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Abstract: Food image classification, an interesting subdomain of Computer Vision (CV) technology,
focuses on the automatic classification of food items represented through images. This technology has
gained immense attention in recent years thanks to its widespread applications spanning dietary mon-
itoring and nutrition studies to restaurant recommendation systems. By leveraging the developments
in Deep-Learning (DL) techniques, especially the Convolutional Neural Network (CNN), food image
classification has been developed as an effective process for interacting with and understanding the
nuances of the culinary world. The deep CNN-based automated food image classification method is
a technology that utilizes DL approaches, particularly CNNs, for the automatic categorization and
classification of the images of distinct kinds of foods. The current research article develops a Bio-
Inspired Spotted Hyena Optimizer with a Deep Convolutional Neural Network-based Automated
Food Image Classification (SHODCNN-FIC) approach. The main objective of the SHODCNN-FIC
method is to recognize and classify food images into distinct types. The presented SHODCNN-FIC
technique exploits the DL model with a hyperparameter tuning approach for the classification of
food images. To accomplish this objective, the SHODCNN-FIC method exploits the DCNN-based
Xception model to derive the feature vectors. Furthermore, the SHODCNN-FIC technique uses the
SHO algorithm for optimal hyperparameter selection of the Xception model. The SHODCNN-FIC
technique uses the Extreme Learning Machine (ELM) model for the detection and classification of
food images. A detailed set of experiments was conducted to demonstrate the better food image
classification performance of the proposed SHODCNN-FIC technique. The wide range of simulation
outcomes confirmed the superior performance of the SHODCNN-FIC method over other DL models.

Keywords: computer vision; deep convolutional neural network; machine learning; food image
classification; spotted hyena optimizer

1. Introduction

Food image detection and identification are the existing research subjects in the domain
of Computer Vision (CV). “Food” is one of the developing areas of interest for the CV
community as well as multimedia [1], whereas image detection and identification remain
a highly significant problem in the medical field as well. In the literature, a new food
recording tool called “FoodLog” has been developed that supports users to record their
daily meals with the aid of an image recovery technique [2]. However, it is extremely
challenging to perform food image analyses. For instance, the identification of food
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products in images is still a challenging process due to low inter-class variance and high
intra-class variance [3]. Furthermore, many food classes have not yet been effectively
classified. Therefore, automated food detection is a developing area of research not only in
the image recognition domain but also in social media research [4]. A significant number of
researchers paid attention to this domain due to its improving advantages from a medical
viewpoint [5]. Automated food identification tools can support and facilitate decision-
making methods in terms of calorie calculation, food quality detection, diet monitoring
systems to overcome obesity, etc. [6]. In general, food is naturally distorted and has a broad
difference in appearance [7]. Food images may have high intra-class and low inter-class
variances, owing to which standard techniques may not be able to detect complex features
in the images. This drawback in the food identification process makes it a challenging task
since complex features cannot be detected using conventional methods [8].

Recently, several developments have occurred in the domain of dietary valuation
depending on multimedia approaches, e.g., food image analysis [9]. In the literature, an
automated image-based nutritional assessment technique was proposed in which the tech-
nique had the following key stages: food image identification, recognition of food products,
weight or quantity valuation, and lastly, nutritional and caloric value assessment [10]. In
recent years, developments in Machine Learning (ML), image processing, and specifically
Convolutional Neural Networks (CNN), and Deep-Learning (DL) techniques have heavily
benefited the image classification and detection processes, comprising the issue of food
image identification [11]. Researchers have developed diverse phases of food detection
systems, despite which it remains challenging to find a satisfactory and efficient solution
for food identification and classification with high accuracy. This is because there exist
extensive types of food products and extremely complicated hybrid food products in food
images [12]. Therefore, it is tremendously challenging to detect all food items accurately
since a variety of food items can appear similar in terms of shape, color, or context, and are
not even differentiable to the human eye [13].

Given this background, the current research article develops the Bio-Inspired Spotted
Hyena Optimizer with a Deep Convolutional Neural Network-based Automated Food
Image Classification (SHODCNN-FIC) approach. The presented SHODCNN-FIC method
exploits the DL model with hyperparameter tuning approaches for the classification of food
images. To achieve this, the SHODCNN-FIC method exploits the DCNN-based Xception
model to derive the feature vectors. In addition to this, the SHODCNN-FIC technique
uses the SHO algorithm for the optimal hyperparameter selection of the Xception model.
The SHODCNN-FIC technique uses the Extreme Learning Machine (ELM) model for the
detection and classification of food images. A detailed set of experiments was conducted to
illustrate the better food image classification performance of the SHODCNN-FIC technique.
The key contributions of the current study are summarized below.

