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Abstract: Despite the increasing rate of detection of incidental pancreatic cystic lesions (PCLs), current
standard-of-care methods for their diagnosis and risk stratification remain inadequate. Intraductal
papillary mucinous neoplasms (IPMNs) are the most prevalent PCLs. The existing modalities,
including endoscopic ultrasound and cyst fluid analysis, only achieve accuracy rates of 65–75% in
identifying carcinoma or high-grade dysplasia in IPMNs. Furthermore, surgical resection of PCLs
reveals that up to half exhibit only low-grade dysplastic changes or benign neoplasms. To reduce
unnecessary and high-risk pancreatic surgeries, more precise diagnostic techniques are necessary. A
promising approach involves integrating existing data, such as clinical features, cyst morphology, and
data from cyst fluid analysis, with confocal endomicroscopy and radiomics to enhance the prediction
of advanced neoplasms in PCLs. Artificial intelligence and machine learning modalities can play a
crucial role in achieving this goal. In this review, we explore current and future techniques to leverage
these advanced technologies to improve diagnostic accuracy in the context of PCLs.

Keywords: pancreatic cancer; pancreatic cysts; IPMN; artificial intelligence; machine learning;
endoscopy; endoscopic ultrasound; EUS-nCLE; endomicroscopy

1. Introduction

The widespread use of cross-sectional imaging, such as computed tomography (CT)
and magnetic resonance imaging (MRI), has resulted in a high incidence of incidentally
detected pancreatic cystic lesions (PCLs). There is currently an “epidemic” of such lesions,
with 15–45% of asymptomatic patients having a pancreatic cyst identified in cross-sectional
abdominal imaging studies [1]. PCLs encompass a broad range of lesions, ranging from be-
nign cysts to mucinous pre-malignant lesions that carry a risk of progressing to high-grade
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dysplasia or adenocarcinoma (HGD-Ca). Surgical interventions, such as pancreaticoduo-
denectomy (Whipple’s procedure), total pancreatectomy, and distal pancreatectomy, aim to
resect malignant lesions with HGD-Ca. Conversely, patients with only low-grade dysplasia
(LGD) can be managed through serial imaging monitoring [2–4].

PCLs are classified into mucinous and non-mucinous lesions. Non-mucinous lesions
include cystic neuroendocrine tumors, solid pseudopapillary neoplasms, and serous cys-
tadenomas. Mucinous cysts include intraductal papillary mucinous neoplasms (IPMNs)
and mucinous cystic neoplasms (MCNs), both of which are pancreatic cancer precursors.
IPMNs are classified as main-duct (MD) IPMNs, which represent cystic dilation of the main
pancreatic duct, and branch-duct (BD) IPMNs, which are cysts that lie in communication
with the main duct. BD-IPMNs are the most common PCLs, with the reported risk of ma-
lignancy ranging between 6 and 46% [5–7]. The current standard of care for risk stratifying
PCLs involves the use of endoscopic ultrasound (EUS)-guided fine needle aspiration (FNA)
and analysis of cyst fluid, including measurements of carcinoembryonic antigen (CEA),
cytology, amylase, and glucose levels. However, these modalities provide only 65–75%
accuracy in identifying high-grade dysplasia or adenocarcinoma (HGD-Ca) [8].

It is estimated that two-thirds of surgically resected PCLs demonstrate only LGD or be-
nign neoplasms, indicating a significant rate of overtreatment and unnecessary surgeries [9].
Considering the high morbidity and mortality of Whipple procedures and pancreatec-
tomies, these data point to an unacceptably high false-positive rate with current diagnostic
modalities [10,11]. Conversely, several series report that up to 37% of invasive cancers
are discovered during routine follow-ups of suspected BD-IPMNs, suggesting possible
delays in diagnosis [12]. Application of the Fukuoka International Consensus Guidelines
specifically intended for IPMNs also continues to contribute to missed cancers at one end
and surgical overtreatment and unnecessary pancreatic resections at the other [4,8,13–17].

