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Abstract: The immune plasma algorithm (IP algorithm or IPA) is one of the most recent meta-heuristic
techniques and models the fundamental steps of immune or convalescent plasma treatment, attracting
researchers’ attention once more with the COVID-19 pandemic. The IP algorithm determines the
number of donors and the number of receivers when two specific control parameters are initialized
and protects their values until the end of termination. However, determining which values are
appropriate for the control parameters by adjusting the number of donors and receivers and guessing
how they interact with each other are difficult tasks. In this study, we attempted to determine the
number of plasma donors and receivers with an improved mechanism that depended on dividing
the whole population into two sub-populations using a statistical measure known as the percentile
and then a novel variant of the IPA called the percentile IPA (pIPA) was introduced. To investigate
the performance of the pIPA, 22 numerical benchmark problems were solved by assigning different
values to the control parameters of the algorithm. Moreover, two complex engineering problems, one
of which required the filtering of noise from the recorded signal and the other the path planning of an
unmanned aerial vehicle, were solved by the pIPA. Experimental studies showed that the percentile-
based donor–receiver selection mechanism significantly contributed to the solving capabilities of the
pIPA and helped it outperform well-known and state-of-art meta-heuristic algorithms.

Keywords: immune plasma algorithm; adaptive selection; percentile; big data; unmanned aerial
vehicle; path planning

1. Introduction

Easily implementable, relatively simple, flexible structures, gradient-free direction
search mechanisms, and sufficient local minima-avoidance capabilities have increased
the usage of meta-heuristics for solving different types of numerical or combinatorial
optimization problems in recent years [1,2]. Even though there are various classification
criteria for meta-heuristic algorithms, they are usually categorized by considering the
kind of intelligence or phenomena to be modeled [3,4]. Meta-heuristics mimicking natural
selection, crossover, mutation, or similar biological processes are generally referred to
as evolutionary algorithms [5]. The genetic algorithm (GA) [6], differential evolution
(DE) [7,8] algorithm, and evolutionary strategies (ES) [9] are the most famous evolutionary
algorithms. Similar to these algorithms, population-based incremental learning (PBIL),
proposed by Baluja, is another well-studied evolutionary technique that tries to empower
the existing Darwinian operations with competitive learning [10]. The biogeography-based
optimizer (BBO) proposed by Simon is also an evolutionary meta-heuristic that considers
the distribution of biological species from one habitat to another via migration and how
species arise and fade away to model the exploration and exploitation phases of a robust
search [11,12].

The second group of meta-heuristics, also called swarm-intelligence (SI)-based meta-
heuristics, considers the various behaviors of creatures such as ants, birds, bees, moths,
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bats, flowers, and even humans [13]. One of the most successful swarm-intelligence meta-
heuristics is the ant colony (ACO) algorithm proposed by Dorigo and Caro [14]. The
intelligent communication characteristics and food-source-finding capabilities of ants were
used as a guide to design the ACO algorithm [14]. Particle swarm optimization (PSO) is
another successful swarm-intelligence meta-heuristic in which the collective movements
of bird blocking or fish schooling are referenced [15]. Krishnanand and Ghose tried to
model how a glowworm attracts its companions, resulting in glowworm swarm optimiza-
tion (GSO) [16]. The brood reproduction or parasitism of cuckoo birds gave inspiration
to Yang and Deb, who introduced the cuckoo search (CS) algorithm [17]. The flashing
nature of fireflies also gave inspiration to Yang in the development of the firefly algorithm
(FA) [18]. The meta-heuristics introduced by Yang are not limited to the CS and FA. The
bat algorithm (BA) [19], modeling the advanced echolocation properties of bats, and the
flower pollination algorithm (FPA) [20], based on the self- and cross-pollination of flowers,
was also announced in studies by Yang. The foraging habits of honeybees were analyzed
by Karaboga, who presented the artificial bee colony algorithm (ABC for short) [21,22].
The gray wolf optimizer (GWO) algorithm was designed by Mirjalili et al. after investi-
gating the hierarchy and hunting methods of gray wolves [23]. Mirjalili considered how
moths navigate and fly at night and proposed the moth–flame optimization (MFO) algo-
rithm [24]. Mirjalili also directly contributed to the development processes of the ant lion
optimizer (ALO) [25], sine cosine algorithm (SCA) [26], multi-verse optimizer (MVO) [27],
salp swarm algorithm (SSA) [28], Harris hawk optimizer (HHO) [29] and slime mold
algorithm (SMA) [30]. Satapathy and Naik focused on the problem-solving concept of the
social behavior of human beings, and social group optimization (SGO) was presented [31].
Tree social relations (TRS), introduced by Alimoradi et al. [32] after analyzing the collec-
tive and hierarchical life of trees, the gannet optimization algorithm (GOA) belonging to
Pan et al. [33], developed based on the unique characteristics of foraging gannets, and the
orchard algorithm (OA) developed by Kaveh et al. to model fruit-gardening procedures [34]
are other recent meta-heuristics. The spotted hyena optimizer (SHO) [35], which mimics
the collaborative hunting methods of the spotted hyena, the emperor penguin optimizer
(EPO) [36], which was inspired by the huddling behavior of emperor penguins, and the
seagull optimization algorithm (SOA) [37], which referenced how seagulls attack their prey,
are recent competitive meta-heuristics proposed by Dhiman and Kumar. A special kind
of sea bird called a sooty tern was investigated by Dhiman and Kaur, and the sooty tern
optimization algorithm (STOA) was announced [38]. Although the migration behaviors
of the abovementioned birds provided a steady exploration capability for the STOA, their
spiral attacking method towards prey was modeled carefully to increase the exploitation
capability of the same algorithm [38]. The tunicate swarm algorithm (TSA) is another
SI-based meta-heuristic introduced as a result of studies by Dhiman and Kaur [39]. The
main motivation behind the TSA was modeling the survival capacity of tunicates living in
the depths of the ocean [39]. Experimental studies carried out with almost 100 test cases
showed that the TSA is a strong optimizer and can be used successfully for different types
of optimization problems [39].

Another group of meta-heuristics mainly focuses on using the fundamental steps
of physical laws. Birbir and Fang proposed the electromagnetism-like algorithm (EMA),
guided by the basics of electromagnetism [40]. The gravitational forces between masses
became the source of motivation for Rashedi et al., and the gravitational search algorithm
(GSA) was introduced [41]. Gravitational forces were interpreted by Formato differently,
and the central force optimization (CFO) was developed [42]. The ray optimization (RO)
algorithm, which simulates Snell’s law, describing the relationship between incident and
reflected rays, was outlined by Shen and Li [43]. Cuevas et al. considered the transition
between the solid, liquid, and gas phases of matter, and the state of matter search (SMS)
was presented [44]. The interactions between positive and negative ions were referenced
by Javidy et al. when the ions motion (IMO) algorithm was designed [45]. Savsani and
Savsani focused on the mathematics of passing vehicles on a two-lane highway, and the
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passing vehicle search (PVS) was developed as a new meta-heuristic [46]. Azizi proposed
the atomic orbital search (AOS) algorithm, for which the principles of quantum mechanics
and quantum-based atomic schema related to the electron and nuclei were considered [47].

The intelligent behaviors of species, biological or evolutionary processes, and physical
laws that have been tried to be modeled by the meta-heuristic algorithms are so diverse,
as easily seen from the shortly summarized literature [48–50]. One of the most recent
meta-heuristics showing how the natural phenomena guided by these problem-solving
techniques can be various is the immune plasma algorithm (IP algorithm or IPA) [51].
IPA solves an optimization problem with its phases inspired by a medical method called
immune or convalescent plasma treatment [51]. Even though the immune plasma treatment
mainly depends on executing a relatively simple process, in which the antibody-rich part
of the blood taken from the previously recovered patient or donor is transferred into the
critical one or receiver, its efficiency and practical usage are proven again with the ongoing
COVID-19 pandemic. In the standard implementation of the IPA, the number of donors and
receivers are determined when control parameters are initialized, and remain unchanged
until the end of the execution [51]. However, rather than assigning two different values to
the number of donors and the number of receivers and guessing their interactions between
them for each problem and running configuration, a simplified but effective method should
be found and integrated into the workflow of the IPA. In this study, by considering this
requirement about the IPA:

• A new donor and receiver selection mechanism based on a statistical metric known as
the percentile was proposed.

• The new donor and receiver selection mechanism adjusted the number of donors
and receivers in an adaptive manner due to the percentile description and the control
parameters used in the standard IPA were not required.

• Because of the adaptive adjustment of donors and receivers at each infection cycle,
the density of exploration and exploitation dominant operations were calibrated more
robustly, and the solving capability increased.

The new IPA variant determining the number of donors and number of receivers
with the proposed approach was called the percentile IPA, or pIPA. To analyze how the
percentile-based selection mechanism affects the overall solving performance of the pIPA,
a set of detailed experiments using 22 numerical benchmark problems and two challenging
engineering problems, the former a big-data optimization problem requiring noise mini-
mization and the latter a planning problem for an unmanned aerial system, was carried
out. The detailed experiments and comparative studies showed that pIPA was capable of
obtaining better solutions than other considered algorithms for most of the test cases. The
rest of the paper is organized as follows: Fundamental properties of the IPA are summa-
rized in Section 2. The newly proposed donor–receiver selection mechanism is introduced
in Section 3. Details of the experimental studies, their results, and related interpretations
are given in Sections 4 and 5. Finally, the conclusion and possible works about the IPA and
pIPA are presented in Section 6.

2. Immune Plasma Algorithm

The immune system is responsible for starting and managing a set of sophisticated
defense operations with the lymphoid organs, T and B lymphocytes, to find and destroy
antigens which are actually parasites, viruses, or part of them causing an infection [51]. The
B lymphocytes or cells have receptors recognizing and binding specific antigens. When B
lymphocytes bind to their specific antigens, they call upon T lymphocytes. T lymphocytes
contribute to the multiplication of the B cells. In addition to this, T lymphocytes mature
the B cells into plasma cells [51]. Plasma cells similar to T and B lymphocytes have an
important role in the immune system. Each plasma cell is regulated for synthesizing an
antigen-specific protein called an antibody [51]. Antibodies can be free-floating in the
blood or seen on the membranes of different immune-system cells. Moreover, an antibody
in both forms can bind its specific antigen to limit the interaction with this antigen and
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healthy cells [51]. Antibodies increase slowly with the start of an infection and reach a
peak level [51]. However, in cases of immune-system diseases or disorders, the required
number of antibodies cannot be produced. For infected individuals who are suffering
from immune-system diseases or disorders, antibody-rich parts of the blood of the patients
who have recovered shortly before can be a valuable source. Using the antibody-rich part
of the blood, also called plasma, is the main motivation of the immune or convalescent
plasma treatment [51] for critical patients. Even though the idea lying behind the immune
plasma treatment is relatively simple, the efficiency of the biologically strong and evident
implementation steps of the immune plasma treatment has been proven for the H1N1,
SARS, MERS, Ebola, and the SARS-COV2, namely COVID-19 infection [51].

The properties of the immune plasma treatment were also guided by researchers, and
a new meta-heuristic method known as the IP algorithm or IPA was proposed [51]. In the
IP algorithm, each individual is assumed as a solution to the problem being solved. The
immune-system response or level of antibody for an individual is directly matched with
the quality or appropriateness of the solution in terms of objective function value [51]. The
infection is distributed between individuals, and immune-system responses are determined.
By controlling the immune-system responses of the individuals, while some of them are
considered to be critical and become receivers, some of them become donors and contribute
to the treatment operations of the critical individuals with their plasmas [51]. Until reaching
a predetermined termination condition, the IP algorithm continues to spread infection
between individuals for exploring the search space of the problem, select the donor and
receiver individuals, and then apply plasma transfer to balance the exploration with
the exploitation. The subsections given below describe the detailed workflow of the
IP algorithm.

2.1. Details of Infection Distribution

The IP algorithm starts its operations by assigning initial values to the individuals in
the population of size PS [51]. Assume that IPA tries to solve a D-dimensional problem.
The initial value of the jth parameter related to the xk individual is calculated using
Equation (1) [51]. In Equation (1), k is an index ranging from 1 to PS and the lower
and upper bounds of the jth parameter are equal to the xlow

j and xhigh
j . Also, rand(0, 1)

corresponds to a random number generated between 0 and 1 for each calculation [51].

xkj = xlow
j + rand(0, 1)(xhigh

j − xlow
j ) (1)

An infection can easily distribute among individuals with droplets containing antigens.
For describing how the randomly selected xm individual affects the xk and triggers the
immune system, Equation (2) is employed by the IP algorithm [51]. Although the xin f

k

represents the infectious xk individual, xin f
kj is used on behalf of the randomly selected jth

parameter of xin f
k in Equation (2). It should be noted that the xin f

k individual is the same
as the xk except the jth parameter. Also, xkj and xmj are matched with the jth parameters
of the xk and xm individuals. Finally, rand(−1, 1) is used on behalf of a random number
between −1 and 1.

xin f
kj = xkj + rand(−1, 1)(xkj − xmj)

where
m ∈ {1, . . . , PS} − {k}

(2)

As stated earlier, immune-system responses or antibody levels of the individuals are
directly matched with the corresponding objective function values. For a minimization
problem with an objective function f , if the immune-system response or antibody level of
the infectious xk individual showed as f (xin f

k ) is less than the immune-system response or
antibody level of the same individual before the infection showed as f (xk), it is assumed
that xk recognizes the infection triggered by the xm and updates the immune system for the
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same or similar infection as in Equation (3) [51]. Otherwise, the immune system of the xk
remains unchanged.

xkj =

{
xin f

kj , i f f (xin f
k ) < f (xk)

xkj, otherwise

}
(3)

2.2. Details of Plasma Treatment

After infecting all individuals in the population, IPA first decides how many individu-
als will be donors and how many individuals will be receivers. For this purpose, it describes
two different control parameters known as NoR and NoD [51]. Although NoR is matched
with the abbreviation of the number of receivers, NoD represents the abbreviation of the
number of donors. The values of the NoR and NoD parameters are assigned when the IPA
is initialized, and the first NoR worst individuals are treated with the plasmas of the first
NoD best individuals [51]. If xrcv

k is the k indexed receiver in the set of receivers of size NoR
and xdnr

m is the randomly determined donor in the set of donors of size NoD, the plasma of
xdnr

m is transferred into the xrcv
k using Equation (4) given below [51]. In Equation (4), xrcv

kj

and xdnr
mj are matched with the jth parameters of the xrcv

k and xdnr
m individuals. Furthermore,

xrcv−p
k represents the plasma transferred xrcv

k and its jth parameter is the xrcv−p
kj . It should

be noted that each parameter of the xrcv
k is modified with the corresponding parameter of

the xdnr
m by guiding Equation (4).

xrcv−p
kj = xrcv

kj + rand(−1, 1)(xrcv
kj − xdnr

mj )

where
j ∈ {1, . . . , D}

(4)

The immune-system response or antibody level of the xrcv
k after the first dose of plasma

is important for deciding whether the second dose of the plasma will be transferred or not.
If f (xrcv−p

k ) showing the antibody level of xrcv
k after the first dose plasma is less than the

f (xdnr
m ), xrcv

k is changed with xrcv−p
k and second dose of plasma from xdnr

m is prepared for
transferring. Otherwise, xrcv

k is changed with the xdnr
m to guarantee that a single plasma

dose is given and the treatment is ended [51]. When the IP algorithm decides to apply
the second dose of plasma, it first determines the new xrcv−p

k and then compares f (xrcv−p
k )

showing the antibody level of xrcv
k after the second dose plasma with the f (xrcv

k ) value of
the current xrcv

k . If f (xrcv−p
k ) is less than f (xrcv

k ), xrcv
k is changed with xrcv−p

k and third dose
of plasma from xdnr

m is prepared for transferring. Otherwise, the plasma treatment is ended
for the xrcv

k [51].
The IP algorithm controls and modifies the immune memories of the donors by

considering the ratio between tcr and tmax after the plasma treatment is completed for
all receivers. Although tcr shows the current evaluation or calculation number of the
objective function, tmax corresponds to the maximum evaluation or calculation number of
the objective function. If a random number produced between 0 and 1 is less than tcr/tmax,
each parameter of the xdnr

m where m ranges from 1 to NoD is updated using Equation (5) [51].
If the mentioned random number is equal or higher than tcr/tmax, each parameter of the
xdnr

m is initialized with Equation (1) [51]. As easily seen from the model used to control and
update the donors, it is understood that the probability of producing a random number
less than tcr/tmax increases, and the xdnr

m donor is modified slightly as in Equation (5) [51].

xdnr
mj = xdnr

mj + rand(−1, 1)xdnr
mj (5)
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3. Modified Donor–Receiver Selection Mechanism

The standard implementation of IPA determines the number of donors and number of
receivers at initialization, and their values are protected until the end of execution. Selecting
the first NoD best individual or individuals from the population and using them as plasma
sources for the first NoR worst individual or individuals significantly contributed to the
local search capability of the IPA, and experimental studies showed that the value of the
NoD parameter should be chosen equal or less than the value of the NoR parameter [51].
However, it should be noted that determining the appropriate values for both NoD and
NoR parameters and guessing their effect on the solving capabilities of the algorithm and
interactions between them are difficult. Rather than assigning static values to the NoD and
NoR parameters, a more convenient, implicitly self-adjustable, and simplified approach by
considering the existing control parameters such as NoD and NoR can be proposed and
integrated into the workflow of the IP algorithm.

