algal colony’s cell dies, while the largest colony’s cell replicates itself.
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In the AAA algorithm, algal colonies that are unable to grow sufficiently in their
environment attempt to adapt by becoming more similar to the largest colony. This process
changes the starvation levels within the algorithm. Each artificial alga starts with a starva-
tion value of zero, which increases over time if the algal cell does not receive enough light.
The artificial alga with the highest starvation value is the focus of adaptation.

Start = max Bt
i , Where i = 1, 2, 3, . . . , N (14)

Start+1 = Start +
(
maxt − Start) ∗ rand (15)

Helical movement: The cells and colonies exhibit specific swimming behavior, striving
to stay near the water surface where sufficient light for their survival is available. They
move in a helical manner, propelled by their flagella, which face limitations from gravity
and viscous drag. In the AAA, gravity’s influence is represented by a value of 0, while
viscous drag is simulated as shear force, proportional to the size of the algal cell. The cell
is modeled as a spherical shape, with its size determined by its volume, and the friction
surface is equivalent to the surface area of a hemisphere.

τ(xi) = 2πr2 (16)

τ(xi) = 2π

(
3

√
3Hi
4π

)2

(17)

Friction surface is represented as τ(xi).
The helical movement of algal cells is determined by three randomly selected dimen-

sions. One dimension corresponds to linear movement, as described by Equation (18). The
other two dimensions correspond to angular movement, as described by Equations (19)
and (20). Equation (18) is used for one-dimensional problems, allowing the algal cell or
colony to move in a single direction. Equation (19) is used for two-dimensional problems,
where the algal movement follows a sinusoidal pattern. Equation (20) is used for three or
more dimensions, where the algal movement takes on a helical trajectory. The step size of
the movement is determined by the friction surface and the distance to the light source.

Xt+1
im = Xt

im +
(

Xt
jm − Xt

im

)(
∆− τt(Xi)

)
P (18)

Xt+1
ik = Xt

ik +
(

Xt
jk − Xt

ik

)(
∆− τt(Xi)

)
cos α (19)

Xt+1
il = Xt

il +
(

Xt
jl − Xt

il

)(
∆− τt(Xi)

)
sin β (20)

where Xt+1
im , Xt+1

ik , Xt+1
il represents the x, y, and z coordinates of the ith algal cell at time t.

The variables α and β are in the range [0, 2π], while p is within the interval [−1, 1].
∆ represents the shear force and τt(Xi) denotes the surface area of the ith algal cell.

5.2. Statistical Analysis

The microarray gene data were reduced in dimension through four distinct dimension-
ality reduction (DR) techniques and comprehensive analysis using the statistical metrics
of mean, variance, skewness, kurtosis, PCC, and CCA. This scrutiny aimed to ascertain
whether the outcomes accurately portrayed the inherent properties of microarray genes
within the reduced subspace. As shown in Table 2, the DR method based on AAA exhibited
elevated mean and variance values across classes. In contrast, the remaining three DR
methods—namely the Bessel function, Discrete Cosine Transform (DCT), and Least Squares
Linear Regression (LSLR)—revealed modest and overlapping mean and variance values
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within classes. Among these methods, the LSLR DR approach showcased negative skew-
ness, indicating the occurrence of skewed elements in the classes. Additionally, the DCT
and LSLR DR methods demonstrated negative kurtosis, signifying their preservation of the
underlying microarray gene traits. The PCC values revealed substantial correlations within
the obtained outputs for a particular class. In the case of the Bessel function DR method,
all four statistical parameters exhibited positive values at their minimum. This indicates
an association with non-Gaussian and nonlinear distributions, a conclusion substantiated
by the histograms, normal probability plots, and scatter plots of the DR method outputs.
Canonical Correlation Analysis (CCA) provided insight into the correlation between DR
outputs for diabetic and non-diabetic instances. Notably, the low CCA value in Table 2
suggests a limited correlation between the DR outputs of the two distinct classes.

Table 2. Statistical analysis for different DR techniques.

Statistical
Parameters

Bessel Function Discrete Cosine
Transform (DCT)

Least Squares Linear
Regression (LSLR)

Artificial Algae
Algorithm (AAA)

Dia Norm Dia Norm Dia Norm Dia Norm

Mean 0.082961 0.084162 1.882012 1.883618 0.00467 0.00457 121.664 120.5492
Variance 0.005165 0.005378 0.50819 0.506957 0.000432 0.000417 101.6366 103.0168

Skewness 0.865169 0.856162 0.187903 0.228924 0.003787 −0.0315 0.042744 0.054472
Kurtosis 0.180926 0.135504 −0.34524 −0.40687 −0.16576 −0.08667 0.152272 0.091169

Pearson CC 0.866264 0.859211 0.98138 0.983118 0.975446 0.977318 0.9826 0.985246
CCA 0.05904 0.260275 0.090825 0.082321

Figure 3 shows a histogram of the Bessel function DR techniques in the diabetic
class. The histogram depicts that a skewed group of values, a gap, and the existence of
nonlinearity were witnessed in this method. Patients from 1 to 10 are represented as x(:,1)
to x(:,10).
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Figure 4 exhibits a histogram of the BF DR techniques in the non-diabetic class, in
which the marker of x(:,1) represents patient 1 and x(:,10) represents patient 10. Figure 4
shows a skewed group of values, a gap, and the existence of nonlinearity in this method.
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Figure 4. Histogram of Bessel function technique in the non-diabetic gene class.

In Figure 5, data points 1 to 5 signify the reference points, 6 to 10 highlight the upper
bound, and 11 to 15 depict the clustered variable points. This representation signifies the
generation of a normal probability plot for features obtained using DCT DR techniques
within the diabetic gene class. As can be observed from Figure 5, the plot effectively
showcases the complete cluster of DCT DR outputs, accentuating the existence of variables
with the nature of nonlinearity across classes.
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Figure 6 shows the normal probability plot for the DCT DR techniques for the non-
diabetic gene class. The data points from 1 to 5 represent references, the upper bound
values are represented from 6 to 10, and the cluster variable points are from 11 to 15. The
plot shows that the total cluster of DCT DR outputs and nonlinearly correlated variables
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among the classes were observed due to the low values of mean and variance and the
presence of negative kurtosis variables in the DR method.

Biomimetics 2023, 8, x FOR PEER REVIEW 12 of 43 
 

 

Figure 6 shows the normal probability plot for the DCT DR techniques for the non-
diabetic gene class. The data points from 1 to 5 represent references, the upper bound 
values are represented from 6 to 10, and the cluster variable points are from 11 to 15. The 
plot shows that the total cluster of DCT DR outputs and nonlinearly correlated variables 
among the classes were observed due to the low values of mean and variance and the 
presence of negative kurtosis variables in the DR method. 

 
Figure 6. Normal probability plot representing DCT features for the non-diabetic gene class. 

Figure 7 presents data points 1 to 5 as references, 6 to 10 as upper bound values, and 
11 to 15 as variable points. The normal probability plot distinctly exhibits clustered groups 
corresponding to LSLR DR outputs. This observation underscores the existence of non-
Gaussian and nonlinearly varying variables among the classes. This phenomenon can be 
attributed to the low variance and negative kurtosis attributes of the outcomes generated 
by the DR method. 

 

Figure 6. Normal probability plot representing DCT features for the non-diabetic gene class.

Figure 7 presents data points 1 to 5 as references, 6 to 10 as upper bound values,
and 11 to 15 as variable points. The normal probability plot distinctly exhibits clustered
groups corresponding to LSLR DR outputs. This observation underscores the existence of
non-Gaussian and nonlinearly varying variables among the classes. This phenomenon can
be attributed to the low variance and negative kurtosis attributes of the outcomes generated
by the DR method.
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Figure 8 presents the normal probability plot for LSLR DR techniques in the non-
diabetic class. The plot displays a discrete group of clusters for LSLR DR outputs. The
data points 1 to 5 represent references, 6 to 10 represent upper bound values, and 11 to
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15 represent variable points. The flat kurtosis variable and low variance in the DR methods
indicate the presence of nonlinearity and a non-Gaussian nature.

Figure 8. Normal probability plot for LSLR DR techniques in non-diabetic gene class.

Figure 9 presents a scatter plot of the AAA DR techniques for the non-diabetic and
diabetic gene classes. As can be seen, there is total clustering and overlapping of the
variables in both classes. The non-Gaussian and nonlinear nature can also be observed
from this graph. Furthermore, the AAA algorithm has a heavy computational cost on
the classifier design. To reduce the burden of the classifiers, a feature selection process
comprising the Elephant Herd Optimization (EHO) and Dragonfly algorithms was initiated.
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6. Feature Selection Methods

The reduced dimensionality dataset was used for the feature selection methods. The
metaheuristic algorithms of Monarch Butterfly Optimization (MBO) [28], Slime Mold Algo-
rithm (SMA) [29], Moth Search Algorithm (MSA) [30], Hunger Games Search (HGS) [31],
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Runge Kutta Method (RUN) [32], Colony Predation Algorithm (CPA) [33], weIghted-
meaNoFvectOrs (INFO) [34], Harris Hawks Optimization (HHO) [35], Rime Optimization
Algorithm (RIME) [36], Elephant Herding Optimization (EHO) [37] algorithm, and Drag-
onfly Optimization Algorithm (DOA) [38] were considered for the FS.