Unlike solid tumors, where tissue biopsy often guides diagnosis, there are currently no
standard-of-care, consistently reliable options for obtaining tissue from the PCL epithelium
prior to resection. Additionally, IPMNs can demonstrate a wide range of histologic features
within a single cyst that vary from low-grade dysplasia (LGD) to invasive cancer, suggesting
that intracystic micro-biopsies may not precisely sample the area with the highest degree of
malignant progression [5,6]. This creates a need for more precise diagnostic techniques that
use existing information, such as cross-sectional imaging, cyst fluid (CEA, glucose, cytology)
analysis, next-generation sequencing (NGS) of cyst fluid, and novel imaging biomarkers
(confocal endomicroscopy). EUS-guided needle-based confocal laser endomicroscopy
(EUS-nCLE) features of IPMNs are highlighted in Figure 1.

1.1. Artificial Intelligence

Artificial intelligence (AI) is a technology that aims to mimic human intelligence
to perform tasks, such as object recognition and decision making. AI encompasses sev-
eral branches, among which machine learning (ML) approaches have attracted the most
attention in recent years.

ML constructs models that could perform tasks by learning from data. For instance,
to differentiate dog images from cat images, ML requires a dataset of cat and dog images,
each of which is manually labeled with the ground-truth category so that it can train the
model (i.e., a neural network classifier) to correctly classify images.

Many kinds of ML models and algorithms have been developed. Logistic regression
linearly combines the features in a data sample [18]. Decision trees build tree-structured
decision rules to classify a data sample; random forests build multiple trees and output
their joint decisions (e.g., majority voting) to make the classification more stable [19,20].
Support vector machines (SVMs) could construct complicated decision rules by applying
the kernel tricks, which are a set of mathematical techniques used to transform the input
data into a higher-dimensional feature space. Kernel tricks enable SVMs to classify non-
linearly separable data by implicitly computing dot products between transformed feature
vectors without explicitly calculating the higher-dimensional feature space [21,22]. Most
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of these algorithms require informative features (often hand-crafted) to be extracted from
data samples.
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Recently, deep learning approaches that aim to learn neural network (NN)-based
models have shown unprecedented results in many application domains such as image
recognition [23,24]. Compared to the aforementioned methods, NN-based models can
often learn to perform feature extraction and decision (e.g., classification) in an end-to-
end fashion. In image recognition and computer vision, convolutional neural networks
(CNNs), which consist of layers of convolution filters, are widely applied to capture image
patterns [25]. Several representative CNN models include AlexNet, VGGNet, and ResNet
for image classification [26–28]; Faster R-CNN and YOLO for object detection (i.e., localize
objects in an image with bounding boxes and classify them) [29,30]; U-Nets and DeepLab
for semantic segmentation (i.e., classify each image pixel into a semantic category) [31,32];
and Mask R-CNN for instance segmentation, which localizes and segments objects using
object masks [33].

1.2. Challenges in AI Application to Pancreas Imaging

There are multiple considerations when designing an AI algorithm to risk stratify
PCLs, which include steps from identifying the pancreas in a CT or MRI image, to selecting
imaging features that can predict the malignant progression of a cyst. The interpretation
of pancreatic lesions presents a unique challenge for AI. First, the pancreas occupies a
relatively small area (approximately 1.3%) in cross-sectional images [34]. It is also both
irregularly shaped and highly variable in its location relative to other organs [35]. Pancreatic
lesions can also often have similar radiographic features to the surrounding tissue.

Previous models have required significant pre-processing of images prior to AI inter-
pretation. Wei et al. developed an SVM system to diagnose serous cystadenomas. This
system utilized CT radiomics features combined with regions of interest that were marked
by a radiologist [36]. Similarly, Chakraborty et al. employed manually segmented pancreas
images, with manual outlining of the pancreas head, body, and tail, to train AI models for
predicting high-risk IPMNs [37]. While such models may achieve high accuracies, the need
for human pre-processing of images ultimately detracts from the goal of leveraging AI to
reduce specialist workload (Table 1).
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Table 1. Limitations of existing AI models to diagnose pancreatic cystic lesions.