Percentile is one of the most commonly used metrics in order statistics [52]. It helps to
indicate where a special value falls within a distribution of a set of values and understand
the relative standing of that value. Assume that the x element is at the kth percentile. By
considering this assumption, it is said that the x element is greater than the k% of the other
elements related to the same set. In addition to the help of evaluation the relative standing
of a given element within a distribution, percentile also provides a method for dividing the
dataset into partitions [53]. If the x element is at the kth percentile, the dataset is divided
into two partitions. Although the first partition contains the k percent of the whole dataset
whose elements are less than x, the second partition contains the rest of the initial dataset,
and each element in the second partition is equal to or greater than x. For deciding which
element in this dataset will be chosen as x and will be at the kth percentile, elements of the
dataset are first sorted in ascending order, and then Equation (6) given below is utilized [54].
In Equation (6), N shows the number of elements in the dataset, and r corresponds to the
index or rank of the element that will be chosen from the sorted dataset on behalf of x and
at the kth percentile.

r = d k
100
× Ne (6)

When considering the properties of the percentile metric about the intrinsic division
of the dataset, it is seen that the population of the IP algorithm can be partitioned into
two groups using the percentile calculation. One of the groups is devoted to the possible
donor or donors, while the other is related to the possible receiver or receivers, and then a
new variant of the IP algorithm named percentile IP algorithm (pIPA) can be introduced.
In the pIPA, rather than determining the number of donors and the number of receivers
separately by assigning values to both NoD and NoR control parameters, the possible
donor and receiver individuals are determined with a new and single control parameter
showed as prc. The prc parameter is actually used to find the individual that is at the prcth

percentile. For a minimization problem, pIPA first sorts the individuals in the population
of size PS according to their objective function values, and the r index and xr individual
are determined as in Equation (6) by changing the k with the prc. If the objective function
value of the xi individual where i ranges from 1 to PS is less than or equal to the objective
function value of the xr, the xi individual becomes a donor candidate and it is added into
the set of donors. Otherwise, xi individual becomes a receiver candidate, and it is added to
the set of receivers. By considering the relationship between the xr and other individuals
in the population, it is seen that nearly prc percent of the population becomes the receiver
candidates, and (100− prc) percent of the population becomes the donor candidates. The
workflow of the percentile-based donor–receiver selection strategy can be summarized
visually as in Figure 1.
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Figure 1. Workflow of the percentile-based donor–receiver selection strategy.

After generating the set of donors and set of receivers by utilizing the value assigned
to the prc parameter, pIPA controls the number of possible donors and receivers. If there
are more donors compared to the receivers, each receiver is matched with a unique and
randomly selected donor, and plasma transfer is carried out for the receivers as per the
standard IPA. In Algorithm 1, the plasma transfer operations are summarized by consid-
ering that there are more donors than the receivers. If there are more receivers compared
to the donors, each donor is matched with a unique and randomly selected receiver, and
plasma transfer from the donor to its receiver is carried out as in the standard IP algorithm.
Algorithm 2 states the donor and receiver selection and plasma transfer operations of the
pIPA for the scenarios in which there are more receivers than the donors or there is an equal
number of donors and receivers.

Even though the value being assigned to the prc remains unchanged until the end
of the execution, the number of possible donors and receivers can vary because of the
description of the percentile and objective function values of individuals in the population.
If there are individuals whose objective function values are the same as the objective
function value of the xr, more than (100− prc) percent of the population can be related to
the set of possible donors. As an expected result of this situation, less then prc percent of
the population can be related to the set of possible receivers, and the number of donors and
number of receivers can be adjusted dynamically. Another important situation that should
be considered is the equivalence of the xr individual with the remaining individuals of the
population based on the objective function values. If the objective function value of xr is
equal to the objective function values of the remaining individuals in the population, the
set of possible receivers is empty and pIPA continues spreading infection without applying
plasma transfer operations.
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Algorithm 1 Plasma transfer in the pIPA by selecting donors
1: xprc ← find required individual
2: dCount← get the number of donors
3: rCount← get the number of receivers
4: xbest ← get the best individual found so far
5: if dCount > rCount then
6: doseControl[1 . . . rCount]← set elements to 1
7: treatmentControl[1 . . . rCount]← set elements to 1
8: rIndexes[1 . . . rCount]← get the indexes of the receivers
9: dIndexes[1 . . . rCount]← get the indexes of chosen donors

10: for i← 1 . . . rCount do
11: xdnr

m ← get the dIndexes[i] indexed donor
12: xrcv

k ← get the rIndexes[i] indexed receiver
13: while treatmentControl[i] == 1 do
14: if tcr < tmax then
15: tcr ← tcr + 1
16: xrcv−p

k ← treatment of xrcv
k with xdnr

m
17: if doseControl[i] == 1 then
18: if f (xrcv−p

k ) < f (xdnr
m ) then

19: Update xrcv
k with xrcv−p

k
20: doseControl[i]← doseControl[i] + 1
21: else
22: Update xrcv

k with xdnr
m

23: treatmentControl[i]← 0
24: end if
25: else
26: if f (xrcv−p

k ) < f (xrcv
k ) then

27: Update xrcv
k with xrcv−p

k
28: else
29: treatmentControl[i]← 0
30: end if
31: end if
32: if f (xrcv

k ) < f (xbest) then
33: Update xbest with xrcv

k
34: end if
35: end if
36: end while
37: end for
38: end if

Algorithm 2 Plasma transfer in the pIPA by selecting receivers
1: xprc ← find required individual
2: dCount← get the number of donors
3: rCount← get the number of receivers
4: xbest ← get the best individual found so far
5: if dCount <= rCount then
6: doseControl[1 . . . dCount]← set elements to 1
7: treatmentControl[1 . . . dCount]← set elements to 1
8: dIndexes[1 . . . dCount]← get the indexes of the donors
9: rIndexes[1 . . . dCount]← get the indexes of chosen receivers

10: for i← 1 . . . dCount do
11: xdnr

m ← get the dIndexes[i] indexed donor
12: xrcv

k ← get the rIndexes[i] indexed receiver
13: while treatmentControl[i] == 1 do
14: if tcr < tmax then
15: tcr ← tcr + 1
16: xrcv−p

k ← treatment of xrcv
k with xdnr

m
17: if doseControl[i] == 1 then
18: if f (xrcv−p

k ) < f (xdnr
m ) then

19: Update xrcv
k with xrcv−p

k
20: doseControl[i]← doseControl[i] + 1
21: else
22: Update xrcv

k with xdnr
m

23: treatmentControl[i]← 0
24: end if
25: else
26: if f (xrcv−p

k ) < f (xrcv
k ) then

27: Update xrcv
k with xrcv−p

k
28: else
29: treatmentControl[i]← 0
30: end if
31: end if
32: if f (xrcv

k ) < f (xbest) then
33: Update xbest with xrcv

k
34: end if
35: end if
36: end while
37: end for
38: end if
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Similar to the standard implementation of IPA, pIPA also differs from most meta-
heuristics when the number of evaluations or the number of objective function calls per
cycle, iteration, or generation is considered. The NoD and NoR parameters of the standard
IPA and prc parameter of the pIPA can change the number of evaluations from one cycle
to another because of the possible repetition of the plasma treatment for receivers. Even
though the number of evaluations consumed per cycle changes in both IPA and pIPA, they
complete their operations if the maximum evaluation number abbreviated as tmax in the
previous section is reached. When the IPA and pIPA are employed in order to solve a
D-dimensional problem for which the complexity of calculating the objective function is
estimated as O(D) using big-O notation, the running time of the IPA and pIPA becomes
equal to O(tmax × D). This description of the running time of the IPA and pIPA in terms of
tmax and the complexity of the objective function calculation can be guided for comparison
with other meta-heuristics.

A more specialized analysis for the running time of the pIPA can be made by con-
sidering the cost of newly added or existing operations such as distribution of infection,
selection of the xr individual, treatment of the receiver or receivers and modification of
the donor or donors. When pIPA with PS individuals starts solving a D-dimensional
problem for which the complexity of calculating the objective function is O(D), the cost
stemmed from the distribution of infection is found as O(PS× D). After completing the
distribution of infection, pIPA divides the whole population by considering the value
assigned to the prc. All individuals are first sorted by a sorting algorithm for which the
complexity is equal to O(PS × log2PS) and the number of possible receivers shown as
Rc, and the number of possible donors shown as Dn are determined. If the Rc is equal to
zero, i.e., there is no receiver in the population, the complexity of this cycle is defined as
O(PS× (D + log2PS)). Otherwise, the cost of giving one dose plasma for each receiver and
modification of the donor or donors are found as O(Rc× D2 + Dn× D2) and the running
time of the pIPA for a cycle becomes equal to O(PS× D + PS× logPS + D2 × (Rc + Dn)).
Because the sum of Rc and Dn is equal to PS, the running time of the pIPA can be shown
as O(PS× (D + logPS + D2)) or simply O(PS× D2) by utilizing from the property of the
used asymptotic notation and the dominance of D2 term.

4. Experimental Studies

The possible contribution of the percentile-based donor–receiver selection strategy
can vary with the values assigned to the control parameters such as population size,
maximum evaluation number, dimensions, prc, and types of optimization problems. To
provide a clear vision of how the newly proposed strategy changes the solving capabilities,
experimental studies were divided into four major subsections. In the first subsection,
100 and 200-dimensional classical numerical problems were solved with the pIPA by
assigning different values to the prc. Obtained results by the pIPA were also compared
with a set of meta-heuristics including IPA [51], PSO [55], GSA [41], CS [17], BA [19],
FPA [20], SMS [44], FA [18], GA [6], MFO [24] and ALO [25]. The second subsection of the
experimental studies was devoted to the investigation of the capabilities of pIPA in solving
complex numerical problems first introduced at the CEC 2015. The results of the pIPA
for CEC 2015 benchmark problems were compared with the IPA [51], SOA [37], SHO [35],
GWO [23], PSO [55], MFO [24], MVO [27], SCA [26], GSA [41], GA [6] and DE [56]. In
the third subsection of the experimental studies, a recent real-world engineering problem
that requires splitting a source signal into noise and noise-free parts optimally was solved
with pIPA, and comparisons between pIPA and other well-known meta-heuristics such as
IPA [51], GA [6], PSO [55], DE [56], ABC [57], GSA [41], MFO [24], SCA [26], SSA [28] and
HHO [29] were carried out. In the last subsection, pIPA was also used to solve another real-
world problem for which the path of an unmanned aerial vehicle (UAV) or an unmanned
combat aerial vehicle (UCAV) is tried to be determined by considering the enemy threats
and fuel consumption. The results of the pIPA for path planning problem were compared
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with the IPA [51], BA [58], BAM [58], ACO [59], BBO [59], DE [59], ES [59], FA [59,60],
GA [59], MFA [59,60], PBIL [59], PSO [59], SGA [59] and PGSO [59]-based approaches.

4.1. Solving Classical Benchmark Problems with pIPA

The benchmark problems or functions for which the formulation, lower and upper
bounds are given in Table 1 were solved with the pIPA. The global minimum values of all
these problems except the f8 are equal to zero. For the f8, the global minimum value is
calculated as −D× 418.98 where D corresponds to the number parameters as stated before.
When solving the 100-dimensional benchmark problems given in Table 1, the population
size and maximum evaluation number were set to 30 and 30,000 [24]. To analyze how the
qualities of the solutions change with the values assigned to prc, nine positive integers,
including 30, 35, 40, 50, 60, 70, 80, 90, and 95 were used. The pIPA with the mentioned
configurations was tested 30 times for each problem instance using random seeds. The
objective function values of the best solutions found at each of 30 runs were averaged and
reported in Table 2 with the related standard deviations.

Table 1. Classical benchmark functions used in experiments.

Name Range Formulation

Sphere [−100, 100] f1(~x) = ∑D
i=1
(

x2
i
)

Schwefel2.22 [−10, 10] f2(~x) = ∑D
i=1 |xi|+ ∏D

i=1 |xi|

Schwefel1.2 [−100, 100] f3(~x) = ∑D
i=1 ∑i

j=1 xj

Schwefel2.21 [−100, 100] f4(~x) = maxi(|xi|, 1 ≤ i ≤ D)

Rosenbrock [−30, 30] f5(~x) = ∑D−1
i=1

(
100(xi+1 − x2

i
)2

+ (xi − 1)2)

Step [−100, 100] f6(~x) = ∑D
i=1(bxi + 0.5c)2

Random [−1.28, 1.28] f7(~x) = ∑D
i=1
(
ix4

i
)
+ random[0, 1)

Schwefel [−500, 500] f8(~x) = ∑D
i=1

(
−xisin

(√
|xi|
))

Rastrigin [−5.12, 5.12] f9(~x) = ∑D
i=1
(

x2
i − 10cos(2πxi) + 10

)
Ackley [−32, 32] f10(~x) = 20 + e− 20exp

(
−0.2

√
1
D ∑D

i=1 x2
i

)
− exp

(
1
D ∑D

i=1 cos(2πxi)
)

Griewank [−600, 600] f11(~x) = 1
4000

(
∑D

i=1 x2
i ,
)
−
(

∏D
i=1 cos

(
xi√

i

))
+ 1

Penalized [−50, 50]

f12(~x) = π
D

(
10sin2(πyi) +

(
∑D

i=1
(
yi − 1)2(1 + 10sin2(πyi+1

)))
+

∑D
i=1 u(xi, 10, 100, 4)

u(xi, a, k, m) =


k(xi − a)m, xi > a

0, −a ≤ xi ≤ a
k(−xi − a)m, xi

 yi = 1 + 1
4 (xi + 1)
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Table 2. Results of pIPA with different prc values for 100-dimensional problems.

Fn.
prc

30 35 40 50 60 70 80 90 95

f1
Mean 5.1456× 10−26 1.3752× 10−30 2.0262× 10−34 2.2410× 10−36 1.2098× 10−43 5.8013× 10−46 5.1764× 10−51 4.6656× 10−49 5.0181× 10−42

Std. 2.7982× 10−25 5.1533× 10−30 7.6024× 10−34 1.2270× 10−35 6.4963× 10−43 3.0141× 10−45 1.5408× 10−50 8.7556× 10−49 1.5187× 10−41

f2
Mean 1.2335× 10−15 1.3169× 10−17 2.0901× 10−21 4.9870× 10−26 7.2877× 10−29 6.4561× 10−31 4.8992× 10−33 2.0915× 10−35 3.1866× 10−30

Std. 2.7063× 10−15 3.4440× 10−17 4.9966× 10−21 1.1231× 10−25 9.9676× 10−29 1.5124× 10−30 1.7674× 10−32 3.9040× 10−35 1.2116× 10−29

f3
Mean 3.1633× 10−23 8.5720× 10−22 9.3947× 10−30 1.0063× 10−4 6.3883× 102 5.7721× 103 1.1202× 104 2.6989× 104 5.6676× 104

Std. 9.9721× 10−23 4.6942× 10−21 3.3014× 10−29 5.5042× 10−4 3.4990× 103 1.5215× 104 2.5396× 104 2.9479× 104 4.7540× 104

f4
Mean 3.8292× 100 4.5361× 100 5.3971× 100 9.2311× 101 9.1797× 101 9.2891× 101 9.1533× 101 9.1888× 101 9.1597× 101

Std. 4.2740× 100 2.9681× 100 5.0036× 100 1.6587× 100 2.0900× 100 1.3709× 100 1.7876× 100 2.7794× 100 2.6573× 100

f5
Mean 9.8948× 101 9.8953× 101 9.8920× 101 9.8708× 101 9.8531× 101 9.8629× 101 9.8675× 101 9.8851× 101 9.8845× 101

Std. 5.2147× 10−2 1.0042× 10−2 6.5905× 10−2 1.9575× 10−1 4.4030× 10−1 3.6026× 10−1 2.9301× 10−1 7.3941× 10−2 9.0345× 10−2

f6
Mean 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100

Std. 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100

f7
Mean 1.5136× 10−4 1.7352× 10−4 1.1218× 10−4 1.3047× 10−3 1.0262× 10−3 9.7175× 10−4 1.2665× 10−3 1.3941× 10−3 1.5076× 10−3

Std. 1.3928× 10−4 2.1698× 10−4 1.2010× 10−4 7.8270× 10−4 8.3336× 10−4 9.3030× 10−4 9.5681× 10−4 1.1079× 10−3 1.8053× 10−3

f8
Mean −1.4903× 104 −1.4796× 104 −1.4585× 104 −2.1956× 104 −2.2120× 104 −2.2532× 104 −2.3085× 104 −2.3315× 104 −2.3156× 104

Std. 4.5009× 102 4.0984× 102 3.3323× 102 4.2788× 102 4.7105× 102 5.4506× 102 4.3601× 102 5.5671× 102 7.7225× 102

f9
Mean 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100

Std. 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100
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Table 2. Cont.