MBO has two operators: migration and butterfly adjusting operator. The Lévy flight is
used in the butterfly adjusting operator, which has infinite mean and variance. SMA is used
for attaining global optimization. It has three stages: the first is to make a better solution
approach based on the slime mold bound condition through the iterations attained from the
tanh function; the second is wrap food, based on SMA, that imitates the updating position of
the slime mold; and the third is an oscillator, based on step size, which is considered within
bound. MSA was also used to find the global optimization. Moths have the propensity to
follow Lévy flights. It exhibits similar characteristics to MBO such as being non-Gaussian
and having infinite mean and infinite variance. HGS is a good population-based optimizer;
however, when dealing with challenging optimization problems, the classic HGS sometimes
shows premature convergence and stagnation shortcomings. Therefore, finding approaches
that enhance solution diversity and exploitation capabilities is crucial. RUN is also an
optimization technique. Although RUN has a solid mathematical theoretical foundation,
there are still some performance defects when dealing with complex optimization problems.
In the initialization phase, the focus is on constructing a population that evolves over
several iterations. CPA has taken inspiration from the predatory habits of groups in nature.
However, CPA suffers from poor exploratory ability and cannot always escape certain
solutions. Two strategies are used in the pursuit process to increase the probability of
successful predation: scattering prey and surrounding prey. Prey dispersal drives the
prey in different directions and weakens the prey group. The weIghtedmeaNoFvectOrs
(INFO) algorithm is also a population-based optimization algorithm operating based on
the calculation of the weighted mean for a set of vectors. It has three techniques to update
the vectors’ location: a local search, a vector-combining rule, and the weighted mean
concept for a solid structure. The INFO algorithm’s reliance on weighted mean vectors
may not capture nonlinear relationships between features and target variables effectively.
It focuses on selecting individual features based on their weighted mean values, so may
not effectively explore interactions or combinations of features. HHO is a computational
intelligence tool, and its complexity may increase with the number of features in high-
dimensional datasets. It may struggle to handle large feature spaces efficiently, leading to
longer execution times. It replicates Harris hawk predator–prey dynamics. It is divided
into three sections: exploring, transformation, and exploitation. It has a high convergence
rate and a powerful global search capability, but it has an unsatisfactory optimization effect
on high-dimensional or complex problems. RIME is also a good optimization algorithm for
search space mechanisms and the typical idea is to compare the updated fitness value of
an agent with the global optimum; if the updated value is better than the current global
optimum, then the optimum fitness value is replaced, and the agent is recorded as the
optimum. The advantage of such an operation is that it is simple and fast, but it does
not help in the exploration and exploitation of the population and only serves as a record.
However, algorithms like EHO and DOA are used as feature selection parameters for
emulating the behavior observed in elephants and dragonflies for the better selection
of features and offer effective approaches to address the abovementioned challenges in
optimization techniques for FS.

Elephant Herding Optimization (EHO) algorithm

Wang et al. [37] introduced EHO as a metaheuristic algorithm inspired by the behavior
of elephants in the African savanna. It has demonstrated effectiveness in solving optimiza-
tion problems and has been successfully applied in various domains, including feature
selection. In feature selection, the objective is to identify a subset of informative features
from a larger set that are relevant to the target variable. EHO employs a herd of elephants
to search for the optimal solution, with each elephant representing a potential solution. By
combining global and local search strategies, the algorithm guides the elephants towards
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the best solution. The methodology of the EHO is depicted in Figure 10. EHO offers im-
mense potential as a feature selection technique due to its ability to strike a balance between
global and local searches, making it suitable for high-dimensional data. The initialization
of the elephant herd involves assigning random positions to the elephants in the feature
space, providing a comprehensive representation of the elephants’ positions and the overall
movement of the herd.

ynew
i = yold

i + ∝
(

Ybest −Yold
i

)
∗ r (21)
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The EHO algorithm [39] involves updating the positions of elephants within the herd.
This update process considers both the old position (yold

i ) and the new position (ynew
i ) of

each elephant. A control parameter (α), which falls within the range of [0, 1], is used in
conjunction with a randomly generated number (r ∈ [0, 1]) to determine the new position.
Additionally, each elephant in the herd maintains a memory of its best position in the
feature space. The best position is updated using the following equation, ensuring that the
elephant’s memory is updated accordingly.

Ybest = β ∗ Ycentre (22)

Ycentre =
1
m
∗ ∑m

i=1 yi (23)

The algorithm includes the concept of the best position (Ybest) for each elephant within
the herd. This best position is determined by considering the control parameter (β), which
falls within the range of [0, 1]. The control parameter plays a role in updating and adjusting
the best position of the elephant, ensuring that it reflects the optimal solution obtained
during the optimization process.

By considering both the best and worst solutions, the EHO algorithm ensures a
more comprehensive exploration of the solution space, leading to improved optimization
performance.

Yworst = Ymin + (Ymax −Ymin + 1) ∗ rand (24)

Dragonfly Optimization Algorithm (DOA)

The Dragonfly Algorithm (DA) is an optimization technique based on swarm intel-
ligence, taking inspiration from the collective behaviors of dragonflies. Introduced by
Mirjalili in 2016 [38], this algorithm mimics both static and dynamic swarming behaviors
observed in nature. Figure 11 shows the flowchart of DOA. During the dynamic or exploita-
tion phase, it forms large swarms and travels in a specific direction to confuse potential
threats. In the static or exploration phase, the swarms form smaller groups, moving within
a limited area to hunt and attract prey [40]. The DA is guided by five fundamental prin-
ciples: separation, alignment, cohesiveness, attraction, and diversion. These principles
dictate the behavior of individual dragonflies and their interactions within the swarm. In
the equations that follow, K and Ki denote the current position and the ith position of a
dragonfly, respectively, while N represents the total number of neighboring flies.

Separation: This implies that the static phase of the algorithm focuses on preventing
dragonflies from colliding with each other in their vicinity. This calculation aims to ensure
the avoidance of collisions among flies.

Sej = −∑n
i=1 k− k j (25)

where Sej represents the motion of the ith individual aimed at maintaining separation from
other dragonflies.

Alignment: This denotes the synchronization of velocities among dragonflies belong-
ing to the same group. It is represented as

Agj =
∑n

i=1 Vei

n
(26)

This is represented by Agj, which is called the velocity of the ith individual.
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Cohesiveness: This represents the inclination of individual flies to converge towards
the center of swarms. The calculation is

Coj =
∑n

i=1 ki

N
− k (27)

Attraction: The quantification of the attraction towards the food source is characterized
by

Hj = K+ − K (28)

Here, Hj is the attraction of the food source, and K+ represents the position of the
food source.

Diversion: The diversion from the enemy is determined by the outward distance,
which is calculated as

Dj = K− + K (29)
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The calculation of the outward distance determines the diversion from the enemy, and
it is expressed in terms of the step vector (∆K) and the current position vector (K) are used
to update the locations of artificial dragonflies within the search space. The step vector
(∆K) can be calculated using the direction of movement of the dragonfly:

∆Kt+1
j =

(
sSej + aAgj + cCoj + hHj + dDj

)
+ ω∆Kt

j (30)

The behavior of the dragonfly algorithm is influenced by factors such as separation
weight (s), alignment weight (a), cohesion weight (c), attraction weight (h), and enemy
weight (d). The inertia weight is represented by “ω”, and “t” represents the iteration number.

Through the manipulation of these weights, the algorithm can attain both exploration
and exploitation phases. The position of the ith dragonfly at t + 1 iterations is determined
by the following equation:

Kt+1
j = Kt

j + ∆Kt+1
j (31)

The evaluation of this method’s outcomes is conducted by assessing the consequence of
the p-value using the t-test. Table 3 demonstrates the significance of the p-values associated
with the EHO and Dragonfly Algorithm methods across the four DR techniques. The data
presented in Table 3 reveal that both the EHO and Dragonfly Algorithms’ feature selection
methods do not exhibit significant p-values across classes for all four dimensionality
reduction methods. This p-value serves as an initial indicator to quantify the existence of
outliers, nonlinearity, and non-Gaussian nature among the classes after the implementation
of feature selection techniques.

Table 3. Significance of p-values for feature selection methods using t-test across various DR techniques.

Feature
Selection

DR Techniques Bessel Function Discrete Cosine
Transform (DCT)

Least Squares Linear
Regression (LSLR)

Artificial Algae
Algorithm (AAA)

Genes Dia Norm Dia Norm Dia Norm Dia Norm

EHO p-value
< 0.05 0.9721 0.9998 0.994 0.9996 0.9961 0.9999 0.9466 0.9605

Dragonfly p-value
< 0.05 0.99985 0.876 0.9956 0.998 0.9951 0.99931 0.9936 0.9977

7. Classification Techniques

NLR—Nonlinear Regression

The behavior of a system is expressed through mathematical equations to facilitate
representation and analysis, ultimately aiming to determine an exact best-fit line between
classifier values. Nonlinear regression introduces nonlinear and random variables (a, b)
to capture the complexity of the system. The primary objective of nonlinear regression
is to reduce the sum of squares. This involves measuring values from the dataset and
computing the difference between the mean and each data point, squaring these differences,
and summing them. The minimum value of the sum of squared differences indicates a
better fit to the dataset.

Nonlinear models require more attention due to their inherent complexity, and re-
searchers have devised various methods to mitigate this difficulty, such as the Levenberg–
Marquardt and Gauss–Newton methods. Estimating parameters for nonlinear systems is
achieved through least squares methods, aiming to minimize the residual sum of squares.
Iterative techniques, including the Taylor series, steepest descent method, and Levenberg–
Marquardt method (Zhang et al. [41]), can be employed for nonlinear equations. The
Levenberg–Marquardt technique is commonly used for assessing the nonlinear least
squares, offering advantages and producing reliable results through an iterative process.
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The authors assume a represented model:

zi = f (xi, θ) + εi, where i = 1, 2, 3, . . . , n (32)

Here, xi and zi represent the individual and supported variables of the ith iteration,
θ = (θ1, θ2, . . . , θm) are the parameters, and εi are the error terms that follow N

(
0, σ2 ).

Su(θ) =
n

∑
i=1

[zi − f (xi, θ)]2 (33)

Let θk = θ1k, θ2k, . . . , θpk be the starting values; the successive estimates are obtained
using

(H + τ I)(θ0 − θ1) = g (34)

where g = ∂Su(θ)
∂θ

∣∣∣θ = θo and H = ∂2Su(θ)
∂θ∂θ′

∣∣∣θ = θ1, τ are a multiplier and I is the identitymatrix.
The integrity of the model is assessed using the MSE, which quantifies the discrepancy

between the experimental and estimated values. The MSE is computed as the average
squared difference between the actual and predicted values. The overall experimental
values are expressed in terms of N.

MSE =
1
N ∑N

(i=1)

(
yi − yΛ

i

)2
(35)

The steps for nonlinear regression are the initialization of the initial parameters and the
generation of curves based on these values. The goal is to iteratively modify the parameters
to minimize the MSE and bring the curve closer to the desired value. The process continues
until the MSE value no longer changes compared to the previous iteration, indicating
convergence.

Linear Regression (LR)

In the investigation of gene expression data, linear regression is a suitable method
for obtaining the best-fit curve, as the conveyance levels in the genes exhibit only minor
variations. To identify the most informative genes, a feature selection process is performed
by comparing the training dataset with the gene expression data within different levels of
diversity. In this linear regression model, the dependent variable, denoted as x, is associated
with the independent variable, y. The model aims [42] to predict values using the x variable,
optimizing the regression fitness value based on the population in the y variable. The
hypothesis function for a single variable is given by

gθ = θ0 + θ1x (36)

where θi represents the parameters. The objective is to select the range of θo and θ1 that
ensures gθ closely approximates y in the training dataset (x, y).