Study Sample Size Task AUC Shortcoming

Chakraborty
et al., 2018 [37] 103 Predict high-risk IPMNs 0.77 Required manual outlining

of pancreas images

Wei et al.,
2019 [36] 260 Diagnose serous

cystadenomas 0.767 Required image annotations
by radiologist

Si et al., 2021 [34] 347
Diagnose pancreatic

tumors using unedited
CT images

0.871 Clinical and laboratory
variables not included

Chu et al.,
2022 [38] 214 Classify mucinous vs.

non-mucinous cysts 0.940 Manual segmenting of
CT images

Liang et al.,
2022 [39] 193 Differentiate between

cystic lesion types 0.973 Radiological features were
extracted by radiologists

Schultz et al.,
2023 [40] 43 Predict high-grade

IPMN dysplasia
Accuracy

99.6%

Manual selection of
high-yield single EUS

images
IPMN: intraductal pancreatic mucinous neoplasm; CT: computed tomography; EUS: endoscopic ultrasound.

There has been a recent shift toward more end-to-end, independent, or self-supervised
predictive algorithms for the interpretation of CT images. Javed et al. presented the
first framework for automated 3D pancreas segmentation in CT images, enabling the
identification and delineation of the pancreas without manual intervention [41]. In a similar
vein, Lim et al. validated a CNN model for automating pancreas segmentation, achieving a
mean precision of 0.87 in an internal cohort and 0.78 for external validation [42]. Si et al.
developed a deep learning model for diagnosing pancreatic tumors, including IPMNs and
pancreatic ductal adenocarcinoma (PDAC), based on unedited, non-annotated abdominal
CT images [34]. They used images from 347 patients and reported an AUC of 0.871 and
accuracy of 82.7% for all tumor types. Remarkably, the model achieved 100% accuracy
for IPMN diagnosis, with surgical histopathology as the reference standard. A manual
review of the images required approximately 8 minutes per patient, whereas the model
only needed an average of 18.6 seconds, demonstrating that a fully end-to-end predictive
algorithm can significantly reduce specialist workload and healthcare utilization.

2. Materials and Methods

In this review, we highlight existing applications for the AI-powered diagnosis of
PCLs and describe an ongoing study performed by our group to improve their accuracy
and generalizability.

A literature search was performed in February 2023 via PubMed and Embase for
publications within the last 20 years (2003–2023). Articles were included if they constituted
primary literature describing original AI algorithms for diagnosing or predicting malignant
potential of pancreatic cystic lesions. The search was conducted by three authors (J.J., T.C.,
S.J.K.). Search terms included synonyms of “IPMNs”, “PCLs”, “artificial intelligence”, and
“machine learning”. Review articles and clinical case reports were excluded.

The primary objective of this review is to outline an ongoing multicenter, prospective
initiative that details the study methodology for enhancing and prospectively evaluating a
CNN-AI algorithm based on nCLE to improve presurgical risk stratification for BD-IPMNs.
Furthermore, we suggest and assess an integrated diagnostic approach, which incorporates
nCLE, cyst fluid analysis, and standard-of-care variables, with the aim of enhancing the
accuracy of IPMN risk stratification.

3. Results
3.1. Utility and Accuracy of EUS-nCLE

EUS-nCLE provides real-time microscopic analysis of PCL epithelium without the
need for high-risk endoscopic biopsy or surgical excision [43,44]. The PCL is visualized
using EUS, and intravenous fluorescein is injected 2–3 minutes prior to imaging. A 19-
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gauge FNA needle preloaded with an nCLE miniprobe is advanced into the cyst until it
opposes the cyst epithelium. The miniprobe is moved throughout the cyst cavity to assess
different areas of its internal lining for approximately 6 minutes. After the video sequence is
acquired, the miniprobe is removed, and the cyst fluid is aspirated for further analysis [45].

In our previous studies, we demonstrated that quantitative analysis of PCL epithelium
using EUS-nCLE outperformed the current standard of care in diagnosing HGD-Ca and
LGD in IPMNs [46–48]. These findings highlight the potential of EUS-nCLE to enhance
diagnostic capabilities in this context.

We discovered several features that can be visualized on EUS-nCLE, which correspond
to a higher histologic grade. For example, papillary epithelial width, as measured on nCLE
images, suggests cellular atypia, while increased epithelial darkness on images is associated
with nuclear stratification. These characteristics demonstrated high sensitivity in predicting
HGD-Ca in an analysis of 26 BD-IPMNs. Papillary epithelial “width” and “darkness”
exhibited sensitivities of 90% and 91%, respectively [48]. Surgical histopathology served as
the reference standard in this analysis. Additionally, there was substantial interobserver
agreement (IOA) among external nCLE experts in detecting HGD-Ca, with a κ value of 0.61
for epithelial width and 0.55 for darkness [48].