Fn.
prc

30 35 40 50 60 70 80 90 95

f10
Mean 8.4524× 10−14 3.5231× 10−15 1.2730× 10−15 1.9329× 101 1.6653× 101 1.7974× 101 1.9291× 101 1.9948× 101 1.9292× 101

Std. 2.4061× 10−13 8.2258× 10−15 2.7492× 10−15 3.6507× 100 7.5752× 100 6.0939× 100 3.6436× 100 2.4914× 10−2 3.6437× 100

f11
Mean 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100

Std. 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100

f12
Mean 1.1622× 100 1.1296× 100 1.0991× 100 7.2542× 10−1 7.5028× 10−1 7.4214× 10−1 7.3596× 10−1 7.9325× 10−1 8.3495× 10−1

Std. 6.1114× 10−2 4.8698× 10−2 6.1272× 10−2 7.2941× 10−2 7.2955× 10−2 7.7846× 10−2 7.1764× 10−2 6.5839× 10−2 9.4424× 10−2
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The results reported in Table 2 give important information about the pIPA and ap-
propriate values of the prc parameter. Although the pIPA obtains the global minimum
solutions with all of the nine different values assigned to the prc for the f6, f9 and f11
functions, it finds relatively close mean best objective function values for the f5 function
with all of the constants assigned to the prc. As distinct from the global minimums of f6, f9
and f11 functions, the global minimum of the f5 function is located at the end of a long and
narrow valley and converging to the global minimum of it is extremely difficult. Because
of this main reason, meta-heuristic algorithms usually require subtly configured control
parameters and more evaluations for the mentioned function. However, it should be noted
that the percentile-based donor–receiver selection mechanism adjusts the workflow and
contributes to the convergence of the pIPA even though the prc is changed. For f1, f2, f8
and f12 functions, the qualities of the solutions found by the pIPA get better or change
slightly when the value assigned to the prc increases from 30 to 80 or even 90. Similar
generalizations can also be made for the f3, f4, f7, and f10 functions by considering a small
set of values of prc. The qualities of the solutions found by the pIPA get better or change
slightly for the these functions when the prc increases from 30 to 40.

As stated before, the number of donors and receivers in pIPA can be different at each
cycle, while the prc remains unchanged. To analyze whether the number of donors and
the number of receivers change or not when the initial value of the prc is preserved until
the end of a run, they are first counted at each cycle, averaged, and then recorded. After
completing 30 independent runs, the number of donors and number of receivers recorded
for each run are averaged again and presented in Table 3. When the results given in Table 3
are controlled, it is seen that the newly proposed mechanism is capable of changing or
adjusting the number of donors and receivers for the f4, f6, f9, f10 and f11 functions. It tries
to increase the number of donors and decrease the number of receivers while the value of
the prc is protected. By changing the number of donors and number of receivers without
increasing or decreasing the initial value of the prc, pIPA also has a chance to adjust the
execution of exploration and exploitation dominant phases explicitly.

The newly proposed percentile-based donor–receiver selection strategy requires the
execution of extra computational operations compared to the standard implementation of
the IPA and changes the density of the exploration and exploitation dominant phases. To
understand whether the usage of the percentile-based donor–receiver selection strategy
increases the execution time of the algorithm or not, the duration of each run in terms of
seconds is recorded and then averaged after the completion of 30 independent tests of pIPA
with different prc values. Also, the duration of each run in terms of seconds is recorded
and then averaged when 30 independent tests are completed for the standard IPA whose
NoD and NoR parameters are set to 1. Both pIPA and IPA were coded in C programming
language, and experiments were carried out on a PC equipped with a single-core processor
with 1.33 Ghz.

From the average execution times and related standard deviations belonging to pIPA
and IPA given in Table 4, it is clearly seen that IPA requires less time compared to the pIPA
with lower prc values. Moreover, it is understood that there is a relationship between the
execution time of the pIPA and the value assigned to the prc. Although the prc is increased,
the average execution time of the pIPA generally decreases. If the prc is increased, the
number of possible donors decreases, and plasma treatment is carried out for a small set
of randomly determined receivers. Otherwise, the number of possible donors increases,
more receivers are supported with the plasma treatment, and the execution time of the
pIPA increases because of the computationally intensive operations of the plasma transfer.
However, it should be noted that when the difference between the number of donors
tried to be adjusted with the prc and NoD decreases, the difference between the average
execution times of the pIPA and IPA also decreases.
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Table 3. Average number of donors and receivers for 100-dimensional problems.

Fn.
prc

30 35 40 50 60 70 80 90 95

f1
Dn. 21.000 20.000 18.000 15.000 12.000 9.000 6.000 3.000 2.000

Rcv. 9.000 10.000 12.000 15.000 18.000 21.000 24.000 27.000 28.000

f2
Don. 21.000 20.000 18.000 15.000 12.000 9.000 6.000 3.000 2.000

Rcv. 9.000 10.000 12.000 15.000 18.000 21.000 24.000 27.000 28.000

f3
Dn. 21.000 20.000 18.000 15.000 12.000 9.000 6.000 3.000 2.000

Rcv. 9.000 10.000 12.000 15.000 18.000 21.000 24.000 27.000 28.000

f4
Dn. 29.982 29.980 29.974 15.000 12.004 9.000 6.000 3.000 2.000

Rcv. 0.018 0.020 0.026 15.000 17.996 21.000 24.000 27.000 28.000

f5
Dn. 21.000 20.000 18.000 15.000 12.000 9.000 6.000 3.000 2.000

Rcv. 9.000 10.000 12.000 15.000 18.000 21.000 24.000 27.000 28.000

f6
Dn. 22.517 22.005 21.066 20.136 18.782 17.342 15.575 13.170 11.686

Rcv. 7.483 7.995 8.934 9.864 11.218 12.658 14.425 16.830 18.314

f7
Dn. 21.000 20.000 18.000 15.000 12.000 9.000 6.000 3.000 2.000

Rcv. 9.000 10.000 12.000 15.000 18.000 21.000 24.000 27.000 28.000

f8
Dn. 21.000 20.000 18.000 15.000 12.000 9.000 6.000 3.000 2.000

Rcv. 9.000 10.000 12.000 15.000 18.000 21.000 24.000 27.000 28.000

f9
Dn. 21.988 21.415 20.352 18.959 16.992 14.996 12.667 9.450 6.426

Rcv. 8.012 8.585 9.648 11.041 13.008 15.004 17.333 20.550 23.574

f10
Dn. 21.052 20.258 18.544 15.064 12.444 9.306 6.129 3.000 2.062

Rcv. 8.948 9.742 11.456 14.936 17.556 20.694 23.871 27.000 27.938

f11
Dn. 21.812 21.176 20.082 18.496 16.350 14.174 11.896 8.586 6.818

Rcv. 8.188 8.824 9.918 11.504 13.650 15.826 18.104 21.414 23.182

f12
Dn. 21.000 20.000 18.000 15.000 12.000 9.000 6.000 3.000 2.000

Rcv. 9.000 10.000 12.000 15.000 18.000 21.000 24.000 27.000 28.000

The contribution of the proposed mechanism can be understood by comparing the
results of the pIPA with the results of other meta-heuristics. For this purpose, the results
of the pIPA were compared with the results of the IPA [51], MFO [24], PSO [55], GSA [41],
BA [19], FPA [20], SMS [44], FA [18] and GA [6]. To guarantee that all meta-heuristics
obtain their results under the same conditions, population sizes of them were set to 30, and
the maximum evaluation number was taken equal to 30,000 [24,51]. Although the prc of
the pIPA was 90 for f1, f2, f6, f8, f9 and f11, it was determined as 60 and 50 for the f5 and
f12. Moreover, the value of the prc was equal to 40 for f3, f7 and f10 and equal to 30 for
the f4 function. When the mean best objective function values and standard deviations
belonging to the 30 independent runs of these algorithms in Table 5 are investigated, the
superiority of the pIPA can be seen. For 10 of 12 benchmark functions, pIPA outperforms
its competitors or obtains the same mean best objective function values. It only lags behind
the IPA for the f8 function and the GSA for the f12 function and becomes the second-best
algorithm among other tested meta-heuristics for these functions. The idea lying behind
the pIPA manages donor and receiver selection operations more robustly compared to the
standard implementation of the IPA by setting only one control parameter. In pIPA, the
number of donors and receivers can be updated from one cycle to another while the prc
remains unchanged. Furthermore, although the number of donors and receivers are the
same for different cycles, donors and receivers are matched by a controlled–randomized
approach, and receivers have a chance of treatment with the plasma of a different donor.
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Table 4. Average execution times of pIPA and IPA for 100-dimensional problems

Fn.

pIPA IPA

prc NoD NoR

30 35 40 50 60 70 80 90 95 1 1

f1
Mean 0.369 0.331 0.295 0.317 0.292 0.245 0.229 0.186 0.154 0.103

Std. 1.528× 10−1 1.688× 10−1 8.445× 10−2 9.433× 10−2 1.145× 10−1 8.012× 10−2 1.000× 10−1 8.897× 10−2 6.730× 10−2 8.757× 10−3

f2
Mean 0.302 0.338 0.310 0.338 0.292 0.327 0.239 0.171 0.149 0.124

Std. 8.364× 10−2 1.419× 10−1 9.550× 10−2 1.312× 10−1 1.113× 10−1 1.944× 10−1 1.090× 10−1 5.980× 10−2 7.212× 10−2 1.382× 10−2

f3
Mean 1.864 1.851 1.829 1.887 1.897 1.762 1.712 1.692 1.673 1.550

Std. 1.461× 10−1 1.382× 10−1 1.033× 10−1 2.180× 10−1 1.832× 10−1 1.000× 10−1 1.172× 10−1 9.750× 10−2 1.078× 10−1 3.023× 10−2

f4
Mean 0.261 0.265 0.252 0.272 0.249 0.209 0.190 0.162 0.121 0.102

Std. 1.043× 10−1 8.713× 10−2 9.100× 10−2 9.272× 10−2 8.086× 10−2 6.104× 10−2 9.397× 10−2 9.970× 10−2 5.727× 10−2 9.404× 10−3

f5
Mean 0.364 0.361 0.358 0.370 0.328 0.306 0.268 0.241 0.212 0.202

Std. 1.070× 10−1 9.662× 10−2 8.159× 10−2 1.306× 10−1 9.625× 10−2 7.606× 10−2 6.572× 10−2 7.230× 10−2 6.779× 10−2 2.201× 10−2

f6
Mean 0.814 0.866 0.815 0.881 0.849 0.834 0.839 0.787 0.771 0.721

Std. 1.280× 10−1 1.978× 10−1 1.335× 10−1 2.230× 10−1 1.999× 10−1 1.613× 10−1 1.657× 10−1 1.494× 10−1 1.570× 10−1 2.621× 10−2

f7
Mean 0.755 0.752 0.748 0.746 0.734 0.723 0.649 0.615 0.611 0.620

Std. 1.760× 10−1 1.373× 10−1 1.590× 10−1 1.210× 10−1 1.362× 10−1 1.607× 10−1 1.005× 10−1 1.174× 10−1 1.172× 10−1 2.226× 10−2

f8
Mean 0.790 0.819 0.765 0.849 0.771 0.746 0.720 0.685 0.669 0.665

Std. 1.449× 10−1 1.735× 10−1 1.327× 10−1 1.822× 10−1 1.489× 10−1 1.565× 10−1 1.247× 10−1 1.282× 10−1 1.645× 10−1 2.196× 10−2
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Table 4. Cont.

Fn.

pIPA IPA

prc NoD NoR

30 35 40 50 60 70 80 90 95 1 1

f9
Mean 0.709 0.750 0.730 0.774 0.720 0.699 0.683 0.600 0.650 0.600

Std. 1.324× 10−1 1.870× 10−1 1.685× 10−1 2.078× 10−1 1.620× 10−1 1.549× 10−1 1.338× 10−1 1.109× 10−1 1.423× 10−1 4.716× 10−2

f10
Mean 1.199 1.060 1.124 1.196 1.104 1.118 1.177 0.949 1.017 1.003

Std. 2.481× 10−1 1.460× 10−1 2.100× 10−1 2.723× 10−1 2.000× 10−1 2.774× 10−1 2.293× 10−1 1.168× 10−1 1.913× 10−1 1.192× 10−2

f11
Mean 1.446 1.451 1.448 1.425 1.419 1.381 1.387 1.374 1.375 1.239

Std. 1.350× 10−1 1.449× 10−1 1.467× 10−1 1.375× 10−1 1.301× 10−1 1.155× 10−1 1.259× 10−1 1.395× 10−1 1.598× 10−1 2.487× 10−2

f12
Mean 1.802 1.785 1.767 1.752 1.724 1.707 1.629 1.645 1.628 1.513

Std. 1.223× 10−1 1.145× 10−1 1.172× 10−1 1.386× 10−1 1.595× 10−1 1.683× 10−1 9.727× 10−2 1.817× 10−1 6.466× 10−2 3.417× 10−2
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Another comparison between pIPA and IPA was made for the convergence perfor-
mances. To analyze and compare the convergence performances of meta-heuristic algo-
rithms, there are two commonly used metrics, namely success rate and mean evaluation.
If a run of the algorithm achieves a better solution compared to a threshold before the
previously determined termination criteria are met, it is said that the run is successful. The
success rate is the ratio between the number of successful runs and the total number of runs.
For each successful run, the minimum number of function evaluations required to achieve
a better solution compared to a threshold is recorded. The average of these recorded values
corresponds to the mean evaluation. The convergence comparison between pIPA and
IPA was made by setting the threshold to 1× 10−25 for f1, f2, f3, f6, f9 and f11 functions,
1× 10−10 for f10 function, 1× 10−03 for f7 function, 1× 1000 for f12 function, 1× 1001 for f4
function, 1× 1002 for f5 function, −1× 1004 for f8 function and then success rate and mean
evaluation metrics abbreviated as Sr and Me were summarized in Table 6. When these
metrics given in Table 6 are investigated, it is easily seen that the convergence performance
of pIPA is more robust than the convergence performance of IPA. Even though the Sr
metrics of both pIPA and IPA are equal to 100% for f1, f6, f8, f10 and f11 functions, the
Me metric of pIPA is better than the Me metric of IPA. For all the remaining benchmark
functions, pIPA outperforms the standard implementation of the IPA by considering the
convergence performance measured in terms of Sr and Me. The Figure 2 given should
also be viewed to investigate the changes in the convergence curves of the pIPA with the
varying prc values.
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Figure 2. Convergence curves of pIPA and IPA for f1 (a), f5 (b), f6 (c), f9 (d), f11 (e) and f12

(f) functions.
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Table 5. Comparison between pIPA and other meta-heuristics for 100-dimensional problems.