(a) The development of an automated SHODCNN-FIC algorithm, including Xception fea-
ture extraction, SHO-based parameter tuning, and ELM-based classification for food
classification. To the best of the authors’ knowledge, the SHODCNN-FIC approach
has never been reported in the literature.

(b) The development of a new technique, i.e., SHODCNN-FIC, by combining bio-inspired
optimization and DL for automatic food image classification. The proposed tech-
nique is highly useful in many real-time applications involving dietary analysis and
restaurant menu management.

(c) The SHODCNN-FIC leverages the power of deep learning using the DCNN-based
Xception model for extracting the feature vectors from food images. Furthermore, the
optimum fine-tuning of the hyperparameters for the Xception model, using the SHO
technique, improves the performance of the DL model by fine-tuning its parameters.

(d) The application of the ELM model for the actual detection and classification of food
images. ELM is known for its high accuracy and fast training features in different
machine-learning tasks.
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The rest of the paper is organized as follows. Section 2 discusses the related works,
and Section 3 details the proposed model. Then, Section 4 provides the analytical results,
and Section 5 concludes the paper.

2. Related Works

Shah and Bhavsar [14] introduced the depth-restricted-CNN (DRCNN) method in
which the Transfer Learning (TL) technique was applied to a few frameworks, such as the
Alexnet, Resnet-50, Inceptionv3, VGG16, and the VGG19 framework. This method was
presented as a Batch Normalization (BN) approach that heavily enhances performance with
a lower number of parameters. Chopra and Purwar [15] introduced a food image detection
system composed of CNN, GA, and PSO to improve outcomes. CNN, as an approach, was
utilized in this study for the classification of food images. The reason for supplementing
the CNN technique with GA and PSO is to ensure an efficient classification outcome. In the
literature [16], an enhanced VGG16 framework was proposed through a food classification
technique. This approach employed the Asymmetric Convolution Block (ACB) to change
the convolution kernels and enhance the effectiveness of the standard technique. This
technique also involved BN and pooling layers to enrich the normalization. The attention
mechanism should be integrated with the CNN technique due to its complications, such as
higher texture similarity, complex context, and contextual intervention.

Chopra and Purwar [17] developed the Squirrel Search Algorithm (SSA) to provide
optimum solutions for multiple thresholds. This technique implemented the CNN method
to identify food images. Then, the study suggested that the Enhanced SSA (ESSA) increases
food detection accuracy. Yadav and Chand [18] recommended automatic food classification
techniques with the help of the DL algorithm. In this study, both VGG-16 and SqueezeNet
CNNs were exploited for the classification of food images. These networks demonstrated
significantly high effectiveness due to two tasks, namely fine-tuning the hyperparameters
and data augmentation. The developed VGG16 framework then enhanced the performance
of the automated food image classification process. In the study conducted earlier [19],
the CNN approach was introduced and employed to recognize and classify food images.
A pre-trained Inceptionv3 CNN algorithm was implemented using TL to stimulate the
original customized CNN model. By utilizing the pre-trained method, the learning ap-
proach increased, and therefore, more proficient results were achieved. Therefore, data
augmentation must be executed on the training set, since it enhances the performance.

Pan et al. [20] recommended a novel classification technique based on the DL approach
for the automatic identification of food items. A combinational CNN (CBNet) was created
with a subnet integrating method in this study. Primarily, two different NNs were em-
ployed to learn important features. Secondarily, a highly developed feature fusion element
combined the features from sub-networks. Shermila et al. [21] introduced a new DL-based
Food Item Classification (DEEPFIC) method in which the image was processed using the
sigmoid stretching algorithm to improve the quality of the images and eliminate the noise.
Afterward, the preprocessed image was segmented by employing the Improved Watershed
Segmentation (IWS2) technique. In this study, the RNN approach was utilized for the
extraction of the features, which were then normalized through the dragonfly algorithm.
The Bi-LSTM was employed in this study for the classification of food items.