3.2. CNN-AI Algorithm for nCLE Analysis

By employing accurate AI-driven image analysis and recognition, the need for time-
consuming manual quantification of papillary epithelial parameters by endomicroscopy
specialists can be bypassed. In a recent post hoc analysis of video frames from the INDEX
study, which included patients with histopathologically proven IPMNs, two CNN-based
algorithms were developed to detect HGD-Ca in the lesions [45]. The first algorithm
utilizes an instance-segmentation-based model, specifically Mask R-CNN, to detect and
segment papillary structures. It then measures papillary epithelial thickness and darkness
and employs these features for diagnosing HGD-Ca. This model achieved an accuracy of
82.9%. The second algorithm applies a CNN model, namely VGGNet, to directly extract
features from the holistic nCLE video frames for risk stratification. This approach yielded
an accuracy of 85.7%. In comparison, the accuracy of current society guidelines (AGA
and Fukuoka) reached only 68.6% and 74.3%, respectively. These findings highlight the
potential of AI-based approaches in improving diagnostic accuracy and outperforming
existing guidelines in the assessment of IPMNs.

3.3. Improving and Prospectively Evaluating the Single-Center Algorithm

In addition to high accuracy, our single-center algorithm must also demonstrate the
ability to incorporate new patient data. Many patients with PCLs require EUS with or
without nCLE, with big data being stored as large video files. The mean duration of the
unedited EUS-nCLE videos in our previous studies was approximately seven minutes, and
the videos were manually shortened to under three minutes of high-yield portions [45,48].
Both algorithms in our pilot study used pre-edited videos where frames with artifact,
blurring, or redundancy were removed by an nCLE expert. An algorithm that can be
directly applied to unedited videos, without the need for manual editing, will greatly
increase model efficiency, applicability, and generalizability.

Our future plans involve the development of a video summarization AI algorithm
that will convert unedited nCLE videos into shorter, high-yield video clips, which will,
in turn, improve the performance of our CNN-based algorithm [49–51]. This approach
aims to streamline the diagnostic process for HGD-Ca detection in three steps. First, a
CNN-based classifier will be used to classify edited video frames into “high-risk” and
“low-risk” images based on the presence or absence of papillary structures (as an indicator
of potential dysplasia) [52]. Second, an instance-segmentation-based algorithm will be
employed to segment papillae and measure papillary epithelial thickness and darkness,
enabling the grading of dysplasia. Concurrently, a holistic-based algorithm will utilize a
CNN-based model to extract features from nCLE images, focusing on identifying HGD-
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Ca. The outputs of these two algorithms will be appropriately fused to leverage their
complementary abilities and reduce uncertainty in the diagnostic process. Finally, image-
level predictions from the entire edited video will be aggregated using a majority voting
approach to diagnose HGD-Ca in each subject. By implementing these steps and integrating
the video summarization algorithm, we aim to enhance the accuracy and efficiency of our
diagnostic approach for HGD-Ca detection in PCLs.

3.4. Creating an Integrative Predictive Algorithm

While EUS-nCLE provides valuable information for PCL diagnosis, it represents only
one source of patient data. Multiple clinical, demographic, genomic, and radiographic data
points have been identified as significant predictors of HGD-Ca; incorporating all of these
data into an integrative predictive algorithm will likely significantly improve accuracy. It is
important to acknowledge that existing predictive models and expert consensus-led guide-
lines may oversimplify the impact of each variable considered. In routine medical practice,
clinicians take into account patient demographics, apply guidelines such as Fukuoka-ICG,
and often engage in multidisciplinary team discussions to assess the risk of malignancy
associated with PCLs [13]. By leveraging an ML-powered integrative framework, we can
potentially optimize diagnostic accuracy by incorporating and analyzing the available data
in a more comprehensive manner. This approach aims to combine the expertise of clinicians
with the analytical power of ML algorithms to improve the accuracy of diagnosing PCLs
and risk stratifying them accordingly.

Molecular analysis using NGS so far has been shown to more reliably predict HGD-Ca
in IPMNs as compared to the standard of care. In a 2015 composite analysis, the combination
of genetic mutations in SMAD4, RNF43, TP53, and aneuploidy predicted HGD-Ca in IPMNs
with a sensitivity of 75% and a specificity of 92% [52]. Another study showed that the
presence of KRAS/GNAS along with additional mutations in TP53, PIK3CA, and PTEN
produced 88% sensitivity and 97% specificity for BD-IPMNs with HGD-Ca [53].