R (θ0, θ1) =
1

2m∑m
i=1

(
gθ

(
xi
)
− yi

)2
(37)

Here, “m” symbolizes the total count of samples within the training dataset. For LR
models with n variables, the hypothesis function becomes

gθ = θ0x0 + θ1x1 + . . . + θnxn (38)

and the cost function is given by

R (θ) =
1

2m∑m
i=1

(
gθ

(
xi
)
− yi

)2
(39)
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where θ is a set of parameters {θ0, θ1, θ2, . . . , θn}. The gradient descent algorithm is em-
ployed to minimize the cost function, and the partial derivative of the cost function is
computed as

δ

δθ j
g(θ) =

δ

δθ j
∑m

i=1

(
gθ

(
xi
)
− yi

)2
(40)

To update the parameter value θj, the following equation is used:

θj(new) = θj(old) + β
1
m∑m

i=1 (g θ

(
xi − yi

)
xi

j

)
(41)

where β represents the learning rate, and θj is continuously computed until convergence is
reached. In this study, β is set to 0.01.

The algorithm for LR involves the following steps:
Feature selection parameters, obtained from algorithms such as the Bessel function,

DCT, LSLR, and AAA, are used as input for the classifiers.
A line represented by gθ = θ0 + θ1x is fitted to the data in a linear manner.
The cost function is formulated with the aim of minimizing the squared error existing

between the observed data and the predictions.
The solutions are found by equating the derivatives of θ0 and θ1 to zero.
To yield the coefficient of MSE, repeat steps 2, 3, and 4.

Gaussian Mixture Model (GMM)

GMM is a well-known unsupervised learning technique in machine learning used for
many applications like pattern recognition and signal classifications. It involves integrating
related objects based on clustering techniques. By classifying the data, GMM [43] facilitates
the prediction and computation of unrated items within the same category. Hard and soft
clustering techniques are used by GMM, and it utilizes the distribution for data analysis.
Each GMM consists of multiple Gaussian distributions (referred to as “g”). The PDF of
GMM combines these distributed components linearly, enabling easier analysis of the
generated data. When generating random values as a vector “a” within an n-dimensional
sample space χ, if “a” adheres to a Gaussian distribution, the expression for its probability
distribution function is as follows:

p(a) =
1

(2π)n/2|Σ|1/2 e−(
1
2 )(a−µ)TΣ−1(a−µ) (42)

Here, µ represents the mean vector in the n-dimensional space, and Σ is the covariance
matrix of size n × n. The determination of the covariance matrix and mean vector is
essential for the Gaussian distribution. Multiple components are mixed in the Gaussian
distribution function [44], with each component and the equation of mixture distribution
given by

PQ(a) =
k

∑
i=1

∝j ×p
(
a
∣∣µj, Σj

)
(43)

In this equation, ∝j represents the mixing coefficient corresponding to the jth Gaussian
mixture, while µj and Σj denote the mean vector and covariance matrix of that Gaussian
component, respectively.

Expectation Maximum (EM)

The EM algorithm [45] serves as a classifier in this context. Its primary objective
is to estimate missing values within a dataset and subsequently predict those values to
maximize the dataset’s order based on the application’s requirements. Consider two
random variables, X and Y, involved in the prediction process and determining the order
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of the data in rows. Variable X is observable and known in the dataset, while the unknown
variable Z needs to be predicted to set the value of Y.

L (θ; X, Y) = p(X, Y|θ) (44)

L(θ|x) ε { αp (X|θ); α > 0}. p(X|θ) ∗ p(Y|θ) (45)

The maximum likelihood estimation is obtained as

L(θ; X) = p (X|θ) = ∑
Y

p(X, Z|θ) (46)

To estimate the expected value of the log-likelihood function, we calculate

Q(θ|θ ˆ(t)) = Ez|xi θ ˆ(t) [log L (θ; X, Y)] (47)

The above quantity is maximized to compute the maximum value, resulting in

θ ˆ(t + 1) = arg max Q(θ|θ ˆ(t)) (48)

The expectation and maximization steps are iteratively repeated until a converged
sequence of values is reached as mentioned in Figure 12 which is the flow diagram of
expectation maximization.
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Bayesian Linear Discriminant Classifier (BLDC)

BLDC [46] is commonly employed to regularize high-dimensional signals, reduce
noisy signals, and improve computational efficiency. Before conducting Bayesian linear
discriminant analysis, an assumption is made that a target, denoted as b, is related to a
vector x with the addition of white Gaussian noise, c.

This relationship can be expressed as a = xTb + c. The function x is assigned weights,
and its likelihood function is given by

p(G|β, x) =
(

β

2π

) c
2
exp

(
− β

2

∥∥∥BTx−m
∥∥∥) (49)

where the pair {B, m} represents G. The x of prior distribution is expressed as

p(x|α) =
( α

2π

) 1
2
( ε

2π

) 1
2 exp

(
−1

2
xT H′(α)x

)
(50)
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The regularization square matrix is given by

H′(α) =

α · · · 0
...

. . .
...

0 · · · ε


(l+1)(l+1)

(51)

and α is a hyperparameter obtained from data forecasting, while l represents the assigned
vector number. By applying Bayes’ rule, x can be calculated as

p(x|β, α, G) =
P(G|β, x)P(x|α)∫
P(G|β, x)P(y|α)dy

(52)

The mean vector υ and the covariance matrix X must adhere to the specific norms
outlined in Equations (50) and (52) for the posterior distribution. The predominant nature
of the posterior distribution is Gaussian.

υ = β
(

βBBT + H′(α)
)−1

Ba (53)

X =
(

βBBT + H′(α)
)−1

(54)

When predicting the input vector b̂, the probability distribution for regression can be
expressed as

p
(

â
∣∣∣β, α, b̂, G

)
=
∫

p
(

â
∣∣∣β, b̂, x

)
p(x|β, α, G)dy (55)

Again, the nature of this prediction analysis is predominantly Gaussian, with the mean
expressed as µ = υT b̂ and variance expressed as δ2 = 1

β + b̂TXb̂.

Logistic Regression (LoR)

Logistic Regression (LoR) has proven to be effective in classifying diseases such as
diabetes, types of cancer, and epilepsy. In this context, function y that represents the
disease level is considered, ranging from 0 to 1 to indicate non-diabetic and diabetic
patients, respectively. Gene expressions are represented by a vector x = x1, x2, . . . , xm,
where each element xj corresponds to the expression level of the jth gene. Using a model-
based approach for a dataset Π(x), the aim is to identify informative genes for diabetic
patients based on the likelihood of y being 1 given x. To achieve dimensionality reduction,
logistic regression is utilized to select the most relevant “q” genes. The gene expression
representation xj

* corresponds to the gene expression, with j ranging from 1 to q, while the
binary disease status is denoted by yi, where i ranges from 1 to n. The logistic regression
model can be expressed as

Logit{Π(x)} = υ0 + ∑q
j=1 υjx∗j (56)

The objective is to maximize the fitness and log-likelihood, which can be achieved by
obtaining the following function

1(υ0, υ) = ∑n
j=1 {yilog(πi) + (1− πi)} −

1
2τ2 ‖υ‖

2 (57)

where τ is a parameter that limits the reduction in υ near 0, πi = π(xi) as defined by the
model [47,48], and ‖υ‖2 denotes the Euclidean length of υ = υ1, υ2, . . . , υp. The selection of
q and τ are determined using the parametric bootstrap method, which imposes constraints
on accurate error prediction. Initially, υ = 0, for the purpose of calculating the cost function.
It is then varied with different parameters to minimize the cost function. The sigmoid
function is applied to restrict values between 0 and 1, serving as an attenuation mechanism.
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The threshold cut-off value of 0.5 is used to classify patients as either diabetic or non-
diabetic. Any probability below the threshold is considered indicative of non-diabetic
patients, while values above the threshold indicate diabetic patients.

SDC—Softmax Discriminant Classifier

The SDC is used to verify and detect the group to which a particular test sample
belongs [49]. It weighs the distance between the training samples and the test sample
within a particular class or group of data. Z is represented as

Z =
[
Z1,Z2, . . . , Zq

]
∈ Rc×d (58)

consisting of samples from distinct classes named q, Zq =
[

Zq
1 , Zq

2 , . . . , Zq
dq

]
∈ Rc×dq . Each

class, represented by Zq, contains samples from the qth class, where ∑
q
i=1 di = d. The sum

of the sample sizes, given a test sample K ∈ Rc×1, is passed through the classifiers to
obtain minimal construction errors, thereby assigning it to the class q. The transformation
of class samples and test samples in SDC involves nonlinear enhancement values. This is
achieved through the following equations:

h(K) = argmaxZi
w (59)

h(K) = argmax
i

log

(
di

∑
j=1

exp
(
−λ
∥∥∥v− υi

j

∥∥∥
2

))
(60)

In these equations, h(K) represents the differentiate of the ith class and
∥∥∥v− υi

j

∥∥∥
2

approaches zero, resulting in the maximization of Zi
w. This asymptotic behavior leads to

the maximum likelihood of the test sample belonging to a particular class.

Support Vector Machines

The SVM classifier is a significant machine learning approach widely used for classifi-
cation problems, particularly in the phase of nonlinear regression [50]. In this study, three
distinct methods are explored for data classification:

SVM-Linear: this method utilizes a linear kernel to classify the data.
SVM-Polynomial: this approach involves the use of a polynomial kernel for data

classification.
SVM-Radial Basis Function (RBF): the RBF kernel is used here to classify the data.
These three SVM methods offer different strategies for effectively classifying datasets,

allowing researchers to choose the most suitable approach based on their specific classifica-
tion requirements.