Fn. pIPA IPA MFO PSO GSA BA FPA SMS FA GA

f1

Mean 4.6656× 10−49 7.4671× 10−27 1.1700× 10−4 1.3212× 100 6.0823× 102 2.0792× 104 2.0364× 102 1.2000× 102 7.4807× 103 2.1886× 104

Std. 8.7556× 10−49 1.9330× 10−26 1.5000× 10−4 1.1539× 100 4.6465× 102 5.8924× 103 7.8398× 101 0.0000× 100 8.9485× 102 2.8796× 103

Rank 1 2 3 4 7 9 6 5 8 10

f2

Mean 2.0915× 10−35 9.2362× 10−26 6.3900× 10−4 7.7156× 100 2.2753× 101 8.9786× 101 1.1169× 101 2.0531× 10−2 3.9325× 101 5.6518× 101

Std. 3.9040× 10−35 2.2260× 10−25 8.7700× 10−4 4.1321× 100 3.3651× 100 4.1958× 101 2.9196× 100 4.7180× 10−3 2.4659× 100 5.6609× 100

Rank 1 2 3 4 7 10 6 4 8 9

f3

Mean 9.3947× 10−30 4.5045× 10−14 6.9673× 102 7.3639× 102 1.3576× 105 6.2481× 104 2.3757× 102 3.7820× 104 1.7357× 104 3.7010× 104

Std. 3.3014× 10−29 2.4546× 10−13 1.8853× 102 3.6178× 102 4.8653× 104 2.9769× 104 1.3665× 102 0.0000× 100 1.7401× 103 5.5722× 103

Rank 1 2 4 5 10 9 3 8 6 7

f4

Mean 3.8292× 100 2.3461× 101 7.0686× 101 1.2973× 101 7.8782× 101 4.9743× 101 1.2573× 101 6.9170× 101 3.3954× 101 5.9143× 101

Std. 4.2740× 100 1.6448× 101 5.2751× 100 2.6344× 100 2.8141× 100 1.0144× 101 2.2900× 100 3.8767× 100 1.8697× 100 4.6485× 100

Rank 1 4 9 3 10 6 2 8 5 7

f5

Mean 9.8531× 101 1.1020× 102 1.3915× 102 7.7361× 104 7.4100× 102 1.9951× 106 1.0975× 104 6.3822× 106 3.7950× 106 3.1321× 107

Std. 4.4030× 10−1 4.3071× 101 1.2026× 102 5.1156× 104 7.8124× 102 1.2524× 106 1.2057× 104 7.2997× 105 7.5903× 105 5.2645× 106

Rank 1 2 3 6 4 7 5 9 8 10

f6

Mean 0.0000× 100 0.0000× 100 1.1300× 10−4 2.8665× 102 3.0810× 103 1.7053× 104 1.7538× 102 4.1439× 104 7.8287× 103 2.0965× 104

Std. 0.0000× 100 0.0000× 100 9.8700× 10−5 1.0708× 102 8.9863× 102 4.9176× 103 6.3453× 101 3.2952× 103 9.7521× 102 3.8681× 103

Rank 1 1 3 5 6 8 4 10 7 9
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Table 5. Cont.

Fn. pIPA IPA MFO PSO GSA BA FPA SMS FA GA

f7

Mean 1.1218× 10−4 7.0755× 10−3 9.1155× 10−2 1.0373× 100 1.1298× 10−1 6.0451× 100 1.3594× 10−1 4.9520× 10−2 1.9063× 100 1.3375× 101

Std. 1.2010× 10−4 9.4016× 10−3 4.6420× 10−2 3.1032× 10−1 3.7607× 10−2 3.0453× 100 6.1212× 10−2 2.4015× 10−2 4.6006× 10−1 3.0815× 100

Rank 1 2 4 7 5 9 6 3 8 10

f8

Mean −2.3315× 104 −2.5129× 104 −8.4968× 103 −3.5710× 103 −2.3523× 103 6.5535× 104 −8.0867× 103 −3.9428× 103 −3.6621× 103 −6.3312× 103

Std. 5.5671× 102 9.5538× 102 7.2587× 102 4.3080× 102 3.8217× 102 0.0000× 100 1.5535× 102 4.0416× 102 2.1416× 102 3.3257× 102

Rank 2 1 3 8 9 10 4 6 7 5

f9

Mean 0.0000× 100 0.0000× 100 8.4600× 101 1.2430× 102 3.1000× 101 9.6215× 101 9.2692× 101 1.5284× 102 2.1490× 102 2.3683× 102

Std. 0.0000× 100 0.0000× 100 1.6167× 101 1.4251× 101 1.3661× 101 1.9588× 101 1.4224× 101 1.8554× 101 1.7219× 101 1.9034× 101

Rank 1 1 4 7 3 6 5 8 9 10

f10

Mean 1.2730× 10−15 6.9604× 10−14 1.2604× 100 9.1679× 100 3.7410× 100 1.5946× 101 6.8448× 100 1.9133× 101 1.4568× 101 1.7846× 101

Std. 2.7492× 10−15 1.7583× 10−13 7.2956× 10−1 1.5690× 100 1.7127× 10−1 7.7495× 10−1 1.2500× 100 2.3852× 10−1 4.6751× 10−1 5.3115× 10−1

Rank 1 2 3 6 4 8 5 10 7 9

f11

Mean 0.0000× 100 0.0000× 100 1.9080× 10−2 1.2419× 101 4.8683× 10−1 2.2028× 102 2.7161× 100 4.2053× 102 6.9658× 101 1.7990× 102

Std. 0.0000× 100 0.0000× 100 2.1732× 10−2 4.1658× 100 4.9785× 10−2 5.4707× 101 7.2772× 10−1 2.5256× 101 1.2114× 101 3.2440× 101

Rank 1 1 3 6 4 9 5 10 7 8

f12

Mean 7.2542× 10−1 8.1573× 103 8.9401× 10−1 1.3874× 101 4.6344× 10−1 2.8934× 107 4.1053× 100 8.7428× 106 3.6840× 105 3.4132× 107

Std. 7.2941× 10−2 4.4671× 104 8.8127× 10−1 5.8537× 100 1.3760× 10−1 2.1787× 106 1.0435× 100 1.4057× 106 1.7213× 105 1.8934× 106

Rank 2 6 3 5 1 9 4 8 7 10

Average 1.1667 2.1667 3.7500 5.5000 5.8333 8.3333 4.5833 7.4167 7.2500 8.6667

Overall 1 2 3 5 6 9 4 8 7 10
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Table 6. Sr and Me metrics of pIPA and IPA for 100-dimensional problems.

Fn.

pIPA IPA

prc NoD NoR

30 35 40 50 60 70 80 90 95 1 1

f1
Sr 96.667 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000

Me 28,932.621 27,543.900 25,436.567 23,799.533 22,793.033 22,244.667 21,703.133 22,680.300 23,700.467 27,523.200

f2
Sr 0.000 0.000 0.000 90.000 100.000 100.000 100.000 100.000 100.000 76.667

Me - - - 29,333.630 27,982.800 26,358.233 25,839.000 25,447.733 26,076.167 28,915.478

f3
Sr 56.667 83.333 100.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Me 29,221.000 28,886.640 27484.367 - - - - - - -

f4
Sr 93.333 93.333 83.333 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Me 28,668.393 29,285.179 28,725.320 - - - - - - -

f5
Sr 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 93.333

Me 20,766.733 19,076.967 15,832.333 13,069.933 12,149.933 12,800.167 12,469.800 13,561.267 16,181.633 23,812.929

f6
Sr 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000

Me 20,649.900 18,434.000 15,241.500 10,976.333 10,661.867 10,339.733 10,223.667 10,728.667 11,853.900 15,042.667

f7
Sr 100.000 100.000 100.000 36.667 53.333 63.333 56.667 53.333 56.667 13.333

Me 22,497.400 21,957.967 17,780.633 22,587.455 21,852.875 23,439.579 22,875.235 26,454.125 27,074.529 23,552.500

f8
Sr 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000

Me 45.933 47.433 48.133 52.933 50.233 44.667 46.433 50.433 66.967 83.667
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Table 6. Cont.

Fn.

pIPA IPA

prc NoD NoR

30 35 40 50 60 70 80 90 95 1 1

f9
Sr 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 83.333 16.667

Me 24,964.933 23,534.733 20,910.733 17,939.767 17,425.800 16,729.700 16,520.900 17,523.367 19,559.440 23,936.000

f10
Sr 100.000 100.000 100.000 3.333 16.667 10.000 3.333 0.000 3.333 100.000

Me 27,385.900 26,141.567 25,172.067 21,276.000 20,665.600 20,560.000 19,533.000 - 22,629.000 25,711.100

f11
Sr 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000

Me 26,010.900 24,848.133 22,339.100 19,861.567 19,397.500 18,708.400 18,104.267 19,059.567 20,486.933 23,728.100

f12
Sr 0.000 0.000 3.333 100.000 100.000 100.000 100.000 100.000 96.667 30.000

Me - - 14,521.000 14,527.300 15,791.333 15,502.900 15,845.100 17,779.567 20,178.552 26,866.000
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The final comparison between pIPA and other meta-heuristics for 100-dimensional
problems was carried out to decide whether the result of pIPA is enough to generate a
statistical difference in favor of pIPA or not using the Wilcoxon signed rank test with the
significance level equal to 0.05. If the significance level shown as ρ is less than 0.05, it is
said that the difference between the two algorithms is statistically significant in favor of
one of them. Otherwise, the results obtained by the algorithms are not enough to decide
which one is statistically significant. The statistical test results related to the pIPA and its
competitors were given in Table 7. In Table 7, R+ and R− show the sum of positive ranks
and the sum of negative ranks, respectively. Also, the Z corresponds to the standardized
test statistic. The results given in Table 7 show that the statistical difference between pIPA
and MFO, PSO, GSA, BA, FPA, SMS, FA, or GA is in favor of pIPA. Only the decision about
whether a statistical difference between pIPA and IPA exists or not cannot be made from
the current results of the algorithms.

Table 7. Statistical comparison between pIPA and other algorithms for 100-dimensional problems.

pIPA vs. Z-val. R+ R− ρ-val. Sign.

IPA −2.1917 4 11 - -

MFO −3.0594 0 78 0.0022 pIPA

PSO −3.0594 0 78 0.0022 pIPA

GSA −2.9025 2 76 0.0037 pIPA

BA −3.0594 0 78 0.0022 pIPA

FPA −3.0594 0 78 0.0022 pIPA

SMS −3.0594 0 78 0.0022 pIPA

FA −3.0594 0 78 0.0022 pIPA

GA −3.0594 0 78 0.0022 pIPA

The qualities of the final solutions, convergence performance, and statistical test results
of the pIPA for 100-dimensional problems gave strong evidence of its capabilities. However,
its capabilities should also be analyzed with another scenario in which population size,
dimensionalities of the problems, and termination criteria are changed. For this purpose,
the benchmark functions given in Table 1 were solved by setting the population size of the
pIPA to 100 and number of parameters to 200 [25,51]. The maximum evaluation number
was taken equal to 500, 000 [25,51]. Nine positive integers including 30, 35, 40, 50, 60, 70,
80, 90 and 95 were assigned to the prc and pIPA was tested 30 times with random seeds
for each problem instance and prc combination. The objective function values of the best
solutions found for each of 30 runs were averaged and reported in Table 8 with the related
standard deviations.

When the results given in Table 8 are investigated, it is seen that the change trend
of the pIPA with the different prc for 200-dimensional problems is similar to the change
trend of the pIPA with the different prc for 100-dimensional problems. The pIPA obtains
the global minimum solutions with the different values assigned to the prc for the f1, f6, f9,
and f11 functions. Moreover, it finds almost the same mean best objective function values
for the f5 function with all nine different values of the prc as in the previous experimental
settings. For f2, f9, and f12 functions, pIPA obtains better or slightly changed solutions
when the value assigned to the prc increases from 30 to 80 or even 90. Similar generalization
can also be made for the f3 and f4, f10 functions by considering the prc increasing from 30
to 40 and f7 function by considering the prc increasing from 60 to 90. However, it should
be noted that more robust solutions for the f7 function can be obtained with the prc less
than 40.

The changes in the average number of donors and receivers of the pIPA for 200-
dimensional benchmark functions can be examined with Table 9. As seen from Table 9, pIPA
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tries to adjust the number of donors and receivers for the f1, f4, f6, f9, f10 and f11 functions
while the number of donors and receivers remains unchanged for the other functions.
Choosing the value of the prc relatively close to its upper or lower bound decreases the
number of possible donors or receivers. However, the donor–receiver selection strategy of
the pIPA can increase the number of donors compared to the number of donors determined
with the value of the prc, if the objective function values of the qualified individuals are
relatively close to each other or same. Otherwise, the number of donors and receivers is
simply calculated using the assigned value to the prc.

Table 8. Results of pIPA with different prc values for 200-dimensional problems.

Fn.
prc

30 35 40 50 60 70 80 90 95

f1
Mean 1.1215×

10−182
2.8211×
10−219

1.7872×
10−246

2.8169×
10−270

1.5992×
10−294 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100

Std. 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100

f2

Mean 2.8799×
10−99

1.1070×
10−117

2.4705×
10−131

2.0965×
10−156

2.4892×
10−172

1.1690×
10−190

3.3511×
10−211

3.0729×
10−231

8.6019×
10−230

Std. 7.2337×
10−99

2.6396×
10−117

9.5837×
10−131

6.4228×
10−156 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100

f3
Mean 3.7471×

10−178
4.6140×
10−208

1.5437×
10−230

1.1330×
10−209

2.1382×
10−198

3.0109×
10−215

1.6846×
10−166 1.8593× 103 4.0131× 104

Std. 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 9.1681× 103 5.6737× 104

f4

Mean 1.4745× 10−3 8.5540× 10−4 6.7365× 10−5 6.7504× 101 9.2555× 101 9.2763× 101 9.2663× 101 9.2800× 101 9.2963× 101

Std. 2.0434× 10−3 1.8510× 10−3 7.4571× 10−5 4.1415× 101 1.1149× 100 9.8683×
10−1 1.1799× 100 1.1458× 100 1.7564× 100

f5

Mean 1.9882× 102 1.9882× 102 1.9876× 102 1.9759× 102 1.9775× 102 1.9754× 102 1.9785× 102 1.9767× 102 1.9786× 102

Std. 9.2636× 10−2 1.6440× 10−1 1.2063× 10−1 7.4994×
10−1

6.2291×
10−1

7.5397×
10−1

5.3892×
10−1 5.9048× 10−1 5.7341× 10−1

f6
Mean 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100

Std. 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100

f7

Mean 5.8805×
10−11 1.6428× 10−9 1.2257×

10−10
5.2013×

10−5
6.2282×

10−5
4.6898×

10−5
4.5043×

10−5 3.4159× 10−5 5.6158× 10−5

Std. 2.2231×
10−10 7.1936× 10−9 3.7133×

10−10
5.1521×

10−5
6.7997×

10−5
5.6567×

10−5
3.7871×

10−5 4.4515× 10−5 5.5912× 10−5

f8
Mean −2.7710× 104 −2.7707× 104 −2.7642× 104 −5.2524×

104
−5.3241×

104
−5.4380×

104
−5.5547×

104 −5.6822× 104 −5.7392× 104

Std. 5.9042× 102 5.5372× 102 5.1354× 102 5.0406× 102 5.4389× 102 6.0775× 102 4.8143× 102 7.2056× 102 6.4177× 102

f9
Mean 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 8.1740× 100

Std. 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 4.4770× 101

f10

Mean 4.4408×
10−16

4.4408×
10−16

4.4408×
10−16 1.9850× 101 1.9820× 101 1.9760× 101 1.9702× 101 1.8912× 101 1.8881× 101

Std. 1.0029×
10−31

1.0029×
10−31

1.0029×
10−31

2.0332×
10−2

1.8486×
10−2

3.8931×
10−2

4.7974×
10−2 3.5734× 100 3.5692× 100

f11
Mean 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100

Std. 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100 0.0000× 100

f12

Mean 1.1439× 100 1.1261× 100 1.0911× 100 2.4680×
10−1

1.9084×
10−1

1.4524×
10−1

1.2154×
10−1 1.1938× 10−1 1.9465× 10−1

Std. 1.6359× 10−2 1.2593× 10−2 6.9926× 10−3 2.4716×
10−2

2.7305×
10−2

1.7195×
10−2

1.9028×
10−2 1.9587× 10−2 5.0395× 10−2

The results of the pIPA for 200-dimensional problems should be validated with the
comparison to the results of other meta-heuristics obtained under the same conditions.
For this purpose, pIPA was compared with the standard implementation of the IPA [51],
ALO [25], PSO [55], SMS [44], BA [19], FPA [20], CS [17], FA [18] and GA [6]. Although
population sizes of the tested algorithms were equal to 100, the maximum evaluation
number was set to 500, 000. The prc of the pIPA was 90 for f1, f2, f5, f6, f8 and f12. Also,
it was determined as 40 for the f3, f4, f7, f9, f10 and f11. When the mean best objective
function values and standard deviations of the algorithms in Table 10 are controlled, it is
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seen that pIPA outperforms other tested algorithms or obtains the same mean best objective
function values for ten of 12 benchmark functions. Although pIPA lags behind the ALO
for the f5 function and the IPA for the f8 function, it becomes the second-best algorithm
among other competitors for these functions and proves its superiority with the average
rank equal to 1.1667.

Table 9. Average number of donors and receivers for 200-dimensional problems.