Standard-of-care variables include clinical characteristics (age, gender, onset of di-
abetes, family history symptoms, pancreatitis history), serum CA 19-9, cyst fluid anal-
ysis (glucose, CEA, cytology) as well as cyst and pancreas morphology, as detected via
CT/MRI/EUS (factors, such as size, wall, thickness, mural nodules, growth rate, and pan-
creatic duct diameter). We intend to integrate four sources: cyst fluid NGS, standard-of-care
variables in expert consensus guidelines (Fukuoka-ICG 2017 version), manual/human
EUS-nCLE results, and CNN-AI results [13].

The first component of our vision involves creating a logistic regression model that
integrates the four elements mentioned to predict HGD-Ca or LGD in BD-IPMNs. The
contribution of each variable will be assessed, and our sample size is expected to include at
least 300 BD-IPMNs, with approximately 50% being HGD-Ca cases.

The second component aims to develop an ML-based approach for integrating the four
data sources. Decision trees are chosen as the ML algorithm of choice due to their ability to
handle both continuous and categorical variables seamlessly. Additionally, decision trees
provide human-understandable explanations of the decision-making process, enabling
experts to verify and interpret the learned decision trees. This feature facilitates the inte-
gration of the model into future management guidelines. Suitable options for doing this
include using random forests and XGBoost, both of which are well-known ensemble meth-
ods over decisions trees that offer easy ways to control the model complexity to overcome
over/under-fitting by controlling the number of input variables, tree depths/widths, and
number of trees [54–56]. These enhanced models have the potential to diagnose HGD-Ca
in BD-IPMNs with optimized diagnostic accuracy. Furthermore, by identifying the most
significant contributors from the data sources, these models can potentially inform new
clinical practice guidelines and improve the risk stratification of BD-IPMNs.
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3.5. Prior Integrative Algorithms

Integration of multiple data sources into AI algorithms to solve clinical problems
related to PCLs and pancreatic malignancy have shown promising results, as illustrated
in Table 2 [52,57–59]. In 2015, Springer et al. developed an algorithm that analyzed multi-
parametric features (known as Multivariate Organization of Combinatorial Alterations or
MOCA) to identify PCLs requiring resection [52]. The researchers combined composite
clinical markers (such as age, presence of abdominal symptoms, and specific imaging
results) and composite molecular markers (including aneuploidy and various gene muta-
tions) in their MOCA algorithm. When evaluating the markers individually, the composite
clinical marker and the composite molecular marker showed sensitivities of 75% and 77%,
respectively, in identifying cysts that required resection. However, when used together,
their sensitivity increased to 89%. Furthermore, the combination of molecular and clinical
markers in the study resulted in a sensitivity of 94% for detecting IPMNs, an increase from
the 76% sensitivity observed with the composite molecular marker alone. Subsequently,
the same group developed CompCyst in 2019, which is a test built on the MOCA algorithm.
This test categorizes patients with PCLs into three management groups (surgery, surveil-
lance, or discharge) based on the evaluation of various clinical and molecular markers [58].
Overall, these advancements in combining molecular and clinical markers, as demonstrated
by the MOCA algorithm and CompCyst, offer improved stratification and management of
patients with PCLs. The test integrated three data elements: presence of VHL mutation
but absence of GNAS mutation, decreased expression of a VEGF-A protein, and a combi-
nation of factors (solid component of cyst seen on imaging, aneuploidy, and presence of
mutations in certain genes). Clinical, imaging, and molecular data were integrated in their
test, and they produced higher accuracy compared to conventional clinical and imaging
criteria. The authors estimated that widespread use of CompCyst may reduce the number
of unnecessary surgical resections by 60%.

Table 2. Integrative algorithms for PCL risk stratification and PDAC diagnosis.