The training time and computational complexity of the SVM depend on the data and
classifiers used. When the number of supports in the SVM increases, it results in higher
computational requirements due to the calculation of floating-point multiplications and
additions. To address this issue, K-means clustering techniques have been introduced to
reduce the number of supports in the SVM. In the linear case, Lagrange multipliers can
be employed, and the data points on the borders are expressed as ν = ∑m

i=1 αiziyT
i . Here,

m represents the number of supports, zi represents the target labels for y, and the linear
discriminant function is used.

h(y) = sgn

(
m

∑
i=1

αiziyT
i y + C

)
(61)

The process of implementing the Support Vector Machine (SVM) involves several
key steps.
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Step 1: The first step is to use quadratic optimization to linearize and converge the
problem. By transforming the primal minimization problem into a dual optimization
problem, the objective is to maximize the dual Lagrangian LD with respect to αi:

MaxLD =
l

∑
i=1

αi −
1
2

l

∑
i=1

∑l
j=1 αiαjyiyj

(
Xi·Xj

)
(62)

subject to ∑l
i=1 αiyi = 0, where αi ≥ 0∀i = 1, 2, 3, . . . , l.

Step 2: The next step involves solving the quadratic polynomial programming to
obtain the optimal separating hyperplane. The data points with non-zero Lagrangian
multipliers (∝i> 0) are identified as the support vectors.

Step 3: The optimal hyperplane is determined based on the support vectors, which are
the data points closest to the decision boundary in the trained data.

Step 4: K-means clustering is applied to the dataset, grouping the data into clusters
according to the conditions from Steps 2 and 3. Three points are randomly chosen from
each cluster as the center points, which are representative points from the dataset. Each
center point acquires the points around them.

Step 5: When there are six central points, each representing an individual cluster, the
SVM training data are acquired through the utilization of kernel methods.

Polynomial Function: K (X, Z) = (XT Z + 1) d (63)

Radial Basis Function : k
(
xi, xj

)
= exp

{
−
∣∣xi − xj

∣∣2
(2 ∗ σ)2

}
(64)

7.1. Training and Testing of Classifiers

Due to the limited availability of training data, we employed k-fold cross-validation,
a widely used technique for evaluating machine learning models. The methodology de-
scribed by Fushiki et al. [51] was followed to conduct the k-fold cross-validation. Initially,
the dataset was divided into k equally sized subsets or “folds”. This process was repeated
for all k-folds, ensuring that each fold was used once for testing. Consequently, k perfor-
mance estimates (one for each fold) were obtained. To obtain an overall estimate of the
model’s performance, the average of these k performance estimates was calculated. After
training and validating the model using k-fold cross-validation, it was retrained on the
complete dataset to make predictions on new, unseen data. The significant advantage
of utilizing this method is the more reliable model performance compared to other test
split methods, as the technique maximizes the utilization of the available data. Here, we
adopted a k-value of 10-fold cross-validation. Furthermore, the research incorporated
2870 dimensionally reduced features per patient, focusing on a cohort of 20 patients with
diabetes and 50 non-diabetic patients. The utilization of cross-validation eliminates any
reliance on a specific pattern for the test set, enhancing the robustness of our findings. The
training process is regulated in the MSE proposed by Wang et al. [52], which is defined
as follows:

MSE =
1
N ∑N

j=1

(
Oj − Tj

)2 (65)

where Oj is the observed value at time j, and Tj is the target value at model j.
Table 4 represents confusion matrix for detecting diabetes. The following terms in

Table 4 can be defined as:
TP—true positive: a patient is accurately classified into the diabetic class.
TN—true negative: a patient is accurately recognized as belonging to the

non-diabetic class.
FP—false positive: a patient is inaccurately classified as belonging to the diabetic class

when they actually belong to the non-diabetic class.
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FN—false negative: a patient is inaccurately classified as being in the non-diabetic
class when they should be categorized as belonging to the diabetic class.

Table 4. Confusion matrix for detecting diabetes.

Clinical Situation
Predicted Values

Diabetic Non-Diabetic

Real Values
Diabetic class TP FN

Non-diabetic class FP TN

Table 5 provides insight into the performance of the classifiers without the feature
selection method, focusing on the training and testing Mean Squared Error (MSE) across
various DR techniques. The training MSE values consistently range between 10−4 and
10−10, while the testing MSE varies from 10−4 to 10−8. Among the classifiers, the SVM
(RBF) classifier using the AAA DR technique without feature selection achieves the lowest
training and testing MSE, specifically 1.93 × 10−10 and 1.77 × 10−8, respectively. Notably,
a lower testing MSE indicates superior classifier performance. It is evident from Table 5
that higher testing MSE values correspond to lower classifier performance, regardless of
the DR techniques used.

Table 5. Analysis of MSE in for different DR techniques without feature selection.

Classifiers

Bessel Function Discrete Cosine Transform
(DCT)

Least Squares Linear
Regression (LSLR)

Artificial Algae Algorithm
(AAA)

MSE
Training Set

MSE
Testing Set

MSE
Training Set

MSE
Testing Set

MSE
Training Set

MSE
Testing Set

MSE
Training Set

MSE
Testing Set

NLR 2.3 × 10−6 1.76 × 10−3 6.41 × 10−6 2.48 × 10−5 7.75 × 10−6 5.12 × 10−5 2.91 × 10−7 1.6 × 10−5

LR 2.41 × 10−5 9.51 × 10−5 7.52 × 10−6 3.11 × 10−5 2.18 × 10−7 4.66 × 10−5 3.67 × 10−8 1.45 × 10−5

GMM 2.1 × 10−5 1.75 × 10−4 5.72 × 10−7 6.8 × 10−6 3.09 × 10−7 1.11 × 10−5 3.76 × 10−6 5.33 × 10−5

EM 1.62 × 10−7 9.87 × 10−6 2.71 × 10−6 1.3 × 10−5 9.87 × 10−7 1.99 × 10−5 8.97 × 10−9 7.3 × 10−6

BLDC 1.4 × 10−6 2.53 × 10−3 2.86 × 10−7 3.94 × 10−5 4.74 × 10−6 5.28 × 10−5 1.43 × 10−7 1.64 × 10−5

LoR 1.2 × 10−6 2.89 × 10−3 9.47 × 10−6 3.58 × 10−5 8.69 × 10−6 4.54 × 10−5 9.26 × 10−8 1.45 × 10−5

SDC 1.9 × 10−6 2.03 × 10−3 3.66 × 10−6 1.07 × 10−5 2.47 × 10−6 1.86 × 10−5 2.31 × 10−9 5 × 10−6

SVM (L) 3.1 × 10−6 2.7 × 10−3 8.92 × 10−6 2.89 × 10−5 1.09 × 10−5 4.01 × 10−5 4.13 × 10−9 8.2 × 10−6

SVM (Poly) 3.6 × 10−5 2.11 × 10−3 3.36 × 10−6 2.11 × 10−5 1.29 × 10−6 2.85 × 10−5 7.84 × 10−9 4.69 × 10−6

SVM (RBF) 4.16 × 10−7 8.3 × 10−5 1.57 × 10−8 2.41 × 10−6 3.22 × 10−8 5.64 × 10−6 1.93 × 10−10 1.77 × 10−8

Table 6 exhibits the training and testing of MSE in the classifiers with EHO feature
selection method across all four DR techniques. The training MSE varies from 10−5 to
10−10, while the testing MSE varies between 10−5 and 10−8. The SVM (RBF) classifier in
the AAA DR method with PSO feature selection achieved a minimum training and testing
MSE of 1.99 × 10−10 and 2.5 × 10−8, respectively. The Bessel function DR method indicates
slightly lower training and testing MSE values for the classifiers when compared to the
other three DR techniques. All of the classifiers had slightly enhanced testing performance
when compared to methods without feature selection. This indicates the enhancement in
classifier performance irrespective of the DR technique.
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Table 6. Analysis of MSE performance for classifiers using EHO feature selection methods across
different DR techniques.

Classifiers

Bessel Function Discrete Cosine Transform
(DCT)

Least Squares Linear
Regression (LSLR)

Artificial Algae Algorithm
(AAA)

Training
MSE Testing MSE Training

MSE
Testing

MSE
Training

MSE
Testing

MSE
Training

MSE
Testing

MSE

NLR 4.85 × 10−6 2.64 × 10−5 4.13 × 10−5 2.88 × 10−5 1.21 × 10−6 3.64 × 10−5 7.21 × 10−7 9.53 × 10−6

LR 3.62 × 10−6 4.79 × 10−5 6.92 × 10−6 1.35 × 10−5 7.72 × 10−6 1.96 × 10−5 6.98 × 10−7 4.23 × 10−6

GMM 6.13 × 10−6 2.26 × 10−4 7.63 × 10−7 9.22 × 10−6 4.57 × 10−6 1.39 × 10−5 3.81 × 10−7 4.52 × 10−6

EM 2.19 × 10−7 1.2 × 10−6 4.39 × 10−6 2.25 × 10−5 4.81 × 10−6 3.92 × 10−5 4.67 × 10−7 1 × 10−5

BLDC 4.47 × 10−6 6.56 × 10−5 7.94 × 10−7 5.8 × 10−5 3.72 × 10−6 1.56 × 10−5 3.52 × 10−7 3.97 × 10−6

LoR 3.24 × 10−6 2.26 × 10−4 3.32 × 10−6 1.09 × 10−5 8.37 × 10−6 2.26 × 10−5 7.61 × 10−8 3.82 × 10−6

SDC 9.62 × 10−6 2.31 × 10−4 9.13 × 10−7 4.62 × 10−5 4.87 × 10−6 1.52 × 10−5 9.93 × 10−8 3.84 × 10−6

SVM (L) 4.12 × 10−5 5.29 × 10−4 8.47 × 10−7 4.16 × 10−6 1.93 × 10−8 9.61 × 10−6 1.67 × 10−8 3.81 × 10−6

SVM (Poly) 6.41 × 10−5 2.34 × 10−4 2.19 × 10−7 6.41 × 10−6 5.77 × 10−8 1.24 × 10−5 1.62 × 10−8 2.05 × 10−6

SVM (RBF) 3.72 × 10−7 2.56 × 10−5 6.17 × 10−8 1.35 × 10−6 6.79 × 10−9 2.42 × 10−6 1.99 × 10−10 2.5 × 10−8

Table 7 demonstrates the training and testing Mean Squared Error (MSE) performance
of classifiers utilizing the Dragonfly Algorithm-based feature selection method across
various dimensionality reduction techniques. The training MSE values range from 10−6 to
10−9, while the testing MSE varies between 10−5 and 10−8. The SVM (RBF) classifier, when
combined with the Dragonfly feature selection method, achieved a minimal training MSE of
1.66 × 10−9 and a testing MSE of 3.25 × 10−8. Notably, this feature selection method led to
improvements in the training and testing performance of all classifiers. This enhancement
is reflected in improved accuracy, MCC, and Kappa parameters, regardless of the specific
dimensionality reduction technique employed.