Fn.
prc

30 35 40 50 60 70 80 90 95

f1
Dn. 70.000 65.000 60.000 50.000 40.000 31.343 24.311 15.852 9.420

Rcv. 30.000 35.000 40.000 50.000 60.000 68.657 75.689 84.148 90.580

f2
Dn. 70.000 65.000 60.000 50.000 40.000 30.000 20.000 10.000 5.000

Rcv. 30.000 35.000 40.000 50.000 60.000 70.000 80.000 90.000 95.000

f3
Dn. 70.000 65.000 60.000 50.000 40.000 30.000 20.000 10.000 5.000

Rcv. 30.000 35.000 40.000 50.000 60.000 70.000 80.000 90.000 95.000

f4
Dn. 99.935 99.835 99.732 63.163 40.011 30.019 20.012 10.002 5.000

Rcv. 0.065 0.165 0.268 36.837 59.989 69.981 79.988 89.998 95.000

f5
Dn. 70.000 65.000 60.000 50.000 40.000 30.000 20.000 10.000 5.000

Rcv. 30.000 35.000 40.000 50.000 60.000 70.000 80.000 90.000 95.000

f6
Dn. 75.762 73.184 71.157 68.889 66.870 64.581 61.846 58.152 55.175

Rcv. 24.238 26.816 28.843 31.111 33.130 35.419 38.154 41.848 44.825

f7
Dn. 70.000 65.000 60.000 50.000 40.000 30.000 20.000 10.000 5.000

Rcv. 30.000 35.000 40.000 50.000 60.000 70.000 80.000 90.000 95.000

f8
Dn. 70.000 65.000 60.000 50.000 40.000 30.000 20.000 10.000 5.000

Rcv. 30.000 35.000 40.000 50.000 60.000 70.000 80.000 90.000 95.000

f9
Dn. 75.626 73.034 70.960 68.453 65.456 62.104 58.387 53.313 47.864

Rcv. 24.374 26.966 29.040 31.547 34.544 37.896 41.613 46.687 52.136

f10
Dn. 75.344 72.676 70.188 50.000 40.000 30.000 20.000 11.278 5.001

Rcv. 24.656 27.324 29.812 50.000 60.000 70.000 80.000 88.722 94.999

f11
Dn. 75.696 73.098 71.006 65.040 65.088 61.427 57.289 52.021 47.660

Rcv. 24.304 26.902 28.994 34.960 34.912 38.573 42.711 47.979 52.340

f12
Dn. 70.000 65.000 60.000 50.000 40.000 30.000 20.000 10.000 5.000

Rcv. 30.000 35.000 40.000 50.000 60.000 70.000 80.000 90.000 95.000

The comparison between pIPA and other meta-heuristics for classical benchmark
problems was completed by the results of the Wilcoxon signed rank test with the signifi-
cance level 0.05. From the test results given in Table 11, it is understood that the solutions
obtained by the pIPA for 200-dimensional problems are strong enough to generate a sta-
tistical difference in favor of the pIPA. Although the ρ value is found equal to 0.0022 for
the statistical comparison between the pIPA and PSO, SMS, BA, FPA, CS, FA, or GA and
proves that the difference is in favor of pIPA, the ρ value is found equal to 0.0151 for the
statistical comparison between pIPA and ALO and 0.0285 for the statistical comparison
between pIPA and IPA. The results found by the IPA for the f8 function and ALO for the
f5 function cause a slight change in the ρ values. However, it is still less than 0.05, and
validates the comparative performance of the pIPA.
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Table 10. Comparison between pIPA and other meta-heuristics for 200-dimensional problems.

Fn. pIPA IPA ALO PSO SMS BA FPA CS FA GA

f1

Mean 0.0000× 100 1.1523×
10−189 7.8900× 10−07 2.3799× 101 1.0392× 103 1.1173× 103 5.5989× 101 3.8000× 10−05 7.6128× 101 2.2775× 102

Std. 0.0000× 100 0.0000× 100 1.1000× 10−07 1.1721× 101 4.2430× 10−1 2.0731× 104 3.2678× 101 1.8500× 10−5 1.57444× 100 1.8656× 102

Rank 1 2 3 5 9 10 6 4 7 8

f2

Mean 3.0729×
10−231

2.0701×
10−144 5.3082× 102 2.3787× 102 1.8324× 103 3.8428× 103 2.8060× 102 4.0010× 102 6.1119× 102 6.3226× 103

Std. 0.0000× 100 1.1305×
10−143 2.2267× 102 2.2432× 101 1.2200× 10−2 4.6828× 102 6.9384× 100 8.6560× 10−1 7.1219× 101 1.0927× 103

Rank 1 2 6 3 8 9 4 5 7 10

f3

Mean 1.5437×
10−230 1.6826× 105 2.3314× 103 4.6933× 103 2.0349× 103 1.0908× 103 2.4219× 104 1.2957× 104 1.4852× 104 1.1206× 104

Std. 0.0000× 100 1.3627× 105 5.0718× 102 5.0357× 102 3.7800× 10−1 4.7506× 102 8.5400× 103 6.3375× 102 6.4184× 103 3.9861× 103

Rank 1 10 4 5 3 2 9 7 8 6

f4

Mean 6.7365× 10−5 8.3428× 101 3.0580× 101 4.0111× 101 3.0026× 102 6.5667× 101 3.7689× 101 3.0936× 101 2.7360× 100 1.0154× 102

Std. 7.4571× 10−5 1.2702× 100 1.1446× 100 5.8790× 10−1 2.3000× 10−3 2.8293× 100 2.4572× 100 1.6877× 100 5.4729× 10−1 2.5321× 100

Rank 1 9 4 7 3 8 6 5 2 10

f5

Mean 1.9767× 102 1.9816× 102 1.6704× 102 9.1123× 102 3.8635× 103 1.4108× 103 3.1507× 103 3.3267× 102 1.3217× 103 9.6449× 102

Std. 5.9048× 10−1 3.9420× 10−1 4.9746× 101 9.5245× 101 5.3290× 10−1 5.9107× 102 1.4906× 103 1.5988× 102 1.1476× 102 7.4876× 102

Rank 2 3 1 5 10 8 9 4 7 6

f6

Mean 0.0000× 100 0.0000× 100 7.6000× 10−7 4.3421× 101 2.4944× 103 5.1206× 101 1.6699× 102 8.1700× 10−5 7.8420× 101 4.8256× 102

Std. 0.0000× 100 0.0000× 100 7.3900× 10−8 1.4206× 101 3.0000× 10−4 1.2005× 101 4.1109× 101 4.5500× 10−5 2.3405× 100 2.7861× 102

Rank 1 1 3 5 10 6 8 4 7 9

f7

Mean 1.2257× 10−10 7.7848× 10−4 5.0546× 10−2 1.7321× 101 2.8359× 101 2.4344× 100 4.8391× 100 4.0131× 10−1 2.7300× 10−2 1.1656× 102

Std. 3.7133× 10−10 1.1574× 10−3 1.4407× 10−2 4.0133× 100 1.9900× 10−5 1.2756× 10−1 1.5354× 100 8.7070× 10−3 4.1100× 10−3 6.016× 101

Rank 1 2 4 8 9 6 7 5 3 10

f8

Mean −5.6822× 104 −6.1749× 104 −4.4426× 104 −1.8136× 104 −3.5969× 104 −2.5632× 104 −4.5771× 104 −5.2600× 104 −3.9753× 104 −2.8660× 104

Std. 7.2056× 102 4.8328× 102 1.4425× 103 4.9624× 103 8.7650× 10−1 8.6947× 102 3.0978× 103 1.5604× 102 6.4969× 102 1.0110× 103

Rank 2 1 5 10 7 9 4 3 6 8
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Table 10. Cont.

Fn. pIPA IPA ALO PSO SMS BA FPA CS FA GA

f9

Mean 0.0000× 100 1.1293× 102 6.1389× 102 7.4858× 102 4.8001× 102 7.2338× 102 7.0295× 102 5.4158× 102 4.7545× 102 1.6458× 103

Std. 0.0000× 100 4.6876× 101 6.6795× 101 2.4301× 101 2.3650× 10−1 1.0096× 102 6.9653× 101 4.1889× 101 2.8058× 101 3.7155× 101

Rank 1 2 6 9 4 8 7 5 3 10

f10

Mean 4.4408× 10−16 4.4409× 10−16 2.3058× 100 1.5183× 101 1.7293× 101 1.8159× 101 1.7544× 101 1.7654× 101 2.4297× 100 2.0361× 101

Std. 1.0029× 10−31 1.0029× 10−31 2.5542× 10−1 5.7627× 10−1 9.7400× 10−2 6.7775× 10−2 1.6684× 10−1 2.9820× 100 3.8545× 10−2 1.4256× 10−1

Rank 1 1 3 5 6 9 7 8 4 10

f11

Mean 0.0000× 100 0.0000× 100 7.4240× 10−3 3.2412× 103 4.8015× 103 4.9370× 103 1.8074× 102 1.1910× 10−3 1.7048× 100 3.3068× 103

Std. 0.0000× 100 0.0000× 100 6.5100× 10−3 1.3749× 102 8.5320× 10−1 2.6842× 102 3.6084× 101 1.1480× 10−3 1.4301× 10−2 1.1330× 102

Rank 1 1 4 7 9 10 6 3 5 8

f12

Mean 1.1938× 10−1 1.4009× 10−1 5.3982× 100 4.0700× 105 1.0000× 108 1.6900× 109 4.3700× 107 1.0000× 1010 2.3426× 101 8.1400× 109

Std. 1.9587× 10−2 9.6674× 10−2 5.9591× 10−1 4.7700× 105 1.9900× 10−5 4.2800× 108 3.2200× 107 4.5000× 10−3 5.5985× 10−1 9.5400× 108

Rank 1 2 3 5 7 8 6 10 4 9

Average 1.1667 3.0000 3.8333 6.1667 7.0833 7.7500 6.5833 5.2500 5.2500 8.6667

Overall 1 2 3 6 8 9 7 4 4 10

Table 11. Statistical comparison between pIPA and other algorithms for 200-dimensional problems.

pIPA vs. Z-val. R+ R− ρ-val. Sign.

IPA −2.1915 6 22 0.0285 pIPA

ALO −2.4318 8 70 0.0151 pIPA

PSO −3.0594 0 78 0.0022 pIPA

SMS −3.0594 0 78 0.0022 pIPA

BA −3.0594 0 78 0.0022 pIPA

FPA −3.0594 0 78 0.0022 pIPA

CS −3.0594 0 78 0.0022 pIPA

FA −3.0594 0 78 0.0022 pIPA

GA −3.0594 0 78 0.0022 pIPA
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4.2. Solving CEC 2015 Benchmark Problems with pIPA

The complexities of the benchmark problems can be increased using operations related
to shifting, rotation, hybridization, and composition. To investigate the performance of
pIPA on solving these kinds of problems, ten different 30-dimensional problems introduced
at CEC 2015 were chosen, and their names, base functions, and global minimums are listed
in Table 12 [61]. The lower and upper bounds of these functions were equal to −100 and
+100 [61]. Although the f1 and f2 functions in Table 12 are rotated, f3, f4, f5, f6, f7 and f8
functions are both shifted and rotated [61]. Moreover, while the f9 is a hybrid function
generated by four base functions, the f10 is a compositional function joining three base
functions [61]. When solving the problems given in Table 12, the population size of the
pIPA was set to 100, and the maximum evaluation number was taken equal to 100,000 [37].
Nine different values including 30, 35, 40, 50, 60, 70, 80, 90 and 95 were assigned to prc and
pIPA was tested 30 times with random seeds for each problem and prc combination. The
objective function values of the best solutions found by each of 30 runs were averaged and
reported in Table 13 with the related standard deviations. The results given in Table 13
guide us to interpret the change trend of the pIPA with the varied prc values. For the f1
and f2 functions, the objective function values of the obtained solutions by pIPA grow
better with the prc increasing from 30 to 90 or 95. Similar generalizations can be made for
the remaining functions except f5. Although the increasing values of prc from 30 to 60 or
70 improves the qualities of the solutions found by pIPA for f3, f7, f9 and f10 functions, the
qualities of the solutions found by pIPA grow better with the prc increasing from 30 to 50.
Only for the f5 function do the values assigned to the prc not cause a significant change in
the solution qualities of the pIPA. Figure 3 should also be viewed to analyze the effect of
the prc on the performance of the pIPA.

Table 12. CEC 2015 benchmark functions used in experiments.

Fn. Name Related Basic Functions Min.

f1 Rotated Bent Cigar Function Bent Cigar function 100

f2 Rotated Discus Function Discus function 200

f3 Shifted and Rotated Weierstrass function Weierstrass function 300

f4 Shifted and Rotated Katsuura function Katsuura function 500

f5 Shifted and Rotated HappyCat function HappyCat function 600

f6 Shifted and Rotated HGBat function HGBat function 700

f7
Shifted and Rotated Expanded Griewank’s

plus Rosenbrock’s function
Griewank’s function

Rosenbrock’s function
800

f8
Shifted and Rotated Expanded Scaffer’s

f6 function
Expanded Scaffer’s f6

function
900

f9 Hybrid function 2 (N = 4)
Griewank’s function
Weierstrass function

Rosenbrock’s function
Scaffer’s f6 function

1100

f10 Compositional function 2 (N = 3)
Schwefel’s function
Rastrigin’s function

High conditioned elliptic

1400
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Table 13. Results of pIPA with different prc values for CEC 2015 problems.

Fn.
prc

30 35 40 50 60 70 80 90 95

f1

Mean 3.7533×
1010

2.9575×
1010

2.0975×
1010

1.3501×
108

8.2414×
107

5.9617×
107

4.5641×
106

3.4240×
106

4.1827×
107

Std. 2.3379×
109

1.6950×
109

1.8107×
109

3.6707×
107

2.8997×
107

2.3105×
107

1.4370×
105

1.1789×
105

1.8977×
107

f2

Mean 5.5678×
104

5.5316×
104

5.5047×
104

4.8000×
104

4.6881×
104

4.1987×
104

3.8121×
104

3.1553×
104

2.7425×
104

Std. 2.2628×
103

2.6524×
103

3.7518×
103

6.0388×
103

5.1357×
103

4.8650×
103

3.9484×
103

4.0584×
103

3.8092×
103

f3

Mean 3.3521×
102

3.3408×
102

3.3278×
102

3.2453×
102

3.2029×
102

3.2089×
102

3.2511×
102

3.2575×
102

3.2651×
102

Std. 6.7262×
10−1

6.2092×
10−1

9.7994×
10−1

1.6189×
100

1.8962×
100

2.2909×
100

1.9613×
100

2.1401×
100

2.5209×
100

f4

Mean 5.0261×
102

5.0268×
102

5.0276×
102

5.0156×
102

5.0157×
102

5.0145×
102

5.0153×
102

5.0147×
102

5.0161×
102

Std. 3.5864×
10−1

3.3103×
10−1

3.6355×
10−1

2.0925×
10−1

2.1087×
10−1

2.4310×
10−1

2.2454×
10−1

2.7693×
10−1

2.5106×
10−1

f5

Mean 6.0469×
102

6.0415×
102

6.0360×
102

6.0035×
102

6.0038×
102

6.0040×
102

6.0042×
102

6.0047×
102

6.0049×
102

Std. 1.4170×
10−1

1.6344×
10−1

1.4724×
10−1

4.7426×
10−2

4.0651×
10−2

5.9554×
10−2

5.4631×
10−2

6.6338×
10−2

8.6378×
10−2

f6

Mean 7.7346×
102

7.5805×
102

7.4284×
102

7.0029×
102

7.0029×
102

7.0030×
102

7.0030×
102

7.0033×
102

7.0035×
102

Std. 4.3267×
100

3.5335×
100

3.8707×
100

3.2153×
10−2

3.4482×
10−2

3.0737×
10−2

2.9642×
10−2

4.1421×
10−2

1.1513×
10−1

f7

Mean 9.8282×
105

5.9951×
105

2.2924×
105

8.5259×
102

8.4316×
102

8.4540×
102

8.3899×
102

8.4464×
102 8.47642

Std. 1.9916×
105

1.9050×
105

1.0964×
105

1.1751×
101

8.4363×
100

6.5648×
100

7.3209×
100

1.1603×
101

1.5102×
101

f8

Mean 9.1330×
102

9.1326×
102

9.1314×
102

9.1252×
102

9.1256×
102

9.1264×
102

9.1246×
102

9.1237×
102

9.1251×
102

Std. 1.7393×
10−1

1.4398×
10−1

2.3888×
10−1

4.1683×
10−1

2.7116×
10−1

2.7380×
10−1

4.4246×
10−1

4.0923×
10−1

4.9238×
10−1

f9

Mean 1.2639×
103

1.2533×
103

1.2340×
103

1.1228×
103

1.1222×
103

1.1222×
103

1.1225×
103

1.1223×
103

1.1228×
103

Std. 1.0271×
101

5.6144×
100

1.3142×
101

1.2191×
100

1.2990×
100

1.5804×
100

1.4814×
100

1.7848×
100

2.1571×
100

f10

Mean 1.7523×
103

1.7371×
103

1.7177×
103 1.6323e+03 1.6319×

103
1.6327×

103
1.6318×

103
1.6319×

103
1.6227×

103

Std. 1.2547×
101

9.8808×
100

1.1279×
101

6.5722×
100

5.8315×
100

4.2383×
100

5.6273×
100

5.8416×
100

4.4104×
100
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Figure 3. Changes in pIPA with different prc values for f2 (a), f3 (b), f4 (c), f5 (d), f9 (e) and f10

(f) functions.