Though existing automatic food image classification algorithms are valuable, these
methods have critical shortcomings that need to be resolved. One important limitation
is that these methods often have a narrow scope in identifying food items from certain
cultural contexts or cuisines, therefore resulting in poor generalization whenever it encoun-
ters unconventional or diverse dishes. Furthermore, these models struggle when handling
variations in food presentation techniques, including changes in angles, lighting, or plating
styles, which are common in real-time scenarios. Therefore, a research need exists to de-
velop a highly effective and efficient hyperparameter optimization method, particularly
a customized one for food image classification tasks. This is because the hyperparameter
tuning process is a crucial aspect in enhancing model performance. This involves the
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exploration of novel techniques or the adaptation of existing ones to overcome the unique
challenges posed by food image datasets. The hyperparameter tuning process ultimately
affects the generalization ability and performance of the models. In this scenario, the DL
model is extremely complicated and has various hyperparameters, namely batch sizes,
learning rates, regularization strengths, and layer depths, among others. This hyperparam-
eter considerably affects the performance of the model in terms of learning from data and
its capability to fit patterns while preventing over-fitting issues. Without accurate tuning,
the DL model converges slowly, becomes trapped in a sub-optimal solution, or fails to
adapt to certain features of the dataset. By systematically adjusting the hyperparameters
through techniques such as random search, grid search, or metaheuristic optimization
algorithms, DL algorithms can be fine-tuned to accomplish high accuracy, fast convergence
rate, and best generalization. These outcomes make the model highly effective in different
applications. Addressing these research gaps can advance the field of automatic food image
classification using hyperparameter tuning and contribute to the development of highly
efficient, accurate, and interpretable models with real-time applications in fields such as
food waste reduction, dietary analysis, and restaurant menu management.

3. The Proposed Model

The current research article is focused on the design and development of an automated
food image detection and classification algorithm named the SHODCNN-FIC approach.
The main objective of the SHODCNN-FIC method is to recognize and classify food images
into distinct types. The presented SHODCNN-FIC technique exploits the DL model with
hyperparameter tuning strategies for the classification of food images. It involves different
stages of operations, namely Xception, SHO-based hyperparameter tuning, and ELM
classification. Figure 1 shows the entire procedure of the SHODCNN-FIC algorithm.
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3.1. Feature Extraction Using Xception Model

The SHODCNN-FIC technique uses the DCNN-based Xception model to derive the
feature vectors. The CNN model has proved to be an extraordinary implementer of different
image-grouping problems in various fields [22]. The concept of sharing the load in CNN
makes the image segmentation process a difficult one by finding the high-level components
in the images and diminishing the dissipating tendency problem. The development of the
CNN technique incorporates the related layer, convolution layer, and pooling layer. The
convolution layer deals with channels, whereas the chief aim is to eliminate the features
from the images. Both pooling and convolution layers yield low performances when
looking at and holding the basic data in food images. The final layer is the related layer
that uses ReLU and takes a certain level component from the food image to gather them
into different classifications with marks.

In the XceptionNet model, the conventional convolutional layers are exchanged for
depth-wise separable convolution layers. The CNN feature map enables cross-channel and
decoupling spatial correlation, whereas the mapping of both correlations is added to the
basic operations of the network. Finally, the XceptionNet replaces the main structure of
the Inception model. XceptionNet, with 36 convolution layers, is divided into 14 modules.
First, the actual image is transformed into defining the possibility contained over different
input channels to arrive at the unified images. The following scheme exploits 11 depth-wise
convolution layers.

3.2. Hyperparameter Tuning Using the SHO Algorithm

The SHO algorithm is applied for the hyperparameter tuning process. This technique
is based on the hunting strategy of the hyena predation model [23]. It comprises four
phases: searching, siege, hunting, and attacking. It continuously approaches and encircles
the prey after recognizing its location. The individual search for a target is the optimal
searching point, and the rest update their positions [24]. The distance equation between
the prey and the spotted hyenas is given in Equation (1).

Dh = |B · PP(t)− P(t)| (1)

where B shows the coefficient vector, Dh signifies the distance between the captured prey
and the searched individual, and t denotes the iteration count. PP and P show the position
of the target and the individuals searched for during t iteration.