Table 7. Analysis of MSE in classifiers for various DR techniques with Dragonfly feature selection
methods.

Classifiers

Bessel Function Discrete Cosine Transform
(DCT)

Least Squares Linear
Regression (LSLR)

Artificial Algae Algorithm
(AAA)

Training
MSE Testing MSE Training

MSE Testing MSE Training
MSE Testing MSE Training

MSE Testing MSE

NLR 3.62 × 10−6 4.54 × 10−5 4.16 × 10−6 1.36 × 10−5 8.21 × 10−6 2.72 × 10−5 3.86 × 10−6 1.28 × 10−5

LR 4.36 × 10−6 7.12 × 10−5 2.84 × 10−6 1.39 × 10−5 9.4 × 10−6 3.8 × 10−5 2.51 × 10−8 4.32 × 10−6

GMM 7.58 × 10−7 4.71 × 10−5 5.66 × 10−8 7.84 × 10−6 3.61 × 10−6 2.09 × 10−5 4.63 × 10−8 1.02 × 10−5

EM 4.79 × 10−7 3.31 × 10−5 3.79 × 10−8 1.68 × 10−5 5.33 × 10−6 6.12 × 10−5 3.43 × 10−8 1.46 × 10−5

BLDC 6.52 × 10−7 4.16 × 10−5 2.92 × 10−8 4.49 × 10−5 7.54 × 10−8 9.12 × 10−6 7.68 × 10−8 8.1 × 10−6

LoR 6.54 × 10−7 5.04 × 10−5 7.23 × 10−8 6.05 × 10−6 1.92 × 10−7 2.23 × 10−6 4.84 × 10−9 3.36 × 10−6

SDC 3.86 × 10−7 2.57 × 10−5 8.95 × 10−7 3.08 × 10−6 7.52 × 10−8 6.31 × 10−6 1.63 × 10−8 2.52 × 10−6

SVM (L) 5.42 × 10−7 3.51 × 10−5 8.45 × 10−7 1.03 × 10−5 1.41 × 10−7 2.83 × 10−5 1.95 × 10−7 1.7 × 10−6

SVM (Poly) 9.67 × 10−7 7.23 × 10−5 6.67 × 10−6 7.08 × 10−6 6.3 × 10−7 1.05 × 10−5 6.42 × 10−8 5.33 × 10−6

SVM (RBF) 8.64 × 10−8 2.72 × 10−6 1.82 × 10−8 9.05 × 10−7 3.4 × 10−8 1.69 × 10−6 1.66 × 10−8 3.25 × 10−8

7.2. Selection of Target

The non-diabetic class (T ND) target value is taken at the lower side from 0→1, and
this is mapped according to the following constraint:

1
N

N

∑
i=1

µi ≤ TND (66)

Here, µi represents the mean value of the input feature vectors for the N number of
non-diabetic features considered for classification. Similarly, for the diabetic class (TDia)),
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the target value is mapped to the upper end of the zero-to-one (0→1) scale. This mapping
is established based on the following:

1
M

N

∑
j=1

µj ≤ TDia (67)

Here, µj signifies the average value of input feature vectors for the M number of
diabetic cases used for classification. It is important to highlight that the target value TDia is
set to be higher than the average values of µi and µj. This selection of target values requires
the discrepancy between them to be at least 0.5, as expressed by the following:

||TDia − TND||≥ 0.5 (68)

The targets for non-diabetic TND and diabetic TDia are chosen as 0.1 and 0.85, respec-
tively. Once the target is fixed, MSE is used for evaluating the performance of the classifiers.
Table 8 shows the selection of optimal parameters for the classifiers after training and
testing process.

Table 8. Selection of optimal parametric values for classifiers.

Classifiers Description

NLR Uniform weight w = 0.4, bias b = 0.001, iteratively modified sum of least square error, criterion: MSE
Linear Regression Uniform weight w = 0.451, bias b = 0.003, criterion: MSE

GMM Mean covariance of the input samples and tuning parameter using EM steps. Criterion: MSE
EM 0.13 likelihood probability, 0.45 cluster probability, with convergence rate of 0.631. Condition: MSE

BDLC P(y), prior probability: 0.5, class mean: 0.85, 0.1; criterion: MSE
Logistic regression Threshold Hθ(x) < 0.48 with criterion: MSE

SDC Γ = 0.5 along with mean of each class target values as 0.1 and 0.85
SVM (Linear) C (Regularization Parameter): 0.85, class weights: 0.4, convergence criterion: MSE

SVM (Polynomial) C: 0.76, coefficient of the kernel function (gamma): 10, class weights: 0.5, convergence criterion: MSE
SVM (RBF) C: 1, coefficient of the kernel function (gamma): 100, class weights: 0.86, convergence criterion: MSE

8. Results and Findings

The study employs the conventional tenfold testing and training approach, where
10% of the input is dedicated to testing, while the remaining 90% is utilized for training.
The selection of performance metrics is pivotal for assessing the efficacy of classifiers.
The assessment of classifier performance, especially in binary classification scenarios like
distinguishing between diabetic and non-diabetic cases from pancreatic microarray gene
data, relies on the utilization of a confusion matrix. This matrix facilitates the computation
of performance metrics including accuracy, F1 score, MCC, error rate, FM metrics, and
Kappa, which are commonly utilized to gauge the comprehensive performance of the
model. The relevant parameters associated with the classifiers for performance analysis are
illustrated in Table 9.

The performance of the classifier was evaluated using several metrics, including Acc,
F1 score, MCC, ER, FM, and Kappa. Accuracy is the fraction of predictions that are correct,
and it is a measure of the overall performance of the classifier. F1 score is the harmonic
mean of precision and recall, and it is a measure of the classifier’s ability to both correctly
identify positive instances and to correctly identify negative instances. MCC is a measure of
the correlation between the observed and predicted classifications, and it is a more sensitive
metric than accuracy or F1 score. Error rate is the fraction of predictions that are incorrect,
and it is the complement of accuracy. The FM metric is a generalization of the F-measure
that adds a beta parameter, and it is a measure of the classifier’s ability to both correctly
identify the values of positive and negative instances, with a weighting that can be adjusted
to favor one or the other. Kappa is a statistic that measures agreement between observed
and predicted classifications, adjusted for chance. The results are tabulated in Table 10.
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Table 9. Performance metrics.

Metrics Formula Assessment Focus

Accuracy Acc = (TN+TP)
(TN+FN+TP+FP) Fraction of predictions that are correct

F1 Score F1 = 2×TP
(2×TP+FP+FN)

Harmonic mean of precision and recall

Matthews Correlation Coefficient
(MCC) MCC = (TP×TN−FP×FN)√

TP+FP)×(TP+FN)×(TN+FP)×(TN+FN)

Correlation between the observed and
predicted classifications

Error Rate Error rate = (FP+FN)
(TP+TN+FP+FN)

Fraction of predictions that are incorrect

FM Metric FM =
√( TP

TP+FP
)
×
( TP

TP+FN
) Generalization of the F-measure that adds a

beta parameter

Kappa

Kappa =
(P o−Pe)
(1−Pe)

Po = (TP+TN)
(TP+TN+FP+FN)

Pe =
(TP+FP)×(TP+FN)+(FP+TN)×(FN+TN)

(TP+TN+FP+FN)2

Statistic that measures agreement between
observed and predicted classifications,

adjusted for chance

Abbreviations: TP—true positive: an accurate prediction where the true value was positive. TN—true negative:
an accurate prediction where the true value was negative. FP—false positive: an inaccurate prediction where the
actual value was negative. FN—false negative: an erroneous prediction where the actual value was positive.

Table 10. Parametric analysis of different classifiers through various DM techniques.

Dimensionality
Reduction Classifiers

Parameters

Accuracy (%) F1 Score (%) MCC Error Rate (%) FM (%) Kappa

Bessel Function

NLR 54.2857 40.7407 0.0813 45.7142 42.1831 0.0743
LR 58.5714 47.2727 0.1897 41.4285 49.1354 0.1714

GMM 57.1428 48.2758 0.1995 42.8571 50.7833 0.1732
EM 61.4285 54.2372 0.3092 38.5714 57.2892 0.2645

BLDC 52.8571 40 0.0632 47.1428 41.5761 0.0571
LoR 54.2857 40.7407 0.0813 45.7142 42.1831 0.0743
SDC 54.2857 40.7407 0.0813 45.7142 42.1831 0.0743

SVM (L) 52.8571 40 0.0632 47.1428 41.5761 0.0571
SVM (Poly) 54.2857 42.8571 0.1084 45.7142 44.7214 0.0967
SVM (RBF) 61.4285 52.6315 0.2805 38.5714 55.1411 0.2470

Discrete Cosine
Transform (DCT)

NLR 75.7142 62.2222 0.4525 24.2857 62.6099 0.4465
LR 71.4285 56.5217 0.3646 28.5714 57.0088 0.3577

GMM 85.7142 76.1904 0.6617 14.2857 76.277 0.6601
EM 80 69.5652 0.5609 20 70.1646 0.5504

BLDC 65.7142 53.8461 0.3083 34.2857 55.3399 0.2881
LoR 67.1428 59.6491 0.4072 32.8571 62.4932 0.3585
SDC 81.4285 72.3404 0.6032 18.5714 73.1564 0.5882

SVM (L) 70 60.3773 0.4162 30 62.2799 0.3849
SVM (Poly) 72.8571 62.7451 0.4547 27.1428 64.2575 0.4291
SVM (RBF) 88.5714 81.8181 0.7423 11.4285 82.1584 0.7358

Least Squares
Linear Regression

(LSLR)

NLR 67.1428 48.8888 0.2545 32.8571 49.1935 0.2511
LR 65.7142 52 0.2829 34.2857 53.0723 0.2695

GMM 82.8571 72.7272 0.6091 17.1428 73.0297 0.6037
EM 72.8571 62.7451 0.4547 27.1428 64.2575 0.4291

BLDC 62.8571 51.8518 0.2711 37.1428 53.6875 0.2479
LoR 64.2857 57.6271 0.3728 35.7142 60.8698 0.3190
SDC 75.7142 65.3061 0.4952 24.2857 66.4364 0.4757

SVM (L) 64.2857 54.5454 0.3162 35.7142 56.6947 0.2857
SVM (Poly) 71.4285 61.5384 0.4352 28.5714 63.2456 0.4067
SVM (RBF) 84.2857 75.5555 0.6505 15.7142 76.0263 0.6418