For validating the qualities of the solutions found by the pIPA, its mean best objective
function values and standard deviations are compared with the mean best objective function
values and standard deviations belonging to the IPA [51], SOA [37], SHO [35], GWO [23],
PSO [55], MFO [24], MVO [27], SCA [26], GSA [41], GA [6] and DE [56] as in Table 14. To
ensure that the comparison is made under the same conditions, the population size and
maximum evaluation number were set to 100 and 100,000 for all algorithms [37]. The prc
value of the pIPA was taken equal to 50 for f5 and f6 functions, 60 for f3 and f9 functions, 70
for f4 function, 80 for f7 function, 90 for f1 and f8 functions, 95 for f2 and f10 functions. The
NoR and NoD parameters of the IPA were set to 1. The results given in Table 14 showed
that the pIPA and IPA outperform SOA, SHO, GWO, PSO, MFO, MVO, SCA, GSA, GA
and DE for the f4, f5, f6, f8, f9 and f10 functions. Although all the tested algorithms find
the same mean best objective function values for the f3 function, SOA outperforms tested
algorithms for the f1 function, and GSA outperforms tested algorithms for the f2 function.
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Table 14. Comparison between pIPA and other meta-heuristics for CEC 2015 problems.

Fn. pIPA IPA SOA SHO GWO PSO MFO MVO SCA GSA GA DE

f1

Mean 3.42×
106

1.28×
106

2.55×
105

2.28×
106

2.02×
106

4.37×
105

1.47×
106

6.06×
105

7.65×
106

3.20×
107

8.89×
106

6.09×
106

Std. 1.17×
105

4.46×
105

2.45×
105

2.18×
106

2.01×
106

1.81×
105

1.00×
106

5.02×
105

3.07×
106

2.98×
106

6.95×
106

5.11×
106

Rank 8 4 1 7 6 2 5 3 10 12 11 9

f2

Mean 2.74×
104

5.46×
104

5.53×
106

3.13×
105

5.65×
106

9.41×
103

1.97×
104

1.43×
104

7.33×
108

4.58×
103

2.97×
105

4.40×
104

Std. 3.80×
103

1.01×
104

8.37×
104

2.10×
105

2.19×
106

4.82×
103

1.46×
104

1.03×
104

2.33×
108

1.09×
103

2.85×
103

2.75×
104

Rank 5 7 10 9 11 2 4 3 12 1 8 6

f3

Mean 3.20×
102

3.20×
102

3.20×
102

3.20×
102

3.20×
102

3.20×
102

3.20×
102

3.20×
102

3.20×
102

3.20×
102

3.20×
102

3.20×
102

Std. 1.89×
100

7.21×
10−3

3.71×
10−3

3.76×
10−2

7.08×
10−2

8.61×
10−2

9.14×
10−2

3.19×
10−2

7.53×
10−2

1.02×
10−3

2.78×
10−2

1.15×
10−3

Rank 1 1 1 1 1 1 1 1 1 1 1 1

f4

Mean 5.01×
102

5.01×
102

9.54×
102

9.13×
102

9.20×
102

8.65×
102

1.33×
103

1.09×
103

1.76×
103

1.75×
103

1.26×
103

3.34×
103

Std. 2.43×
10−1

1.64×
10−1

2.12×
102

1.85×
102

1.78×
102

2.16×
102

3.45×
102

2.81×
102

2.30×
102

2.79×
102

1.86×
102

3.01×
102

Rank 1 1 6 4 5 3 9 7 11 10 8 12

f5

Mean 6.00×
102

6.00×
102

2.47×
103

1.29×
104

2.26×
104

1.86×
103

7.35×
103

3.82×
103

2.30×
104

3.91×
106

2.91×
105

5.39×
104

Std. 4.74×
10−2

1.91×
10−2

1.40×
103

1.15×
104

2.07×
104

1.28×
103

3.82×
103

2.44×
103

1.91×
104

2.70×
106

1.67×
105

2.40×
104

Rank 1 1 4 7 9 3 6 5 8 12 11 10

f6

Mean 7.00×
102

7.00×
102

7.02×
102

7.02×
102

7.02×
102

7.02×
102

7.02×
102

7.02×
102

7.06×
102

7.08×
102

7.08×
102

7.06×
102

Std. 3.21×
10−2

2.71×
10−2

5.76×
10−1

6.76×
10−1

7.07×
10−1

7.75×
10−1

1.10×
100

9.40×
10−1

9.07×
10−1

1.32×
100

2.97×
100

3.87×
100

Rank 1 1 3 3 3 3 3 3 9 12 12 9

f7

Mean 8.38×
102

8.27×
102

1.65×
103

1.86×
103

3.49×
103

3.43×
103

9.93×
103

2.58×
103

6.73×
103

6.07×
105

5.79×
104

5.60×
103

Std. 7.32×
100

3.86×
100

2.12×
103

1.98×
103

2.04×
103

2.77×
103

8.74×
103

1.61×
103

3.36×
103

4.81×
105

2.76×
104

5.15×
104

Rank 2 1 3 4 7 6 10 5 9 12 11 8

f8

Mean 9.12×
102

9.12×
102

1.00×
103

1.00×
103

1.00×
103

1.00×
103

1.00×
103

1.00×
103

1.00×
103

1.00×
103

1.00×
103

1.00×
103

Std. 4.09×
10−1

2.10×
10−1

7.35×
10−1

1.43×
10−1

1.28×
10−1

7.23×
10−2

2.20×
10−1

5.29×
10−2

9.79×
10−1

5.33×
100

3.97×
100

4.05×
100

Rank 1 1 3 3 3 3 3 3 3 3 3 3

f9

Mean 1.12×
103

1.12×
103

1.32×
103

1.38×
103

1.40×
103

1.35×
103

1.37×
103

1.39×
103

1.35×
103

1.41×
103

1.36×
103

1.65×
103

Std. 1.29×
100

1.29×
100

1.34×
101

2.42×
101

5.81×
101

1.12×
102

8.97×
101

5.42×
101

1.11×
102

7.73×
101

5.39×
101

3.00×
101

Rank 1 1 3 8 10 4 7 9 4 11 6 12

f10

Mean 1.62×
103

1.62×
103

3.78×
103

4.25×
103

7.29×
103

7.10×
103

7.60×
103

7.34×
103

7.51×
103

9.30×
103

8.96×
103

6.08×
103

Std. 4.41×
100

4.09×
100

2.32×
103

1.73×
103

2.45×
103

3.12×
103

1.29×
103

2.47×
103

1.52×
103

1.94×
103

6.32×
103

5.83×
103

Rank 1 1 3 4 7 6 10 8 9 12 11 5

Average 2.200 1.900 3.700 5.000 6.200 3.300 5.800 4.700 7.600 8.600 8.200 7.500

Overall 2 1 4 6 8 3 7 5 10 12 11 9

4.3. Solving Noise Minimization Problem with pIPA

The volume, velocity, variety, and veracity properties of the data moved the difficulties
of data-dependent optimization problems into another stage [62,63]. One of the data-
dependent optimization problems has recently been introduced by Abbass et al., and a
special competition has been organized at CEC 2015 with the name BigOpt [64]. The real-
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world optimization problem introduced by Abbass et al. mainly focuses on minimizing
the measurement noise of the electro-encephalography (EEG) signals [65,66]. They stored
0.5 megabit of binary formatted data and 20 kilobyte of text formatted data per second and
organized them for providing different problem instances. If the measurement of the EEG
signal is extended to a period of time, a unique problem instance per second by neglecting
the time spent for the storage and preparation will be encountered. Assume that X and S
are two different matrices of size N ×M. Although N corresponds to the number of time
series belonging to the EEG signal, M is used on behalf of the number of elements for a
time series. In addition to the X and S matrices, there is a square transformation matrix A
of size N× N, and it relates S matrix to the X matrix as described in Equation (7) [64]. If the
S matrix is matched with the EEG signal containing N time series with M samples in each
series, the noise-free part of the S showed by S1 and the noise part of the S showed by S2
must be obtained and used with the A matrix for finding X as in Equation (8) [65,66]. Even
though the relationship between S, S1 and S2 matrices is straightforward, a simple method
splitting the S matrix into S1 and S2 matrices cannot be found easily. By considering the
difficulty of splitting the S matrix, Abbass et al. decided to guide the Pearson Correlation
Coefficients showed as C in Equation (9) [66]. In Equation (9), covar(X, A × S1) is the
covariance matrix and var(X) and var(A× S1) are variance matrices, respectively.

X = A× S (7)

X = A× (S1 + S2) = A× S1 + A× S2 (8)

C =
covar(X, A× S1)

var(X)× var(A× S1)
(9)

Abbass et al. also stated that the diagonal and off-diagonal elements of the C matrix
have important information about the appropriateness of the S1 matrix and can be refer-
enced for splitting the original S matrix [65,66]. Although the S1 matrix is obtained from
the S matrix, the diagonal elements of the C should be maximized, and other elements
should be minimized by considering the upper and lower bounds. To understand how the
calculated C matrix for a guessed S1 satisfies the mentioned properties about the diagonal
and off-diagonal elements, Equation (10) is utilized [65,66].

f1 =
1

(N2 − N) ∑
i 6=j

(Cij)
2 +

1
N ∑

i
(1− Cii)

2 (10)

Another important situation that should be controlled when the S1 matrix is tried to
be determined is its similarity with the original S matrix. Because the S1 matrix represents
the noise-free part of the original S matrix, the difference between S and S1 matrices should
be minimized. For measuring the difference between S and S1 matrices, Equation (11) can
be used [65,66]. As easily seen from Equation (11), the S1 matrix should be chosen relatively
close to the S matrix for representing the properties of the EEG signal. When the S1 matrix
is tried to be found by guiding the minimization of the sum of f1 and f2, an optimization
problem can be introduced. For analyzing the performance of the solving techniques on
the mentioned optimization problem, different instances named D4, D4N, D12, and D12N
were introduced by Abbass et al. and required X, A, and S matrices for each instance were
reported [65,66]. The D4 and D12 instances have four and 12 time series with length 256.
Similar to the D4 and D12 instances, D4N and D12N instances also have four and 12 time
series with length 256. However, these problem instances are changed slightly with the
additional noise components.

f2 =
1

N ×M ∑
ij
(Sij − S1ij)

2 (11)
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The pIPA was tested for solving the D4, D4N, D12, and D12N problem instances. The
population size of pIPA was set to 50 [51]. Nine different values including 30, 35, 40, 50,
60, 70, 80, 90 and 95 were assigned to the prc. For each combination of problem instance
and prc, pIPA was tested 30 times with random seeds by setting the maximum evaluation
number to 10,000 [51]. The mean best objective function values and standard deviation of
each test scenario were recorded and presented in Table 15. The results given in Table 15
showed that mean best objective function values of pIPA decrease with the increasing value
of the prc from 30 to 80 for D4, D4N, and D12 problem instances and increasing value
of the prc from 30 to 90 for D12N problem instance. Although the appropriate value of
the prc parameter is 80 for D4, D4N, and D12 problem instances by considering the mean
best objective function values, the appropriate value of the prc parameter is 90 for D12N
problem instance by considering the mean best objective function values.

Table 15. Results of pIPA with different prc values for D4, D4N, D12 and D12N instances.

Ins.
prc

30 35 40 50 60 70 80 90 95

D4

Mean 1.8513×
100

1.7988×
100

1.7444×
100

1.6592×
100

1.6571×
100

1.6330×
100

1.6211×
100

1.6393×
100

1.6320×
100

Std. 6.5158×
10−2

4.6477×
10−2

5.1960×
10−2

6.2309×
10−2

5.0344×
10−2

6.0292×
10−2

5.5865×
10−2

4.9579×
10−2

5.6859×
10−2

Best 1.6644×
100

1.6852×
100

1.6513×
100

1.5322×
100

1.5596×
100

1.4706×
100

1.5267×
100

1.5120×
100

1.5268×
100

D4N

Mean 1.8411×
100

1.7952×
100

1.7555×
100

1.6544×
100

1.6514×
100

1.6400×
100

1.6070×
100

1.6479×
100

1.6454×
100

Std. 6.1375×
10−2

6.0277×
10−2

4.9922×
10−2

4.0500×
10−2

5.5370×
10−2

6.4636×
10−2

6.8443×
10−2

6.2579×
10−2

6.4412×
10−2

Best 1.7299×
100

1.6860×
100

1.6111×
100

1.5654×
100

1.5498×
100

1.5552×
100

1.5015×
100

1.5143×
100

1.5018×
100

D12

Mean 2.0227×
100

1.9516×
100

1.8930×
100

1.8337×
100

1.8138×
100

1.8030×
100

1.7883×
100

1.7936×
100

1.8140×
100

Std. 4.8096×
10−2

4.8999×
10−2

3.7801×
10−2

4.9484×
10−2

4.5847×
10−2

3.7111×
10−2

4.1546×
10−2

3.9991×
10−2

3.8952×
10−2

Best 1.9097×
100

1.8251×
100

1.7666×
100

1.7181×
100

1.6842×
100

1.6904×
100

1.6904×
100

1.6948×
100

1.7433×
100

D12N

Mean 2.0010×
100

1.9527×
100

1.8936×
100

1.8423×
100

1.8265×
100

1.8019×
100

1.7945×
100

1.7913×
100

1.8098×
100

Std. 5.1782×
10−2

4.0127×
10−2

2.8903×
10−2

3.9681×
10−2

3.9095×
10−2

4.0286×
10−2

3.9192×
10−2

4.5911×
10−2

4.9201×
10−2

Best 1.9183×
100

1.8721×
100

1.8360×
100

1.7365×
100

1.7272×
100

1.6730×
100

1.7064×
100

1.6781×
100

1.7083×
100

The results obtained by the pIPA for noise minimization problem were compared with
the results of IPA [51], GA [6], PSO [55], DE [56], ABC [57], GSA [41], MFO [24], SCA [26],
SSA [28] and HHO [29]-based techniques. To guarantee that the comparison is made under
equal conditions, the population or colony size of the algorithms was set to 50, and the
maximum evaluation number was taken as 10,000 [51]. The prc parameter of pIPA was set
to 80 for the D4, D4N, and D12 problem instances and 90 for the D12N problem instance.
The NoD and NoR parameters of the standard IPA were equal to 4 and 8, respectively [51].
For the GA, the crossover rate was 0.95, and the mutation rate was 0.001. The inertia weight
of PSO achieved its value between 0.2 and 0.9, and both c1 and c2 acceleration coefficients
were set to 2. Although the scaling factor of DE achieved its value randomly between 0.2
and 0.8, the crossover rate was taken equal to 0.9. The limit parameter of ABC was set to the
half of PS×D where D was equal to 1024 for D4 and D4N and 3072 for D12 and D12N. The
calculation of the logarithmic spiral was completed by setting the b constant to 1 for MFO.
Assuming that l and L are current and maximum iteration numbers, the c1 coefficient of
SSA was calculated as 2e−(16l2/L2). When the best, mean best objective function values and
standard deviation over 30 independent runs given in Table 16 are controlled, it is seen that
pIPA removes artifacts or noises more robustly compared to the other tested algorithms
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for all four problem instances. The percentile-based donor–receiver selection strategy that
already proved its efficiency in solving classical benchmark problems also contributes to
the performance of the algorithm, and more robust S1 matrices are obtained.

As stated earlier, if the measurement of the EEG signal is extended to a period of time,
a unique problem instance per second will be encountered, and algorithms should generate
their solutions within a second to successfully handle the subsequent instance. To decide
whether the pIPA and some of its competitors, including IPA and ABC, can produce their
solutions within a second or not using the existing test configuration, the average execution
times in terms of seconds were calculated and then presented in Table 17. The pIPA, IPA,
and ABC were coded in C programming language. Also, all experiments were carried out
on a PC equipped with a single-core 1.33 Ghz processor. The results of Table 17 help to state
that neither pIPA nor IPA is capable of filtering EEG instances within a second. Especially
for the problem instances with 12 time series, parallelization of the algorithms is seen as a
necessity for processing the ongoing measurements.