Study Variables Outcome Performance
(Individual)

Performance
(Integrated)

Springer et al.,
2015 [52]

Clinical + fluid
molecular
markers

PCL diagnosis Sensitivity 76%
(molecular) Sensitivity 94%

Permuth et al.,
2016 [60]

CT + fluid
microRNA

genomic data

Identify
malignant

IPMNs
AUC 0.77 (CT) AUC 0.92

Springer et al.,
2019 [58]

Fluid molecular
data, imaging

features, clinical
data

Need for
surgical

resection of PCL

Accuracy 56%
(standard of

care)
Accuracy 69%

Kurita et al.,
2019 [61]

Tumor markers,
cyst location,

cytology

Benign vs.
malignant PCLs

Accuracy 71.8%
(CEA), 85.9%

(cytology)
Accuracy 92.9%

Blyuss et al.,
2020 [62]

Urine
biomarkers and

CA19-9

Early stage
PDAC detection

Sensitivity 81%
(biomarkers) Sensitivity 96%

Liang et al.,
2022 [39]

Clinical + CT
features

IPMN vs. MCN
differentiation AUC 0.90 (CT) AUC 0.97

Hernandez-
Barco et al.,

2023 [63]

Demographic,
clinical, imaging

features

Low vs.
high-grade
dysplasia in

IPMN

- Accuracy 77.4%

IPMN: intraductal pancreatic mucinous neoplasm; CT: computed tomography; AUC: area under the curve; MCN:
mucinous cystic neoplasm.
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Other recent studies have also leveraged ML to perform integrative analyses to man-
age other malignancies. One study used a deep-learning-based stacked ensemble model to
predict the prognosis of breast cancer from available multi-modal cancer datasets, including
genetic data (gene expression, copy number variation) and clinical data (age, subjective
timing of menstruation and menopause, timing of pregnancy and others) [64]. Integrative
approaches have also been applied to determine prognosis of clear cell renal cell carcinoma
and lung adenocarcinoma [65,66]. Additionally, it is well established in the literature that
deep learning methods utilizing multiple modalities of input data sources (multimodal)
outperform methods with a single source of input data (unimodal) [67–69]. Given the
promising evidence regarding the success of previous integrative AI algorithms in address-
ing both clinical and non-clinical challenges, we anticipate that our next step, involving an
integrative approach with an ML-powered model, will contribute to optimizing diagnostic
accuracy and further enhancing the ability to predict HGD-Ca in branch-duct IPMNs.

4. Discussion

In this review, we present some existing applications of AI in diagnosing and pre-
dicting malignant potential of PCLs. We propose a comprehensive plan for designing an
accurate, integrative, and scalable predictive algorithm for predicting the progression of
branch-duct IPMNs using a combination of EUS-nCLE findings, clinical data, fluid analysis,
and radiographic imaging. To reduce the workload of the time-consuming pre-processing
of videos by specialists, we will develop a video summarization algorithm capable of
automating the editing of nCLE videos. This algorithm will use AI to identify high-yield
video clips that contain relevant information for analysis. Next, we will employ two models
to risk stratify the IPMNs based on the selected video clips. These models will utilize
advanced ML techniques to assess and predict the likelihood of neoplasia progression.
Subsequently, we will develop an integrative algorithm that incorporates standard-of-care
variables, nCLE videos, and NGS in cyst fluid to further enhance the accuracy of risk strati-
fication. By combining multiple data sources and leveraging the power of AI, we aim to
improve the predictive capabilities of our algorithm. By implementing these steps, our goal
is to develop an advanced AI-powered algorithm that can accurately predict the malignant
progression of IPMNs, providing clinicians with valuable insights for personalized patient
management and decision making.

There are several foreseeable limitations to this model. Firstly, EUS-nCLE is typically
only available at large academic institutions and referral centers. Patients who undergo
these procedures usually reside in metropolitan regions or possess the resources to seek
treatment at such institutions. This is in contrast to non-invasive imaging modalities,
like CT and MRI or even routine cyst fluid analysis, which are more widely accessible.
Consequently, the preference for using data from patients who have undergone EUS-nCLE
may introduce a selection bias into the final algorithm.

Another source of selection bias arises from the necessity for surgical histopathology
to establish a formal diagnosis. As a result, the data used for training the models must
come from patients who have already been identified as high risk and have undergone
surgical resection.