Artificial Algae
Algorithm (AAA)

NLR 80 66.6666 0.5254 20 66.7424 0.5242
LR 80 68.1818 0.5424 20 68.4653 0.5377

GMM 85.7142 77.2727 0.6757 14.2857 77.594 0.6698
EM 84.2857 75.5555 0.6505 15.7142 76.0263 0.6418

BLDC 78.5714 68.0851 0.5382 21.4285 68.853 0.5248
LoR 77.1428 69.2307 0.5622 22.8571 71.1512 0.5254
SDC 85.7142 78.2608 0.6918 14.2857 78.9352 0.6788

SVM (L) 82.8571 75 0.6454 17.1428 76.0639 0.625
SVM (Poly) 87.1428 80 0.7165 12.8571 80.4984 0.7069
SVM (RBF) 90 84.4444 0.7825 10 84.9706 0.7720
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Table 10 illustrates the performance analysis of ten classifiers, considering metrics such
as Acc, F1 score, MCC, ER, F-measure, and Kappa values. This analysis is conducted for four
DR methods without the incorporation of two feature selection methods. Table 9 reveals
that the EM classifier in the Bessel function DR technique achieves a moderate accuracy of
61.42%, an F1 score of 54.23%, a moderate error rate of 38.57%, and an F-measure of 57.28%.
However, the EM classifier exhibits a lower MCC value of 0.3092 and a Kappa value of
0.2645. On the other hand, the SVM (linear) classifier in the Bessel function DR method
demonstrates a low accuracy of 52.85% along with a high error rate of 47.15%. Additionally,
it exhibits an F1 score of 40% and an F-measure of 41.57%. The MCC and Kappa values
for the SVM (linear) classifier are notably low, at 0.06324 and 0.05714, respectively. Across
the Bessel function DR techniques, all classifiers exhibit poor performance in the various
metrics. This trend can be attributed to the intrinsic properties of the Bessel function, which
is evident from the non-negative values of the statistical parameters. Equally, the SVM
(RBF) classifier in the context of the DCT DR technique achieves a respectable accuracy of
88.57%, complemented by a low error rate of 11.42%. Furthermore, it attains an F1 score
of 81.81% and an F-measure of 82.15%. The MCC and Kappa values of the SVM (RBF)
classifier reach 0.7423 and 0.7358, respectively. Within the SVM (RBF) classifier, the AAA
DR technique exhibits a remarkable accuracy score of 90%, coupled with a low error rate of
10%. This is accompanied by an F1 score of 84.44% and an F-measure of 84.97%. The MCC
and Kappa values of the SVM (RBF) classifier are noteworthy, totaling 0.7825 and 0.772,
respectively. Remarkably, regardless of the DR technique employed, all classifiers manage
to maintain accuracy within the range of 52% to 85%. This is primarily due to the inherent
limitations of the DR techniques. Therefore, incorporating feature selection methods is
highly recommended to enhance the performance of these classifiers.

Figure 13 provides an overview of the performance analysis of ten classifiers concern-
ing the metrics of accuracy, F1 score, error rate, and F-measure values. This analysis is
carried out within the context of four dimensionality reduction methods, specifically with-
out feature selection methods. Table 10 shows that the EM classifier in the Bessel function
DR technique achieves a modest accuracy of 61.42%, along with an F1 score of 54.23%.
Moreover, it exhibits a moderate error rate of 38.57% and an F-measure of 57.28%. On the
other hand, the SVM (linear) classifier in the Bessel function DR method demonstrates a
lower accuracy of 52.85%. This classifier is accompanied by a higher error rate of 47.15%, an
F1 score of 40%, and an F-measure of 41.57%. Across the performance metrics, all classifiers
exhibit suboptimal performance within the Bessel function DR technique. This trend is
observed consistently across various measures. However, the SVM (RBF) classifier within
the DCT DR technique maintains an impressive accuracy level of 88.57%. Furthermore, it
exhibits a commendably low error rate of 11.42%, an F1 score of 81.81%, and an F-measure
of 82.15%. Employing the AAA DR technique in the SVM (RBF) classifier results in achiev-
ing an elevated accuracy rate of 90%. Additionally, this combination yields a notably low
ER of 10% and an F1 score of 84.44%, accompanied by an F-measure of 84.97%.

Table 11 presents an in-depth analysis of the performance of ten classifiers concerning
four DR methods integrated with the EHO feature selection technique. Notably, the SVM
(RBF) classifier within the AAA DR technique achieves an exceptional accuracy of 95.71%.
This classifier further demonstrates a commendable F1 score of 92.68%, accompanied by
a notably low error rate of 4.28% and an impressive F-measure of 92.71%. Additionally,
the SVM (RBF) has a high MCC value of 0.897 and a Kappa value of 0.8965. However,
a contrasting performance is observed with the SVM(Linear) classifier within the Bessel
function DR technique. Once again, this classifier registers a relatively low accuracy of 50%,
coupled with a high error rate of 50%. Further metrics include an F1 score of 36.36% and
an F-measure of 37.79%. Intriguingly, the SVM (Linear) classifier achieves null values for
both MCC and Kappa, marking a unique and distinctive characteristic of its performance.
All classifiers exhibit improved accuracy within the DCT, LSLR, and AAA DR techniques.
However, the impact of the EHO feature selection method does not translate into substantial
enhancements for classifiers employing the Bessel function DR method.
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Table 11. Performance metrics with Elephant Herding Optimization (EHO) feature selection method
for different DR techniques.

Dimensionality
Reduction Classifiers

Parameters

Accuracy (%) F1 Score (%) MCC Error Rate (%) FM (%) Kappa

Bessel Function

NLR 71.4285 61.5384 0.4352 28.5714 63.2456 0.4067
LR 62.8571 50 0.2448 37.1428 51.387 0.2288

GMM 54.2857 40.7407 0.0813 45.7142 42.1831 0.0743
EM 81.4285 72.3404 0.6032 18.5714 73.1564 0.5882

BLDC 60 46.1538 0.1813 40 47.4342 0.1694
LoR 54.2857 40.7407 0.0813 45.7142 42.1831 0.0743
SDC 54.2857 40.7407 0.0813 45.7142 42.1831 0.0743

SVM (L) 50 36.3636 0 50 37.7964 0
SVM (Poly) 52.8571 40 0.0632 47.1428 41.5761 0.0571
SVM (RBF) 71.4285 60 0.4107 28.5714 61.2372 0.3913

Discrete Cosine
Transform (DCT)

NLR 70 61.8181 0.4427 30 64.254 0.4
LR 78.5714 68.0851 0.5382 21.4285 68.853 0.5248

GMM 81.4285 72.3404 0.6032 18.5714 73.1564 0.5882
EM 72.8571 64.1509 0.4796 27.1428 66.1724 0.4435

BLDC 85.7142 77.2727 0.6757 14.2857 77.594 0.6698
LoR 81.4285 71.1111 0.5845 18.5714 71.5542 0.5767
SDC 85.7142 77.2727 0.6757 14.2857 77.594 0.6698

SVM (L) 88.5714 80.9523 0.7298 11.4285 81.0443 0.7281
SVM (Poly) 84.2857 75.5555 0.6505 15.7142 76.0263 0.6418
SVM (RBF) 90 83.7209 0.7694 10 83.9254 0.7655

Least Squares
Linear Regression

(LSLR)

NLR 67.1428 59.6491 0.4072 32.8571 62.4932 0.3585
LR 74.2857 64 0.4746 25.7142 65.3197 0.4521

GMM 74.2857 65.3846 0.4987 25.7142 67.1984 0.4661
EM 65.7142 57.1428 0.3615 34.2857 59.6285 0.3225

BLDC 75.7142 65.3061 0.4952 24.2857 66.4364 0.4757
LoR 72.8571 61.2244 0.4310 27.1428 62.2841 0.4140
SDC 80 68.1818 0.5424 20 68.4653 0.5377

SVM (L) 85.7142 76.1904 0.6617 14.2857 76.277 0.6601
SVM (Poly) 80 69.5652 0.5609 20 70.1646 0.5504
SVM (RBF) 88.5714 81.8181 0.7423 11.4285 82.1584 0.7358

Artificial Algae
Algorithm (AAA)

NLR 81.4285 73.4693 0.6236 18.5714 74.7409 0.5991
LR 87.1428 80 0.7165 12.8571 80.4984 0.7069

GMM 85.7142 78.2608 0.6918 14.2857 78.9352 0.6788
EM 81.4285 73.4693 0.6236 18.5714 74.7409 0.5991

BLDC 87.1428 80 0.7165 12.8571 80.4984 0.7069
LoR 87.1428 79.0697 0.7021 12.8571 79.2629 0.6985
SDC 88.5714 80.9523 0.7298 11.4285 81.0443 0.7281

SVM (L) 97.1428 94.7368 0.9302 2.85714 94.8683 0.9278
SVM (Poly) 88.5714 81.8181 0.7423 11.4285 82.1584 0.7358
SVM (RBF) 95.7142 92.6829 0.8970 4.28571 92.7105 0.8965
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Figure 14 presents the analysis of the ten classifiers concerning the four DR methods
combined with the EHO feature selection techniques. Furthermore, it is evident from the
insights presented in Table 11 that the SVM (RBF) classifier, operating within the AAA DR
technique, achieves an impressively high accuracy of 95.71%. Additionally, this classifier
demonstrates a notable F1 score of 92.68%, accompanied by a commendably low error
rate of 4.29% and an impressive F-measure of 92.71%. Equally, the SVM(Linear) classifier
used within the Bessel function DR technique reflects a lower accuracy of 50%, coupled
with a higher error rate of 50%. Correspondingly, the F1 score is registered at 36.36%, and
the F-measure reaches 37.79%. Overall, the classifiers exhibit relatively low performance
within the context of the Bessel function DR technique.
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Figure 14. Different classifiers with EHO feature selection methods.