P(t + 1) = PP(t)− E · Dh (2)

where E signifies the coefficient vector. The individual search location at the t + 1 iteration
is related to the target point and the distance between them. Equations (1) and (2) contain a
coefficient vector and the expression is as follows:{

B = 2 · rd1
E = 2h · rd2

(3)

where rd1 and rd2 are random numbers that lie in the range [0, 1]; h indicates the control
factor that drops linearly from 5 to 0 as follows:

|h| = 5−
[

Iinter

(
5

Minter

)]
(4)

where Minter denotes the maximal iteration count; Iinter shows the natural numbers except 0.
The spotted hyenas frequently engage in groups to encircle the target. Assume that a better-
searched individual is much closer to the target, whereas the rest defines the location of the
better-searched individuals as the target location, which forms a cluster and cooperatively
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moves toward the optimum point location. The computation equation for this scenario is
attained from the succeeding formula:{

Dh = |B · PP − Pk|
Pk = Ph − E · Dh

(5)

where Ph indicates the optimum location for the hyena group; Pk shows the location of the
residual hyenas. {

Ch = Pk + Pk+1 + . . . + Pk+N
N = Cnos(Ph, Ph+1, Ph+2, . . . , Ph + M)

(6)

where Ch shows a set of N optimum solutions; N refers to the number of spotted hyenas;
and Cnos indicates the number of solutions attained. The coefficient vector E changes
continuously, whereas the control factor h gradually decreases. Once the absolute value of
E becomes less than 1, then it is the attack moment. Otherwise, it continues to search for
prey. The computation equation for this scenario is as follows:

P(t + 1) =
Ch
N

(7)

Ch is the optimum search individual set, where the individuals disperse and pursue
the target. The condition is that |E| is higher than 1, after which the distance between the
target and spotted hyenas is forcefully limited. Extending the search phase might assist
in finding a better hunting position and ensure the successful implementation of global
search. Figure 2 depicts the steps involved in the SHO algorithm.

The SHO system progresses an FF to offer the highest classification solution. It
expresses a positive integer to exemplify the optimal solution of the candidate performance.
The reduction in classifier errors is assumed to be FF.

f itness(xi) = Classi f ierErrorRate(xi)=
No. o f misclassi f ied instances

Total no. o f instances
× 100 (8)

3.3. Image Classification Using the ELM Model

In this study, the ELM algorithm has been applied to the food image classification
process. ELM is an FFNN model for ML that provides various benefits compared to other
techniques, including RBFNN and BPNN [25]. It does not need adjustment of the structural
parameters, which makes it an easier and highly effective one. In ELM, the weights
connected between the hidden and input layers, along with the threshold of the HL neurons,
are randomly generated and do not require adjustment during training. Consider that there
exist N training instances (Xi, Yi), where 1 ≤ i ≤ N, Xj = [Xi1, Xi2, · · · , Xin]

T ∈ Rn

refers to the input vector of the ith sample, and Yi = [yi1, yi2, · · · , yim]
T ∈ Rm indicates the

output vector of the ith samples as follows

Σ f
l β f g

(
w f Xi + b f

)
= Ti (9)

In Equation (9), g(x) denotes the activation function; Ti = [ti1, ti2, · · · , tim]
T implies

the output vector of the ith sample. w f = [w f 1, w f 2, · · · , w f n]
T indicates the input weight;

b f shows the threshold of f−th HL neuron; and β f =
[

β f 1, β f 2, · · · , β f m

]
represents

the output weight. The objective of the ELM technique is to minimize the output error
as follows:

ΣN
i=1||Ti −Yi|| = 0 (10)

Hβ = Y (11)
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where H =

 g(W1X1 + b1) . . . g(WlX1 + bl)
...

. . .
...

g(W1XN + b1) . . . g(WlXN + bl)

 signifies the layer output matrix of

the network; β = [βT
1 , βT

2 , · · · , βT
l ]

T
l×m; and Y = [YT

1 , YT
2 , · · · , TT

N ]
T
N×m. The output weight

β is attained by resolving the least-square solution as follows:

min = ||Hβ−Y|| (12)

β̂ = H+Y (13)

Here, the generalized inverse matrix of the output matrix H is represented as H+.
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4. Results and Discussion

The proposed model was simulated using the Python 3.8.5 release. The proposed
model was executed on a PC configured with specifications as follows: i5-8600k, GeForce
1050Ti 4 GB, 16 GB RAM, 250 GB SSD, and 1 TB HDD. The food classification outcomes of
the SHODCNN-FIC algorithm were tested using the Indian food classification dataset [26].
The dataset includes a total of 1800 samples under six classes, as defined in Table 1. Figure 3
represents some of the sample images.