Additionally, the costs and resources required for implementing the AI algorithm,
including software development, maintenance, and staff training, could pose barriers
to widespread adoption, especially in lower-resource regions. As is the case with all
applications of AI in medicine, our algorithm should be viewed as an adjunct to assist
in decision making rather than as a replacement for clinical expertise. Lastly, our plan to
enhance generalizability by utilizing data from multiple hospitals across the U.S. presents
unique challenges related to patient privacy.

Multi-Center Collaboration

To ensure the generalizability of our algorithm to a larger patient population, it is
crucial to validate it in a multi-center cohort. Our aim is to include patients from at least
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ten tertiary care centers, and the development and validation of the multi-center algorithm
will be carried out concurrently with the design of our improved CNN and integrative
models. Combining data from multiple centers presents several challenges, including
increased variability, domain discrepancies, and differences in devices and favored imaging
modalities. Furthermore, the importance of data privacy, protection, and ownership has
become increasingly recognized in recent years.

Even when transmitting anonymous data between centers, it is widely acknowledged
that simply removing a patient’s name or medical record number is insufficient to protect
their privacy. Ideally, collaboration and algorithm updates should be achieved without
the need to share patient data across centers. This would require implementing privacy-
preserving techniques and secure protocols that allow for the exchange of knowledge
and model updates while maintaining data confidentiality. Addressing these challenges
will be essential in order to ensure effective collaboration and advancements in algorithm
development without compromising patient privacy.

To address these challenges, we intend to utilize federated learning (FL) and domain
adaptation (DA) techniques. Traditionally, data used in ML algorithms are collected from
various sources and processed in a centralized manner at a single site. ML models are
then trained using these centralized data. In contrast, FL aims to train AI models while
keeping the data decentralized at multiple data collection sites [70,71]. In the mainstream
FL framework, a centralized server coordinates the model training process. Initially, the
server broadcasts the ML model to each data collection site, known as a client. These client
devices, which are secure servers located in their respective hospitals, then train the models
using their local data. Subsequently, the updated model parameters are sent back to the
server from each client. The server aggregates these client model parameters into a single
ML model. This approach enables collaborative model development and adaptation among
multiple hospitals without the need to share any patient data [71–77]. FL has demonstrated
reliable results when applied to clinical information, PET images, and multimodal data.
Building upon our prior work, we will develop an FL framework that leverages unlabeled
data at our center to enhance the aggregation of clients’ models. This approach will further
improve the performance and adaptability of the AI model while maintaining data privacy
and security [78–80].

In addition to FL, we will also employ DA techniques to address the data domain
discrepancy across different centers. It is widely recognized in the ML community that such
domain discrepancy can negatively impact the accuracy of ML models. Traditional DA
methods typically involve sharing data across different sources or centers to quantify the
differences in data distributions and then applying transformations to reduce the domain
discrepancy [81–83]. To better protect patient privacy, recent advancements have introduced
source-free DA algorithms, where the learned model only has access to unlabeled target
data during the adaptation process, bypassing the need for data sharing [84,85]. This
approach allows for the development of models that can adapt to different domains without
compromising patient data security. Integrating these source-free DA techniques into our
FL framework will enable us to adapt the ML model to different hospitals without the
requirement of sharing patient data (particularly all 18 HIPAA identifiers for protected
health information), ultimately improving the overall accuracy of the model. By combining
FL and DA techniques, we aim to address both the challenges of data decentralization and
domain discrepancy, ensuring the development of accurate and robust ML models while
safeguarding patient data privacy (Figure 2).
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5. Conclusions

AI is increasingly being adopted in the field of medicine to derive actionable insights
from extensive patient data and alleviate the workload of specialists. Shortcomings in cur-
rent models utilizing nCLE for risk stratification of PCLs include the necessity for manual
image pre-processing and the exclusion of pertinent data with significant predictive value.
Our research group has previously developed nCLE-based CNN models for risk stratifica-
tion of BD-IPMNs, which exhibited diagnostic accuracy surpassing that of standard-of-care
guidelines, albeit using expert-edited endomicroscopy videos. We now present our strategy
for enhancing the model’s accuracy and generalizability, which encompasses a video sum-
marization algorithm, an integrated ML algorithm that harnesses a vast amount of data,
and the validation of our predictive model within a multi-center cohort. While ML and
AI require extensive imaging and datasets, the aspiration of this methodology review is to
encourage researchers worldwide to collaborate in enhancing the management of patients
with pancreatic cystic lesions.
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