Table 12 presents the analysis of the ten classifiers concerning the four DR methods
combined with the Dragonfly method. As depicted in Table 12, it is evident that the SVM
(RBF), operating within the AAA DR technique, achieves an impressively high accuracy
rate of 94.28%. Moreover, this classifier demonstrates a commendable F1 score of 90.47%,
accompanied by a relatively low error rate of 5.72% and an appreciable F-measure of 90.57%.
Furthermore, the SVM (RBF) classifier exhibits notable values of MCC and Kappa, standing
at 0.866 and 0.864, respectively. On the other hand, the SVM (Polynomial) classifier, applied
within the context of the Bessel function DR technique, achieves a lower accuracy rate
of 58.57%. Correspondingly, it registers a higher error rate of 41.43%, along with an F1
score of 43.13% and an F-measure of 44.17%. However, the MCC and Kappa values for
the SVM (Polynomial) classifier are notably lower, reaching 0.1364 and 0.1287, respectively.
Among the classifiers utilized in the Bessel function DR method, only the SVM (RBF)
classifier achieves an accuracy above 78%. Additionally, the SVM (RBF) classifier attains
high accuracy in the DCT DR and LSLR DR methods, reaching 91% and 90%, respectively.
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Table 12. Performance metric of different classifiers with four DR techniques with the Dragonfly
feature selection method.

DR Classifiers
Parameters

Accuracy (%) F1 Score (%) MCC Error Rate (%) FM (%) Kappa

Bessel
Function

NLR 64.2857 57.6271 0.3728 35.7142 60.8698 0.3190
LR 60 44 0.1551 40 44.9073 0.1478

GMM 64.2857 56.1403 0.3438 35.7142 58.8172 0.3027
EM 78.5714 61.5384 0.4673 21.4285 61.5587 0.4670

BLDC 65.7142 52 0.2829 34.2857 53.0723 0.2695
LoR 64.2857 50.9803 0.2637 35.7142 52.2093 0.2489
SDC 72.8571 59.5744 0.4083 27.1428 60.2464 0.3981

SVM (L) 67.1428 56.6037 0.3529 32.8571 58.3874 0.3263
SVM (Poly) 58.5714 43.1372 0.1364 41.4285 44.1771 0.1287
SVM (RBF) 81.4285 66.6666 0.5384 18.5714 66.6886 0.5380

Discrete
Cosine

Transform
(DCT)

NLR 80 68.1818 0.5424 20 68.4653 0.5377
LR 78.5714 68.0851 0.5382 21.4285 68.853 0.5248

GMM 84.2857 75.5555 0.6505 15.7142 76.0263 0.6418
EM 74.2857 65.3846 0.4987 25.7142 67.1984 0.4661

BLDC 85.7142 78.2608 0.6918 14.2857 78.9352 0.6788
LoR 88.5714 80 0.72 11.4285 80 0.72
SDC 88.5714 81.8181 0.7423 11.4285 82.1584 0.7358

SVM (L) 82.8571 73.9130 0.6264 17.1428 74.5499 0.6146
SVM (Poly) 84.2857 75.5555 0.6505 15.7142 76.0263 0.6418
SVM (RBF) 91.4285 85.7142 0.7979 8.57142 85.8116 0.7961

Least
Squares
Linear

Regression
(LSLR)

NLR 75.7142 62.2222 0.4525 24.2857 62.6099 0.4465
LR 65.7142 53.8461 0.3083 34.2857 55.3399 0.2881

GMM 75.7142 62.2222 0.4525 24.2857 62.6099 0.4465
EM 60 48.1481 0.2078 40 49.8527 0.1900

BLDC 81.4285 72.3404 0.6032 18.5714 73.1564 0.5882
LoR 80 65 0.51 20 65 0.51
SDC 87.1428 79.0697 0.7021 12.8571 79.2629 0.6985

SVM (L) 70 60.3773 0.4162 30 62.2799 0.3849
SVM (Poly) 81.4285 72.3404 0.6032 18.5714 73.1564 0.5882
SVM (RBF) 90 84.4444 0.7825 10 84.9706 0.7720

Artificial
Algae

Algorithm
(AAA)

NLR 78.5714 68.0851 0.5382 21.4285 68.853 0.5248
LR 87.1428 79.0697 0.7021 12.8571 79.2629 0.6985

GMM 81.4285 73.4693 0.6236 18.5714 74.7409 0.5991
EM 80 68.1818 0.5424 20 68.4653 0.5377

BLDC 82.8571 75 0.6454 17.1428 76.0639 0.625
LoR 88.5714 80.9523 0.7298 11.4285 81.0443 0.7281
SDC 88.5714 81.8181 0.7423 11.4285 82.1584 0.7358

SVM (L) 82.8571 73.9130 0.6264 17.1428 74.5499 0.6146
SVM (Poly) 85.7142 78.2608 0.6918 14.2857 78.9352 0.6788
SVM (RBF) 94.2857 90.4761 0.8660 5.71428 90.5789 0.8640

Figure 15 illustrates the performance assessment of the ten classifiers concerning the
four DR methods, paired with the Dragonfly feature selection technique. It is observed
from Table 12 that the SVM (RBF) classifier, within the AAA DR technique, attains a notably
high accuracy rate of 94.28%. This classifier also demonstrates a commendable F1 score of
90.47%, coupled with a comparatively low ER of 5.72%, and a noteworthy F-measure of
90.57%. Conversely, the SVM (Polynomial) classifier, employed in the context of the Bessel
function DR technique, registers a relatively low accuracy of 58.57%. Correspondingly,
it records a higher error rate of 41.43%, accompanied by an F1 score of 43.13%, and an
F-measure of 44.17%. Among the four dimensionality reduction methods, the SVM (RBF)
classifier consistently achieves individual accuracy levels exceeding 81%. However, it is
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important to note that the classifier’s performance in the Bessel function DR method, when
paired with the Dragonfly feature selection, remains in the lower performance category.
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Figure 15. Different classifiers with Dragonfly feature selection method.

Figure 16 presents the comparative analysis of the MCC and Kappa parameters across
the various classifiers concerning the four different DR techniques. This analysis was
conducted for measuring the MCC and Kappa that serve as benchmarks, shedding light on
the performance outcomes of the classifiers across diverse inputs. In this study, the inputs
are categorized into three groups: dimensionally reduced without feature selection, with
EHO feature selection, and with Dragonfly feature selection methods. These classifiers’
performance is evaluated based on the MCC and Kappa values derived from these inputs.
The average MCC and Kappa values across the classifiers are calculated to be 0.2984
and 0.2849, respectively. A systematic approach is formulated to assess the classifiers’
performance, drawing insights from Figure 14. The MCC values are categorized into three
ranges: 0.0–0.25, 0.251–0.54, and 0.55–0.9. Notably, the classifiers exhibit poor performance
within the first range, while the MCC vs. Kappa slope demonstrates a significant upsurge
within the second range of MCC values. In contrast, the third range of MCC values
corresponds to a higher level of classifier performance, devoid of any substantial anomalies.
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Figure 17 shows a histogram of the error rate and MCC (%) parameters that were
analyzed. It can be seen that the maximum error rate is 50% and the maximum MCC is 90%.
The histogram of the error rate is skewed at the right side of the graph, which indicates that
for any of the DR methods, and irrespective of the feature selection method, the classifier’s
error rate does not go beyond 50%. The histogram of MCC depicts the classifier as being
sparser at the edges and covering more points in the middle area.
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8.1. Computational Complexity (CC)

The analysis of the classifiers in this study considers their CC, which is determined
based on the size of the input (denoted as O(n)). A lower CC, indicated by O(1), is desirable
as it indicates that the complexity remains constant regardless of the input size. However, it
is directly proportional to the number of inputs and computational complexity. It is notable
that CC is independent of the size of the input, which is a favorable characteristic for any
type of algorithm. If it increases logarithmically with the increase in ‘n’, it is represented as
O(logn). Additionally, hybrid models of classifiers are used that incorporate DR techniques
and feature selection methods in their classification process.

Table 13 presents the CC of the classifiers without incorporating feature selection
methods. A noteworthy observation from the table is that the CC of all of the classi-
fiers is relatively similar. However, their performance in terms of accuracy is relatively
low. Among the classifiers, the Bessel function classifier demonstrates a moderate CC of
O(n3logn), while the Discrete Cosine Transform, Least Squares Linear Regression, and
Artificial Algae Algorithm exhibit higher CC with improved accuracy, represented by
O(2n4log2n), O(2n5log4n), and O(2n5log8n), respectively, when compared to the other
classifiers. Additionally, when considering the values of MCC and Kappa, the DST, LSLR,
and AAA classifiers exhibit similar performance.
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Table 13. CC of the classifiers without feature selection methods.

Classifiers

DR Method

Bessel Function
Discrete Cosine

Transform
(DST)

Least Squares
Linear

Regression
(LSLR)

Artificial Algae
Algorithm

(AAA)

NLR O(n2logn) O(n2logn) O(n3log2n) O(n3log4n)
LR O(n2logn) O(n2logn) O(n3log2n) O(n3log4n)

GMM O(n2log2n) O(n2log2n) O(n3log2n) O(n3log4n)
EM O(n3logn) O(n3logn) O(n3log2n) O(n3log4n)

BLDC O(n3logn) O(n3logn) O(2n3log2n) O(2n3log4n)
LoR O(2n2logn) O(2n2logn) O(2n4log2n) O(2n4log4n)
SDC O(n3logn) O(n3logn) O(n4log2n) O(n4log4n)

SVM (L) O(2n3logn) O(2n3logn) O(2n4log2n) O(2n4log4n)
SVM (Poly) O(2n3log2n) O(2n3log2n) O(2n4log4n) O(2n4log8n)
SVM (RBF) O(2n4log2n) O(2n4log2n) O(2n5log4n) O(2n5log8n)

Table 14 illustrates the CC of the classifiers utilizing the EHO feature selection method.
The table reveals that the CC of all of the classifiers is relatively similar, while their per-
formance demonstrates significant accuracy. Similar to the case without feature selec-
tion, the Expectation Maximum classifier exhibits a higher computational complexity of
O(n5logn) along with remarkable accuracy. Regarding the DCT, LSLR, and AAA classifiers,
they achieve similar CC to the SVM (RBF) classifier with O(2n6log2n), O(2n7log4n), and
O(2n7log8n), respectively. Notably, the SVM (RBF) classifier in combination with the EHO
feature selection technique for DCT, LSLR, and AAA achieves the highest accuracy among
all classifiers, with accuracies of 90%, 88.57%, and 95.71%, respectively. Furthermore, the
corresponding Kappa values for these classifiers are 0.7655, 0.65, and 0.8965, indicating
their strong performance.

Table 14. CC of the classifiers with EHO feature selection method.