Table 1. Details on the database.

Class No. of Samples

Butter_Naan 300

Burger 300

Chapati 300

Dal_Makhani 300

Fried_Rice 300

Idli 300

Total Samples 1800
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Figure 4 illustrates the classification outcomes of the SHODCNN-FIC method on 60:40 of
the TR set/TS set. Figure 4a,b depict the confusion matrix generated by the SHODCNN-
FIC approach. The outcome indicates that the SHODCNN-FIC method detected and
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categorized all six class labels. Likewise, Figure 4c demonstrates the PR examination
results of the SHODCNN-FIC method. The figure infers that the SHODCNN-FIC technique
attained the maximum PR outcome under all six classes. Lastly, Figure 4d shows the
ROC examination outcomes of the SHODCNN-FIC system. The figure shows that the
SHODCNN-FIC technique achieved promising outcomes with maximum ROC values
under all six class labels.
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The food classification results of the SHODCNN-FIC technique with 60:40 of TR set/TS
set are reported in Table 2 and Figure 5. The outcomes infer the proficient performance of
the SHODCNN-FIC technique on different food classes. On the 60% TR set, the SHODCNN-
FIC technique attained the average accuy, precn, recal , Fscore, and MCC values of 85.90%,
60.55%, 57.95%, 57.54%, and 50.42%, respectively. Also, on the 40% TS set, the SHODCNN-
FIC method accomplished the average accuy, precn, recal , Fscore, and MCC values of 85.69%,
60.39%, 57.10%, 57.49%, and 49.79%, respectively.
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Table 2. Food classification outcomes of the SHODCNN-FIC algorithm at 60:40 TR set/TS set.

Class Accuy Precn Recal Fscore MCC

Training Phase (60%)

Butter_Naan 80.65 43.05 77.84 55.44 47.53

Burger 88.43 74.02 50.54 60.06 54.91

Chapati 86.20 68.03 43.01 52.70 46.73

Dal_Makhani 86.67 62.56 67.01 64.71 56.55

Fried_Rice 86.11 56.77 51.46 53.99 45.91

Idli 87.31 58.90 57.83 58.36 50.88

Average 85.90 60.55 57.95 57.54 50.42

Testing Phase (40%)

Butter_Naan 77.22 42.29 63.91 50.90 38.19

Burger 88.33 69.74 46.49 55.79 50.73

Chapati 89.44 70.13 50.47 58.70 53.77

Dal_Makhani 87.36 54.55 69.90 61.28 54.45

Fried_Rice 85.97 61.86 56.59 59.11 50.74

Idli 85.83 63.79 55.22 59.20 50.88

Average 85.69 60.39 57.10 57.49 49.79
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To evaluate the performance of the SHODCNN-FIC method on 60:40 TR set/TS set,
the TR and TS accuy curves were plotted and are shown in Figure 6. The TR and TS accuy
values illustrate the performance of the SHODCNN-FIC technique over various number of
epochs. The figure shows meaningful insights into the learning task and the generalization
abilities of the SHODCNN-FIC method. With an increase in the number of epochs, both TR
and TS accuy curves improved. The SHODCNN-FIC technique attained improved testing
accuracy, which can detect patterns in the TR and TS datasets.
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FIC technique. The outcome indicates that the SHODCNN-FIC method detected and cat-
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comes of the SHODCNN-FIC method. The figure infers that the SHODCNN-FIC tech-
nique attained the maximum PR performance under all six classes. Lastly, Figure 8d de-

Figure 6. Accuy curve of the SHODCNN-FIC algorithm at 60:40 of the TR set/TS set.