The comparative studies between meta-heuristics should be supported with the appro-
priate statistical tests. By considering this requirement, the Wilcoxon signed rank test with
the significance level 0.05 was used again for determining whether a statistical difference
between pIPA and other tested meta-heuristics exists or not. The test results given in
Table 18 represent that the contribution of the newly proposed selection mechanism is
enough to generate a statistical difference in favor of pIPA. The results also help to state
that pIPA outperforms its competitors in almost all the 30 different runs related to the D4,
D4N, D12, and D12N instances when the calculated ρ values are considered.

Table 16. Comparison between pIPA and other algorithms for D4, D4N, D12 and D12N instances.

Ins. pIPA IPA GA PSO DE ABC GSA MFO SCA SSA HHO

D4

Mean 1.6211×
100

1.6599×
100

2.1300×
100

7.8788×
100

1.4654×
101

2.0042×
101

1.7590e×
100

2.0462×
101

6.0747×
100

2.7771×
100

1.7433×
100

Best 1.5267×
100

1.5458×
100

1.8930×
100

7.2433×
100

7.4238×
100

1.8982×
101

1.6384×
100

1.9546×
101

3.0410×
100

2.6027×
100

1.5979×
100

Std. 5.5865×
10−2

6.1728×
10−2

1.5558×
10−1

2.7104×
10−1

6.3289×
100

4.2809×
10−1

7.9340×
10−2

3.1975×
10−1

1.4271×
100

1.1751×
10−1

5.0111×
10−2

Rank 1 2 5 8 9 10 4 11 7 6 3

D4N

Mean 1.6070×
100

1.6989×
100

2.1491×
100

7.8962×
100

1.6886×
101

2.0101×
101

1.7588×
100

2.0361×
101

6.4380×
100

2.8256×
100

1.75576×
100

Best 1.5015×
100

1.5871×
100

1.8715×
100

7.5527×
100

5.3421×
100

1.9608×
101

1.5660×
100

1.9852×
101

3.5316×
100

2.6706×
100

1.6424×
100

Std. 6.8443×
10−2

5.2602×
10−2

1.5647×
10−1

2.2522×
10−1

7.0483×
100

3.2692×
10−1

8.6096×
10−2

3.5109×
10−1

1.0361×
100

8.5527×
10−2

4.2976×
10−2

Rank 1 2 5 8 9 10 4 11 7 6 3

D12

Mean 1.7883×
100

1.8370×
100

2.8016×
100

1.0634×
101

2.2396×
101

2.1958×
101

2.1962×
100

2.2027×
101

6.9154×
100

3.0998×
100

1.8565×
100

Best 1.6904×
100

1.7710×
100

2.5454×
100

1.0024×
101

2.1890×
101

2.1599×
101

2.0587×
100

2.1819×
101

5.8082×
100

2.9668×
100

1.7988×
100

Std. 4.1546×
10−2

3.8295×
10−2

1.5078×
10−1

1.9250×
10−1

2.0155×
10−1

1.9688×
10−1

5.6204×
10−2

1.2472×
10−1

4.6994×
10−1

7.3073×
10−2

3.1295×
10−2

Rank 1 2 5 8 11 9 4 10 7 6 3

D12N

Mean 1.7913×
100

1.8359×
100

2.7769×
100

1.0613×
101

2.2439×
101

2.1954×
101

2.2106×
100

2.1970×
101

6.8059×
100

3.1211×
100

1.8606×
100

Best 1.6781×
100

1.7076×
100

2.3848×
100

1.0271×
101

2.2020×
101

2.1431×
101

2.1154×
100

2.1394×
101

2.3134×
100

2.9541×
100

1.8106×
100

Std. 4.5911×
10−2

5.2990×
10−2

1.5087×
10−1

1.5696×
10−1

1.7023×
10−1

2.2401×
10−1

4.3377×
10−2

2.2827×
10−1

1.0449×
100

7.7361×
10−2

3.3679×
10−2

Rank 1 2 5 8 11 9 4 10 7 6 3

Average 1 2 5 8 10 9.5 4 10.5 7 6 3

Overall 1 2 5 8 10 9 4 11 7 6 3
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Table 17. Average execution times of pIPA, IPA and ABC for D4, D4N, D12 and D12N instances.

Ins.
pIPA

IPA ABCprc

50 80 90

D4

Best 4.084 3.834 3.710 3.454 3.886

Worst 4.213 3.931 3.829 3.579 6.985

Mean 4.168 3.897 3.775 3.479 4.469

Std. 0.030 0.025 0.030 0.030 0.999

D4N

Best 4.160 3.924 3.742 3.456 3.745

Worst 4.368 4.480 4.139 3.563 6.283

Mean 4.275 4.132 3.904 3.478 4.771

Std. 0.038 0.130 0.084 0.019 0.849

D12

Best 29.207 28.529 28.506 27.605 29.245

Worst 29.207 39.307 29.089 33.195 39.852

Mean 29.336 30.017 28.698 28.088 32.133

Std. 0.121 2.172 0.113 1.303 2.417

D12N

Best 31.527 28.583 28.567 27.592 28.337

Worst 33.102 34.402 33.017 39.336 36.514

Mean 31.773 31.120 29.714 30.095 31.042

Std. 0.308 1.131 1.267 2.720 2.564

Table 18. Statistical comparison between pIPA and other algorithms for D4, D4N, D12 and D12N
instances.

pIPA vs.
D4 D4N

Z-val. ρ-val. Sign. Z-val. ρ-val. Sign.

IPA −2.6019 0.0093 pIPA −4.1651 <0.0001 pIPA

GA −4.7821 <0.0001 pIPA −4.7821 <0.0001 pIPA

PSO −4.7821 <0.0001 pIPA −4.7821 <0.0001 pIPA

DE −4.7821 <0.0001 pIPA −4.7821 <0.0001 pIPA

ABC −4.7821 <0.0001 pIPA −4.7821 <0.0001 pIPA

GSA −4.5353 <0.0001 pIPA −4.4119 <0.0001 pIPA

MFO −4.7821 <0.0001 pIPA −4.7821 <0.0001 pIPA

SCA −4.7821 <0.0001 pIPA −4.7821 <0.0001 pIPA

SSA −4.7821 <0.0001 pIPA −4.7821 <0.0001 pIPA

HHO −4.5970 <0.0001 pIPA −4.7204 <0.0001 pIPA

pIPA vs.
D12 D12N

Z-val. ρ-val. Sign. Z-val. ρ-val. Sign.

IPA −4.3913 <0.0001 pIPA −3.1778 0.0014 pIPA

GA −4.7821 <0.0001 pIPA −4.7821 <0.0001 pIPA

PSO −4.7821 <0.0001 pIPA −4.7821 <0.0001 pIPA

DE −4.7821 <0.0001 pIPA −4.7821 <0.0001 pIPA

ABC −4.7821 <0.0001 pIPA −4.7821 <0.0001 pIPA

GSA −4.7821 <0.0001 pIPA −4.7821 <0.0001 pIPA

MFO −4.7821 <0.0001 pIPA −4.7821 <0.0001 pIPA

SCA −4.7821 <0.0001 pIPA −4.7821 <0.0001 pIPA

SSA −4.7821 <0.0001 pIPA −4.7821 <0.0001 pIPA

HHO −4.6176 <0.0001 pIPA −4.5765 <0.0001 pIPA
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4.4. Solving Path Planning Problem with pIPA

The operational success and safety of a UAV or UCAV are directly related to the
path or flight route on the battlefield equipped by using sophisticated anti-air weapon
systems, radars, missiles, and artilleries [67]. The path or route determined on the task
region for a UAV or UCAV should minimize the probability of being shot down and fuel
consumption [67]. By considering these objectives, Xu et al. proposed a mathematical model
describing how a path from the start point Ps = (xs, ys) to the target point Pt = (xt, yt)
can be found optimally [67]. The model described by Xu et al. first divides the line
between Ps to Pt equally into (D + 1) segments using D different segmentation points.
Each segmentation point is intersected vertically by a line, and a set of lines showed as
L = {L1, L2, . . . , LD} is generated [67]. If a point is found on each line in the set L and then
these points are connected one by one, a single path from the start point Ps to target point
Pt can be described as a set of points showed as P = {Ps, P1, P2, . . . , PD−1, PD, Pt}.

The search operations of points in the set P except the Ps and Pt can be further simpli-
fied by appropriately transforming the current coordinate system. If the current coordinate
system is transformed in a manner that the line between the Ps and Pt corresponds to the hor-
izontal axis in the new coordinate system, each point tried to be determined is represented
only single parameter [67]. For transforming the (xk, yk) point of the original coordinate
system into the suitable point of the new coordinate system, Equation (12) is employed [67].
In Equation (12), θ is the rotation angle between the x-axis of the original coordinate system
and the line between Ps and Pt and calculated as arctan((yt − ys)/(xt − xs)) [67].[

x
′
k

y
′
k

]
=

[
cos(θ) sin(θ)
−sin(θ) cos(θ)

]
×
[

xk − xs
yk − ys

]
(12)

When the required points are determined, the suitability of the path generated using
these points can be estimated with Equation (13) [67]. In Equation (13), J corresponds to the
sum of costs related to the enemy threats and fuel consumption weighted using the λ and
(1− λ), respectively. Also, while the wt represents the cost of enemy threats changing with
the length of path abbreviated as l, w f is used on behalf of the cost of fuel consumption
changing with the l [67].

J = λ
∫ l

0
wtdl + (1− λ)

∫ l

0
w f dl (13)

Even though the equation used for determining the suitability of the path is relatively
simple, it can be further purified by replacing the integral calculations with their appropriate
approximations [67]. For this purpose, the w f is first taken equal to 1, and the integral
calculation about the cost of fuel consumption becomes directly proportional to the length
of the path [67]. Second, the integral calculation about the cost of enemy threats is changed
with an approximation in which the cost of threats is determined for each segment of the
path. Assume that Lij is the segment between the segmentation points i and j. In addition
to this, Lij is divided equally into ten sub-segments, and the first, third, fifth, seventh, and
ninth sub-segmentation points are selected. For the cost of all Nt threats related to the Lij,
the summation described in Equation (14) is utilized [67]. Given that tk is the degree of the
threat k, if the segment of length Lij is within the effect range of the threat k, the cost of
threat k showed as cost(k, m) for the sub-segmentation point m is found equal to tk/d(k, m)
where d(k, m) corresponds to the Euclidean distance between the center of threat k and
sub-segmentation point m.

Jt,(ij) =
Lij

5

Nt

∑
k=1

{1,3,5,7,9}

∑
m

cost(k, m) (14)

For investigating the performance of the pIPA on the path planning problem, the
battlefield whose details are given in Table 19 was used [58,59]. The number of segmentation
points or D was taken equal to 5, 10, 15, 20, 25, 30, 35 and 40 [58,59]. The value of the λ
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coefficient was determined as 0.5 [58,59]. The population size of the pIPA and maximum
evaluation number were set to 30 and 6000 [58,59]. Six different values including 50, 60,
70, 80, 90 and 95 were assigned to the prc sequentially. The pIPA was tested 100 times
with random seeds for each combination about D and prc. The best, worst, mean best
objective function values and standard deviations of 100 runs were recorded and presented
in Table 20. The results presented in Table 20 state that the prc value should be chosen
between 60 and 70. Although the pIPA obtains more suitable paths for the UCAV on the
battlefield with D equal to 15, 20, 25, 30, and 35 by setting the prc to 60, the appropriate
value of the prc for the remaining battlefield configurations is equal to 70. The best paths
found by the pIPA with prc set to 60 for different cases can be visualized as in Figure 4.

The qualities of the paths found by the pIPA should be compared with the qualities of
the paths obtained by different meta-heuristics. For this purpose, the best, worst, mean best
objective function values and standard deviations found by the pIPA with prc equal to 60
were compared to the corresponding results of the IPA [68] with NoD and NoR equal to 1,
ABC [68] with limit equal to 100, BA [58], BAM [58], ACO [59], BBO [59], DE [59], ES [59],
FA [60], GA [59], MFA [60], PBIL [59], PSO [59], SGA [59] and PGSO [59]-based UCAV
path planners. To guarantee that the results were obtained under the same conditions,
the population or colony size of the mentioned algorithms was set to 30. Each algorithm
was executed 100 times by taking a maximum evaluation number equal to 6000, and their
results were summarized in Table 21. The results given in Table 21 showed that the pIPA is
the best path planner with the average rank calculated as 1.500 among all 16 meta-heuristics
when the mean best objective function values are considered. It outperforms other tested
algorithms or shares the first rank for the battlefield with D set to 5, 15, 30, 35, and 40.
Moreover, the paths found by the pIPA for the battlefield with D set to 20 and 25 are in the
second rank by considering the mean best objective function values. Even though the path
obtained by the pIPA for the battlefield with D set to 10 lags slightly behind its competitors,
it is still in the third rank and produces a better path compared to 13 different algorithms.

Table 19. Information about the battlefield.

Threat Location Radius Degree Start Target

1 (45,50) 10 2

(10,10) (55,100)
2 (12,40) 10 10

3 (32,68) 8 1

4 (36,26) 12 2

5 (55,80) 9 3

Table 20. Results of pIPA with different prc values for path planning.

D
prc

50 60 70 80 90 95

5

Best 50.7012 50.3814 50.3811 50.3864 50.3861 50.3849

Worst 51.3094 50.3940 50.3905 50.3899 50.3947 50.3897

Mean 51.0057 50.3846 50.3843 50.3881 50.3908 50.3875

Std. 0.0906 0.0027 0.0014 0.0015 0.0031 0.0017

10

Best 50.4067 50.3950 50.3830 50.3938 50.3793 50.3874

Worst 50.4506 50.5045 50.4432 50.4686 50.4743 50.4544

Mean 50.4297 50.4181 50.4098 50.4154 50.4310 50.4182

Std. 0.0160 0.0332 0.0141 0.0221 0.0283 0.0216



Biomimetics 2023, 8, 486 37 of 44

Table 20. Cont.

D
prc

50 60 70 80 90 95

15

Best 50.4046 50.4212 50.4547 50.4309 50.4161 50.4024

Worst 50.9706 50.9718 51.0054 50.6137 62.9473 51.0377

Mean 50.5132 50.5302 50.5909 50.5015 52.5018 50.6097

Std. 0.1316 0.1646 0.1962 0.0497 4.4307 0.1953

20

Best 50.4996 50.5009 50.4637 50.4953 50.4386 50.5217

Worst 51.0712 51.0393 68.8286 70.5922 70.9647 67.9162

Mean 50.7875 50.7526 52.8225 53.7912 52.6790 52.4902

Std. 0.2111 0.2029 5.6321 6.4586 5.6714 4.5896

25

Best 50.6205 50.5542 50.6268 50.5614 50.8930 50.6499

Worst 51.0443 51.0518 51.2583 74.4010 82.6972 86.9844

Mean 50.9344 50.9310 51.0171 52.0756 55.4928 56.0014

Std. 0.0919 0.1584 0.1221 5.1497 9.5877 10.5172

30

Best 50.7012 50.6297 50.8999 50.9168 50.9879 50.9806

Worst 51.3094 51.0698 78.2241 51.3553 81.7236 106.3330

Mean 51.0057 50.9615 52.1351 51.0416 53.4306 61.0772

Std. 0.0906 0.1188 5.3536 0.1038 8.1607 17.5799

35

Best 50.9957 50.9972 51.0092 50.9054 51.0118 51.0122

Worst 51.3873 51.3815 51.0212 108.5633 119.0773 120.7746

Mean 51.0391 51.0356 51.0139 55.4990 55.7945 62.5169

Std. 0.0951 0.0820 0.0032 15.2441 15.5470 22.8805

40

Best 51.0032 50.9947 51.0068 51.0025 51.0053 50.9955

Worst 51.2577 51.1638 51.4110 51.4374 132.1328 134.8970

Mean 51.0572 51.0429 51.0844 51.0958 60.7355 76.0852

Std. 0.0628 0.0420 0.0971 0.1274 24.9906 32.6241

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
0

20

40

60

80

100

(a) (b)

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
0

20

40

60

80

100

(c) (d)
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Best Path

PS PT
Best Path

PS PT
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Figure 4. The best paths found by pIPA for D equal to 15 (a), 25 (b), 30 (c) and 40 (d).
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Table 21. Comparison between pIPA and other meta-heuristics for path planning.