Classifiers

DR Method

Bessel Function Discrete Cosine
Transform (DCT)

Least Squares
Linear Regression

(LSLR)
Artificial Algae

Algorithm (AAA)

NLR O(n4logn) O(n4logn) O(n5log2n) O(n5log4n)
LR O(n4logn) O(n4logn) O(n5log2n) O(n5log4n)

GMM O(n4log2n) O(n4log2n) O(n5log2n) O(n5log4n)
EM O(n5logn) O(n5logn) O(n5log2n) O(n5log4n)

BLDC O(n5logn) O(n5logn) O(2n5log2n) O(2n5log4n)
LoR O(2n4logn) O(2n4logn) O(2n5log2n) O(2n5log4n)
SDC O(n5logn) O(n5logn) O(n6log2n) O(n6log4n)

SVM (L) O(2n5logn) O(2n5logn) O(2n6log2n) O(2n6log4n)
SVM (Poly) O(2n5log2n) O(2n5log2n) O(2n6log4n) O(2n6log8n)
SVM (RBF) O(2n6log2n) O(2n6log2n) O(2n7log4n) O(2n7log8n)

Table 15 provides insights into the CC of the classifiers using the Dragonfly method.
From the table, it can be seen that the CC of all of the classifiers is relatively similar, while
their performance exhibits a significant level of accuracy. Notably, all four dimension-
ality reduction techniques demonstrate the highest CC compared to their counterparts.
Specifically, the Bessel function, DCT, LSLR, and AAA classifiers achieve a computational
complexity of O(8n5log2n), O(8n5log2n), O(8n6log4n), and O(8n6log8n), respectively. Re-
garding accuracy, the Bessel function, DCT, LSLR, and AAA classifiers achieve the highest
accuracy values of 81.42%, 91.42%, 90%, and 95.71%, respectively. Moreover, the corre-
sponding Kappa values for these classifiers are 0.538, 0.796, 0.772, and 0.864, indicating
their robust performance. A comparison with previous work is provided in Table 16.
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Table 15. CC of the classifiers with Dragonfly feature selection method.

Classifiers

DR Method

Bessel Function Discrete Cosine
Transform (DST)

Least Squares
Linear Regression

(LSLR)
Artificial Algae

Algorithm (AAA)

NLR O(4n3logn) O(4n3logn) O(4n4log2n) O(4n4log4n)
LR O(4n3logn) O(4n3logn) O(4n4log2n) O(4n4log4n)

GMM O(4n3log2n) O(4n3log2n) O(4n4log2n) O(4n4log4n)
EM O(4n4logn) O(4n4logn) O(4n4log2n) O(4n4log4n)

BLDC O(4n4logn) O(4n4logn) O(8n4log2n) O(8n4log4n)
LoR O(8n3logn) O(8n3logn) O(8n5log2n) O(8n5log4n)
SDC O(4n4logn) O(4n4logn) O(4n5log2n) O(4n5log4n)

SVM (L) O(8n4logn) O(8n4logn) O(8n5log2n) O(8n5log4n)
SVM (Poly) O(8n4log2n) O(8n4log2n) O(8n5log4n) O(8n5log8n)
SVM (RBF) O(8n5log2n) O(8n5log2n) O(8n6log4n) O(8n6log8n)

Table 16. Comparison with previous work.

S.No Author (with Year) Description
of the Population

Data
Sampling

Machine
Learning Parameter Accuracy (%)

1. Maniruzzaman et al.,
(2017) [53]

PIDD (Pima Indian diabetic
dataset)

Cross-validation K2, K4, K5,
K10, and JK

LDA, QDA, NB, GPC, SVM,
ANN, AB,

LoR, DT, RF
ACC: 92

2. Pham et al., (2017) [54]
Diabetes: 12,000, aged between

18 and 100
Age (mean): 73

Training set—66%; tuning set
17%; test set—17%

RNN, CLST Memory
(C-LSTM) ACC—79

3. Hertroijs et al.,
(2018) [55]

Total: 105,814
Age (mean): greater than 18

Training set of 90% and test
set of 10%

fivefold cross-validation

Latent Growth Mixture
Modeling (LGMM) ACC: 92.3

4. ArellanoCampos et al.,
(2019) [56]

Base L: 7636 follow: 6144
diabetes: 331 age: 32–54

K = 10, cross-validation and
bootstrapping model

Cox proportional hazard
regression ACC: 75

5. Deo et al., (2019) [57] Total: 140 diabetes: 14
imbalanced age: 12–90

Training set of 70% and 30%
test set with fivefold

cross-validation,
holdout validation

BT, SVM (L) ACC: 91

6. Choi et al., (2019) [58] Total: 8454 diabetes: 404
age: 40–72 Tenfold cross-validation LoR, LDA, QDA,

KNN
ACC: 78, 77 76,

77

7. Akula et al.,
(2019) [59]

PIDD
Practice Fusion Dataset total:

10,000
age: 18–80

Training set: 800;
test set: 10,000

KNN, SVM, DT, RF, GB, NN,
NB ACC: 86

8. Xie et al., (2019) [60] Total: 138,146 diabetes: 20,467
age: 30–80

Training set is around 67%,
test set is around 33% SVM, DT, LoR, RF, NN, NB ACC: 81, 74, 81,

79, 82, 78

9. Bernardini et al.,
(2020) [61]

Total: 252 diabetes: 252
age: 54–72 Tenfold cross-validation Multiple instance learning

boosting ACC: 83

10. Zhang et al.,
(2020) [62] Total: 36,652 age: 18–79 Tenfold cross-validation

LoR, classification, and
regression tree,

GB,
ANN, RF, SVM

ACC: 75, 80, 81,
74, 86, 76

11. Jain et al., (2020) [63] Control: 500 diabetes: 268
age: 21–81

Training set is around 70%,
test set is around 30% SVM, RF, k-NN ACC: 74, 74, 76

12. Kalagotla et al.,
(2021) [64] Pima Indian dataset Hold out k-fold

cross-validation
Stacking multi-layer

perceptron, SVM, LoR ACC: 78

13. Haneef et al.,
(2021) [65]

Total 44,659 age 18–69 data are
imbalanced

Training set 80%, test set
20% LDA ACC: 67

14. Deberneh et al.,
(2021) [66]

Total: 535,169, diabetes: 4.3%
prediabetes: 36%, age: 18–108 Tenfold cross-validation RF, SVM, XGBoost ACC: 73, 73, 72

15. Zhang et al.,
(2021) [67]

Total: 37,730, diabetes: 9.4%
age: 50–70 imbalanced

Training set is around 80%
test set is around 20%

Tenfold cross-validation

Bagging boosting, GBT, RF,
GBM ACC: 82

16. This article Nordic Islet Transplantation
program Tenfold cross-validation Bessel function, DCT, LSLR

and AAA 95

LDA—Linear Discriminant Analysis; QDA—Quadratic Discriminant Analysis; NB—Naïve Bayes; GPC—Gaussian
Process Classification; SVM—Support Vector Machine; ANN—Artificial Neural Network; AB—ADA Boost; LoR—
Logistic Regression; DT—Decision Tree; RF—Random Forest; RRN—Recurrent Neural Network; CLST Memory—
Convolutional Long Short-Term Memory; BT—Bagged Tree; KNN—k-Nearest Neighbor; GB—Gradient Boost;
NN—Neural Network; k-NN—k-Nearest Neighbor; GBT—Bagging Boost GBT; ACC—accuracy.
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As observed in Table 16, it is evident that a variety of machine learning classifiers,
including SVM (RBF), NB, LoR, DT, NLR, RF, multilayer perceptron, and DNN, have
been employed for diabetic classification using clinical databases. The accuracies of these
classifiers span the range of 67% to 95%. However, the present investigation focuses on
diabetes detection using microarray gene data, where SVM (RBF) stands out with an
accuracy of 95%.

8.2. Limitations and Major Outcomes

The findings of this study may be limited to the specific population of type II diabetes
mellitus patients and may not be applicable to other populations or different types of
diabetes. The analysis in this study relies on microarray gene data, which may not be
readily available or accessible in all healthcare settings. The methods proposed in this
study, such as microarray gene arrays, may involve complex and expensive procedures
that are not feasible for routine clinical practice. The performance of the classifiers in
this study may be influenced by the presence of outliers in the data. Outliers can have a
significant impact on the accuracy and reliability of the classification results. The developed
classification approach, which utilizes various dimensionality reduction techniques and
feature selection methods, has demonstrated its potential in effectively screening and pre-
dicting diabetic markers, while also identifying associated diseases such as strokes, kidney
failure, and neuropathy. An outcome of this study is the establishment of a comprehensive
database for the mass screening and sequencing of diabetic genomes. By incorporating
microarray gene data and leveraging the proposed classification techniques, this database
enables the identification of patterns and trends in diabetes outbreaks associated with
different lifestyles.

The ability to detect diabetes in its early stages and predict associated diseases is of
utmost importance for chronic diabetic patients. This will facilitate timely interventions,
improve disease management, and, ultimately, lead to better patient outcomes. Overall,
this study contributes valuable insights to the field and lays the foundation for further
investigations into the early detection and management of type II diabetes mellitus patients.

9. Conclusions

The results showed that the classifiers exhibited lower accuracy and other performance
metrics when using the BF-DR technique, which can be attributed to the inherent limita-
tions of the Bessel function. However, the DCT and LSLR techniques produced improved
accuracy and performance metrics for specific classifiers, such as the SVM (RBF) classifier.
In particular, the AAA technique, combined with the SVM (RBF) classifier, achieved the
highest accuracy of 90% without feature selection. The SVM (RBF) classifier in combi-
nation with the EHO feature selection technique achieved the highest accuracy values
of 81.42, 90%, 88.57%, and 95.71% for BF, DCT, LSLR, and AAA, respectively. With the
use of the Dragonfly feature selection method, which also showed promising results, the
classifiers achieved high accuracy values of 81.42%, 91.42%, 90%, and 94.28% for BF, DCT,
LSLR, and AAA, respectively. In terms of computational complexity, we observed that
the classifiers exhibited similar complexities across the different dimensionality reduction
techniques. However, their performance in terms of accuracy varied significantly. Notably,
the SVM (RBF) classifier in combination with the EHO feature selection technique consis-
tently achieved the highest accuracy values across the different dimensionality reduction
techniques. In conclusion, this research article presents a novel method for detecting type
II DM using microarray gene data. Future work will be carried out in the direction of
the Convolution Neural Network (CNN), Deep Learning Network (DNN), LSTM, and
hyperparameter tuning of classifiers. Moreover, this approach will be used for continuous
monitoring in clinical practice.
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