Figure 7 displays the overall TR and TS loss values of the SHODCNN-FIC method on
60:40 of the TR set/TS set over a different number of epochs. The TR loss outcomes show
that the model’s loss reduced over an increasing number of epochs. Primarily, the loss
values were reduced as the model modified the weight to minimize the prediction error on
TR and TS datasets. The loss curves illustrate the extent to which the model fits the training
data. Both TR and TS loss values steadily decreased, and this shows that the SHODCNN-
FIC technique effectually learned the patterns exhibited in the TR and TS datasets. The
SHODCNN-FIC approach adjusted the parameters to minimize the discrepancy between
the prediction and the original training label.
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Figure 8 shows the classification outcomes of the SHODCNN-FIC method at 70:30 of
the TR set/TS set. Figure 8a,b show the confusion matrix generated by the SHODCNN-
FIC technique. The outcome indicates that the SHODCNN-FIC method detected and
categorized all six class labels. Likewise, Figure 8c demonstrates the PR examination
outcomes of the SHODCNN-FIC method. The figure infers that the SHODCNN-FIC
technique attained the maximum PR performance under all six classes. Lastly, Figure 8d
depicts the ROC examination outcomes of the SHODCNN-FIC approach. The figure
portrays the promising performance of the SHODCNN-FIC approach with maximum ROC
values under all six class labels.

Biomimetics 2023, 8, x FOR PEER REVIEW 13 of 19 
 

 

picts the ROC examination outcomes of the SHODCNN-FIC approach. The figure por-
trays the promising performance of the SHODCNN-FIC approach with maximum ROC 
values under all six class labels. 

 
Figure 8. 70:30 of TR set/TS set (a,b) Confusion matrices, (c) PR_curve, and (d) ROC. 

The food classification results of the SHODCNN-FIC technique with 70:30 of the TR 
set/TS set are reported in Table 3 and Figure 9. The outcomes found the proficient perfor-
mance of the SHODCNN-FIC method on different food classes. On the 70% TR set, the 
SHODCNN-FIC technique achieved average 𝑎𝑐𝑐𝑢 , 𝑝𝑟𝑒𝑐 , 𝑟𝑒𝑐𝑎 , 𝐹 , and MCC val-
ues of 85.98%, 60.95%, 57.79%, 58.68%, and 50.76%, respectively. Also, on the 30% TS set, 
the SHODCNN-FIC technique yielded average 𝑎𝑐𝑐𝑢 , 𝑝𝑟𝑒𝑐 , 𝑟𝑒𝑐𝑎 , 𝐹 , and MCC val-
ues of 84.81%, 58.08%, 54.51%, 55.32%, and 46.88%, respectively. 

Figure 8. 70:30 of TR set/TS set (a,b) Confusion matrices, (c) PR_curve, and (d) ROC.

The food classification results of the SHODCNN-FIC technique with 70:30 of the
TR set/TS set are reported in Table 3 and Figure 9. The outcomes found the proficient
performance of the SHODCNN-FIC method on different food classes. On the 70% TR set,
the SHODCNN-FIC technique achieved average accuy, precn, recal , Fscore, and MCC values
of 85.98%, 60.95%, 57.79%, 58.68%, and 50.76%, respectively. Also, on the 30% TS set, the
SHODCNN-FIC technique yielded average accuy, precn, recal , Fscore, and MCC values of
84.81%, 58.08%, 54.51%, 55.32%, and 46.88%, respectively.
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Table 3. Food classification outcomes of the SHODCNN-FIC algorithm at 70:30 TR set/TS set.

Class Accuy Precn Recal Fscore MCC

Training Phase (70%)

Butter_Naan 89.92 71.71 68.06 69.83 63.82

Burger 90.95 80.59 62.84 70.62 66.07

Chapati 90.48 78.34 58.85 67.21 62.64

Dal_Makhani 80.48 42.14 58.42 48.96 38.04

Fried_Rice 85.00 55.56 54.25 54.89 45.90

Idli 79.05 37.34 44.33 40.54 28.09

Average 85.98 60.95 57.79 58.68 50.76

Testing Phase (30%)