D pIPA IPA ABC BA BAM ACO BBO DE ES FA GA MFA PBIL PSO SGA PGSO

5

Best 50.385 50.384 50.384 60.690 54.357 61.372 60.330 54.357 59.590 54.359 55.247 54.357 59.763 55.167 55.654 53.380

Worst 50.394 50.385 50.385 345.255 60.240 63.320 171.500 62.200 112.260 65.740 61.600 62.419 72.250 66.071 61.200 60.630

Mean 50.384 50.384 50.384 106.483 59.054 61.520 72.730 58.596 80.720 58.750 60.470 59.167 66.139 59.906 60.501 53.669

Std. 0.002 0.001 0.001 - - - - 2.160 - 3.010 - 2.250 - 2.620 1.560 2.260

Rank 1 1 1 16 7 12 14 5 15 6 10 8 13 9 11 4

10

Best 50.395 50.376 50.371 52.360 51.395 60.228 52.947 51.395 57.420 51.399 51.607 51.397 83.112 52.207 51.549 50.649

Worst 50.504 50.457 50.406 108.738 60.7244 68.190 76.820 56.736 123.460 56.710 60.110 53.786 119.250 68.622 56.165 53.330

Mean 50.418 50.398 50.384 69.425 52.707 61.950 57.965 53.104 76.280 52.180 52.542 51.574 101.440 57.041 52.279 50.849

Std. 0.033 0.024 0.013 - - - - 2.600 - 2.370 - 1.730 - 2.250 1.430 1.870

Rank 3 2 1 14 9 13 12 10 15 6 8 5 16 11 7 4

15

Best 50.421 50.424 50.425 53.075 50.609 58.530 52.557 50.611 58.255 50.617 50.871 50.612 107.223 52.097 50.807 50.452

Worst 50.971 51.219 50.789 85.745 60.192 61.000 90.370 62.580 103.860 94.276 57.447 53.832 189.200 87.320 61.800 55.460

Mean 50.530 50.570 50.591 63.601 51.231 60.260 59.526 52.278 71.860 52.822 52.188 50.897 128.250 58.340 51.891 51.516

Std. 0.164 0.193 0.100 - - - - 3.730 - 4.250 - 1.340 - 4.010 2.450 1.490

Rank 1 2 3 14 5 13 12 9 15 10 8 4 16 11 7 6

20

Best 50.500 50.495 50.866 52.395 50.467 60.445 54.723 50.510 60.232 50.463 50.825 50.455 130.152 52.464 50.846 50.657

Worst 51.039 51.271 54.672 83.706 53.742 67.180 78.200 64.570 81.450 78.914 59.180 52.028 337.300 78.160 68.950 59.850

Mean 50.752 50.925 52.181 63.630 50.760 66.220 61.88 52.722 70.190 53.733 53.090 50.700 185.430 58.248 53.167 52.398

Std. 0.202 0.196 0.994 - - - - 3.710 - 7.580 - 1.020 - 6.950 3.990 1.560

Rank 2 4 5 13 3 14 12 7 15 10 8 1 16 11 9 6

25

Best 50.554 50.790 51.911 55.017 50.448 61.549 55.528 50.551 63.369 50.491 51.242 50.457 159.740 53.738 51.239 50.782

Worst 51.051 57.314 57.530 74.926 53.519 62.070 80.330 69.660 83.910 66.452 60.398 53.704 699.600 78.139 65.700 63.160

Mean 50.931 51.678 54.690 64.901 50.709 61.570 64.780 54.408 72.780 53.904 53.781 50.999 257.720 60.263 54.157 54.587

Std. 0.158 1.503 1.618 - - - - 4.120 - 8.660 - 0.810 - 7.550 4.060 2.380

Rank 2 4 10 14 1 12 13 8 15 6 5 3 16 11 7 9

30

Best 50.629 50.997 54.527 57.247 50.467 63.230 56.607 50.898 65.725 50.683 51.921 50.516 230.150 53.299 51.617 51.019

Worst 51.069 61.565 64.940 80.084 60.285 64.710 78.580 74.120 91.300 65.976 62.718 58.336 2396 93.695 64.710 75.320

Mean 50.961 51.789 59.805 66.616 51.106 63.950 67.870 59.988 74.780 54.962 55.008 51.357 395.540 62.385 54.521 56.891

Std. 0.118 2.275 2.366 - - - - 6.740 - 9.120 - 1.230 - 8.200 4.110 3.450

Rank 1 4 9 13 2 12 14 10 15 6 7 3 16 11 5 8

35

Best 50.997 51.005 57.259 57.448 50.479 66.960 63.021 52.537 66.745 51.083 52.311 50.471 270.330 55.503 51.633 54.136

Worst 51.381 96.301 74.095 82.737 58.819 68.720 93.850 84.440 88.76 83.887 74.479 55.883 6362 82.833 67.610 71.450

Mean 51.035 55.889 66.187 67.703 51.461 68.310 71.560 67.900 76.520 55.996 55.960 51.601 684.660 64.135 55.826 59.744

Std. 0.082 12.249 4.298 - - - - 9.150 - 9.550 - 1.650 - 8.650 4.120 4.010

Rank 1 5 10 11 2 13 14 12 15 7 6 3 16 9 4 8

40

Best 50.994 51.025 63.269 58.650 50.602 69.795 63.550 54.549 68.231 51.523 52.208 50.561 390.620 55.737 52.618 55.092

Worst 51.163 116.195 86.613 83.263 58.427 77.060 90.700 93.260 96.420 86.663 72.069 57.724 7103 84.730 67.870 72.650

Mean 51.042 55.994 75.595 69.973 51.876 74.580 74.850 77.620 80.260 57.856 57.493 52.198 1169 64.885 57.110 62.420

Std. 0.042 16.188 5.356 - - - - 10.900 - 10.430 - 2.380 - 9.410 4.550 4.540

Rank 1 4 13 10 2 11 12 14 15 7 6 3 16 9 5 8

Average 1.500 3.250 6.500 13.125 3.875 12.500 12.875 9.375 15.000 7.250 7.250 3.750 15.625 10.250 6.875 6.625

Overall 1 2 5 14 4 12 13 10 15 8 8 3 16 11 7 6

The contribution of the percentile-based selection strategy on the convergence perfor-
mance can be guessed by referencing the paths and their qualities belonging to the pIPA.
However, unique properties of the UCAV path planning problem require a further control
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for Sr and Me metrics. For this purpose, the Sr and Me values of the pIPA, IPA, and ABC
were calculated by adjusting the threshold to 55 and given in Table 22. When the Sr and
Me metrics of Table 22 are investigated, it can be seen that pIPA with prc equal to 50 or
60 obtains paths whose qualities are equal to the determined threshold or better for all eight
battlefield configurations at each of 100 different runs. Moreover, the pIPA with prc set to
70, 80, or 90 still protects its stability and converges more quickly compared to the IPA and
ABC for most of the test cases. Although the pIPA with prc set to 60 converges 1.600 times
faster compared to IPA for the battlefield with D equal to 25, it converges 1.513, 1.393 and
1.450 times faster compared to IPA for the battlefield with D equal to 30, 35 and 40.

Table 22. Sr and Me metrics of pIPA, IPA, and ABC for path planning.

D

pIPA

IPA ABCprc

50 60 70 80 90 95

5
Sr 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000

Me 113.620 394.940 339.050 236.040 254.020 169.210 221.050 219.500

10
Sr 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000

Me 1690.840 1449.350 1143.660 1198.240 1661.700 1297.700 1605.580 825.500

15
Sr 100.000 100.000 100.000 100.000 84.000 100.000 100.000 100.000

Me 2103.790 2147.470 1884.060 1944.260 2249.500 2387.500 2390.500 2120.000

20
Sr 100.000 100.000 88.000 81.000 90.000 88.000 100.000 100.000

Me 2683.500 2409.040 2455.602 2483.790 2552.822 2891.705 3041.500 3854.500

25
Sr 100.000 100.000 100.000 95.000 81.000 80.000 92.000 59.000

Me 2713.780 2749.150 2743.520 2600.653 2978.630 3248.750 4400.516 5126.000

30
Sr 100.000 100.000 96.000 100.000 92.000 74.000 90.000 5.000

Me 2875.470 2716.710 2733.083 2932.460 3009.707 3083.135 4110.603 5910.000

35
Sr 100.000 100.000 100.000 92.000 91.000 78.000 83.000 0.000

Me 3056.660 2968.200 3022.630 2743.663 3033.967 3478.551 4136.859 -

40
Sr 100.000 100.000 100.000 100.000 87.000 62.000 90.000 0.000

Me 3213.640 3120.080 3054.880 3041.440 3533.655 3621.565 4526.558 -

The comparative studies between pIPA and other techniques for the UCAV path
planning problem were concluded by controlling the results of the Wilcoxon signed rank
test with the significance level of 0.05. The test results were calculated using the best
objective function values and then presented in Table 23. As easily seen from the test
results, the difference between pIPA and IPA, ABC, BA, ACO, BBO, DE, ES, GA, PBIL, PSO,
SGA, or PGSO is enough to generate a statistical difference in favor of the pIPA. Only the
difference between the pIPA and BAM, FA, or MFA is not enough to state that there is a
statistical significance in favor of the pIPA. However, it should be noted that the ρ value
calculated for the comparison between pIPA and BAM or FA is relatively close to 0.05 and
supplies information about the qualities of the paths found by pIPA.
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Table 23. Statistical comparison between pIPA and other path planners.

pIPA vs. IPA ABC BA BAM ACO

Z-val. −1.9874 −2.4175 −2.6600 −0.9453 −2.6600

ρ-val. 0.0468 0.0156 0.0078 0.0685 0.0078

R+ 2 1 0 17 0

R− 26 28 36 19 36

Sign. pIPA pIPA pIPA - pIPA

pIPA vs. BBO DE ES FA GA

Z-val. −2.6600 −2.4175 −2.6600 −1.9213 −2.6600

ρ-val. 0.0078 0.0156 0.0078 0.0546 0.0078

R+ 0 1 0 4 0

R− 36 35 36 32 36

Sign. pIPA pIPA pIPA - pIPA

pIPA vs. MFA PBIL PSO SGA PGSO

Z-val. −0.0685 −2.6600 −2.6600 −2.6600 −2.6600

ρ-val. 0.9453 0.0078 0.0078 0.0078 0.0078

R+ 17 0 0 0 0

R− 19 36 36 36 36

Sign. - pIPA pIPA pIPA pIPA

5. Results and Discussion

The standard implementation of the IPA determines the number of donors by assigning
a constant to the NoD parameter and selects the best NoD individual or individuals from
the population as donor or donors. Similarly, IPA determines the number of receivers by
assigning a constant value to the NoR parameter and selects the worst NoR individual or
individuals from the population as receiver or receivers. Even though the usage of NoD
and NoR control parameters increases the flexibility of the IPA, deciding which values will
be convenient for these control parameters and guessing the interaction between them are
difficult. Moreover, solving some optimization problems with IPA can require adaptive
adjustment for the number of donors and receivers.

The main idea lying behind the newly introduced donor–receiver selection strategy is
providing an improved mechanism that both simplifies the initialization of the IPA and
allows the algorithm to determine the number of donors and receivers adaptively. When
the pIPA improves the qualities of the individuals in the population, it tries to extend the
set of possible donors, as easily seen from Tables 3 and 9 presenting the change trends of
the number of donors and receivers for 100 and 200-dimensional benchmark problems
even though the prc remains unchanged. If the number of possible donors is increased
by the pIPA, the chance of plasma transfer to a receiver from a different donor is also
increased. Moreover, if the pIPA decides to increase the number of donors, the number of
receivers is decreased simultaneously, and more critical receivers, i.e., poor solutions, have
a chance of improving their qualities. The pIPA can also decrease the number of donors. If
the number of donors is decreased, the number of receivers is increased simultaneously.
Because some donor candidates with relatively low qualities are discarded from the set
of possible donors, receivers have a chance of treatment with the more qualified or better
donors. Finally, if the pIPA decides that there is no receiver in the current infection cycle,
any treatment operations are not carried out, and the infection continues to spread between
the individuals of the population and exploration characteristic of the search becomes
more dominant.

As an expected result of the properties related to the percentile-based donor–receiver
selection strategy, the pIPA outperformed standard implementation of IPA and other meta-
heuristics for the vast majority of the tested numerical and complex optimization problems.
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Although the contribution of the proposed model on the qualities of the final solutions
and convergence performance becomes more apparent for the 100 and 200-dimensional
classical problems, pIPA loses its advantageous sides for some of the CEC 2015 problems.
The most powerful side of the pIPA is adjusting the number of donors and receivers by
considering the qualities of the individuals in the population. Although the value assigned
to prc remains the same until the end of execution, pIPA utilizes the special property of
the percentile calculation and changes the sets of possible donors and receivers. However,
some problems introduced at CEC 2015 are generated by hybridization or composition
of two or more basic functions. Because of this main reason, while the assigned value
to the prc and set of possible donors and receivers are appropriate for a basic function,
another participating function requires a more subtle number of donors and receivers for
the plasma treatment as in the standard IPA.

When the results obtained by the pIPA for the complex engineering problems are
investigated, the positive contribution of the newly proposed technique on the quality of
the final solution and convergence speed is understood again. The EEG noise minimization
is a big-data optimization problem and requires processing 1024 parameters at a second
for D4 and D4N instances and 3072 parameters at a second for D12 and D12N instances.
The difficulties of the problem stemmed from the high dimensionality and conflicting
objectives, claiming a more sensitive search within the promising solutions. In the pIPA,
the required sensitive search by considering the neighborhood of the promising solutions
can be satisfied by decreasing the number of donors or assigning an initial value of the prc
big enough. Another tested engineering problem, also called path planning, slightly differs
from other problems when the number of segmentation points is considered. If the number
of segmentation points or D increases, the possibility of finding a segmentation point
within the circles representing the enemy air defense systems is also increased intrinsically.
Moreover, it should be noted that even though the D is relatively small, some segmentation
points can still be relatively close to the centers of enemy threats. Because of the specific
properties of the UCAV path planning problem, the algorithms being tested should be
capable of escaping local optimal solutions more quickly. In the pIPA, the exploration
or exploitation dominant operations are tried to be managed adaptively. Although the
value of the prc parameter is set to a constant such as 50, 60, 70 and even 80, the pIPA is
capable of finding a balance between exploration and exploitation dominant operations
and more safe and robust paths are obtained compared to the standard IPA and other meta-
heuristics. However, if the prc value is not determined appropriately and the maximum
number of evaluations is not selected relatively high, it should be noted that the pIPA can
consume a substantial amount of function evaluations for accessing the required balance
and terminates without obtaining promising solutions.

6. Conclusions

In this study, the donor–receiver selection strategy of the immune plasma algorithm
(IP algorithm or IPA) was modified by guiding a statistical measure known as the percentile
and then an improved IPA variant called the percentile IPA (pIPA) was introduced. To
analyze how the newly introduced donor–receiver selection strategy contributes to the
solving capabilities of the pIPA, a set of experiments was carried out. In the first and second
parts of the experimental studies, 22 numerical benchmark problems were solved with
the pIPA by assigning different values to its control parameters, and the obtained results
were compared to the classical and state-of-art meta-heuristics including IPA, PSO, GSA,
CS, BA, FPA, SMS, FA, GA, MFO, ALO, SOA, SHO, GWO, MVO, SCA and DE. The third
part of the experimental studies was devoted to the investigations about the pIPA using a
big-data optimization problem requiring noise minimization in the EEG signals, and pIPA
was compared to the IPA, GA, PSO, DE, ABC, GSA, MFO, SCA, SSA, and HHO-based
techniques. Finally, in the fourth part of the experimental studies, pIPA was used to find an
optimal flight path for a UCAV, and its results were compared to the results of the IPA, ABC,
BA, BAM, ACO, BBO, DE, ES, FA, GA, MFA, PBIL, PSO, SGA and PGSO-based planners.
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The comparative studies showed that the proposed strategy contributes to the conver-
gence performance and qualities of the final solutions obtained by the pIPA, and it performs
better than other tested algorithms for most of the benchmark cases. Adjusting both the
possible donors and receivers using only one parameter called prc in the pIPA removes the
necessity of NoD and NoR parameters and reduces the total number of control parameters
defined for the standard IPA. Moreover, even though the value assigned to the prc is a
constant, the number of donors and receivers can vary from one infection cycle to another
because of the definition of the percentile. The promising results of the experimental
studies also informed that future works about the IPA can focus on developing different
donor–receiver selection approaches, adaptive adjustment strategies for the number of
donors–receivers, and their applications in various numerical or combinatorial problems.
In addition to these future research proposals, the IPA and pIPA can be extended with
the usage of multiple populations. Each has its own donor–receiver selection and treat-
ment mechanisms or parallelization that divides a single population into simultaneously
executing small populations.
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