Butter_Naan 88.89 65.79 59.52 62.50 56.09

Burger 91.11 76.56 59.76 67.12 62.71

Chapati 88.15 72.13 48.35 57.89 52.70

Dal_Makhani 78.52 43.92 66.33 52.85 41.09

Fried_Rice 82.22 45.65 47.73 46.67 36.02

Idli 80.00 44.44 45.36 44.90 32.68

Average 84.81 58.08 54.51 55.32 46.88
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To assess the performance of the SHODCNN-FIC method on the 70:30 TR set/TS set,
the TR and TS accuy curves were determined and are shown in Figure 10. The TR and
TS accuy curves illustrate the performance of the SHODCNN-FIC technique over several
epochs. The figure offers meaningful insights into the learning task and generalization
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capabilities of the SHODCNN-FIC model. With an increase in the number of epochs,
the TR and TS accuy curves were enhanced. It can be observed that the SHODCNN-FIC
model obtained enhanced testing accuracy, which can detect the patterns in both TR and
TS datasets.
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Figure 11 shows the overall TR and TS loss values of the SHODCNN-FIC method at
70:30 of the TR set/TS set over a varying number of epochs. The TR loss values illustrate
that the model loss reduced over an increasing number of epochs. Primarily, the loss values
were reduced as the technique modified the weight to minimize the prediction error on
TR and TS data. The loss curves show the extent to which the model fits the training data.
Both TR and TS loss values steadily reduced, which shows that the SHODCNN-FIC model
effectually learned the patterns displayed in both TR and TS data. The SHODCNN-FIC
method adjusted the parameters to minimize the discrepancy between the predicted and
the original training label.

In Table 4 and Figure 12, the overall comparative analysis outcomes between the
proposed SHODCNN-FIC system and other approaches are given. The outcomes show
that the ResNet50 model achieved the worst results, whereas the NASNetLarge, Mo-
bileNet, ResNet101, and ResNet152 models obtained slightly closer performances. Mean-
while, the InceptionResNet model gained a considerably high performance. However, the
SHODCNN-FIC technique demonstrated promising performance with the maximum accuy,
precn, recal, Fscore, and MCC values of 85.98%, 60.95%, 57.79%, 58.68%, and 50.76% respectively.

Table 4. Comparative analysis outcomes of the SHODCNN-FIC algorithm and other recent approaches.

Methods Accuy Precn Recal Fscore MCC

SHODCNN-FIC 85.98 60.95 57.79 58.68 50.76
InceptionResNet 81.91 58.97 55.75 54.54 48.34

NasNetLarge 77.91 51.97 53.67 53.87 46.94
MobileNet 75.36 58.17 51.47 56.97 44.97
ResNet101 73.7 58.97 54.15 53.51 47.38
ResNet152 71.31 45.97 47.97 41.97 45.93
ResNet50 68.27 44.95 56.97 54.97 46.53
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The Computation Time (CT) analysis outcomes of the SHODCNN-FIC technique and
other existing DL approaches are demonstrated in Table 5 and Figure 13. The outcomes
show the enhanced classification results of the SHODCNN-FIC technique with a minimal
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CT of 2.03 s. At the same time, it can be observed that the SHODCNN-FIC technique
exhibits an enhanced food image classification outcome.

Table 5. CT outcomes of the SHODCNN-FIC algorithm and other recent methods.

Model Computational Time (s)

SHODCNN-FIC 2.03

InceptionResNet 4.57

NasNetLarge 4.45

MobileNet 3.37

ResNet-101 3.65

ResNet-152 3.42

ResNet-50 5.83
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5. Conclusions

This paper designs an automated food image detection and classification algorithm
named SHODCNN-FIC. The main objective of the SHODCNN-FIC technique is to recognize
and classify distinct types of food images. The presented SHODCNN-FIC technique
exploits the DL model with hyperparameter tuning strategies for the classification of
food images. It involves different stages of operations, namely the Xception, SHO-based
hyperparameter tuning, and the ELM classification. To accomplish this, the SHODCNN-FIC
technique employs a DCNN-based Xception model to derive feature vectors. In addition,
the SHODCNN-FIC technique uses the SHO approach for the selection of the optimum
hyperparameters for the Xception model. The SHODCNN-FIC technique uses the ELM
model for both the detection and classification of food images. A detailed set of experiments
was conducted to demonstrate the enhanced food image classification performance of
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SHODCNN-FIC. The extensive simulation values portray the improved performance of
the SHODCNN-FIC method over other DL approaches. In the future, the SHODCNN-
FIC approach could be used to handle multi-modal inputs, such as the integration of
image data with textual descriptions or nutritional information. This could enable a
highly comprehensive and accurate food recognition and classification system. Future
work should focus on adapting SHODCNN-FIC to a real-time basis. Edge computing
environments are increasingly relevant, especially for applications like dietary monitoring
or mobile food recognition apps.
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