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Abstract: This paper presents a hybrid algorithm based on the slime mould algorithm (SMA) and the
mixed dandelion optimizer. The hybrid algorithm improves the convergence speed and prevents
the algorithm from falling into the local optimal. (1) The Bernoulli chaotic mapping is added in the
initialization phase to enrich the population diversity. (2) The Brownian motion and Lévy flight
strategy are added to further enhance the global search ability and local exploitation performance
of the slime mould. (3) The specular reflection learning is added in the late iteration to improve the
population search ability and avoid falling into local optimality. The experimental results show that
the convergence speed and precision of the improved algorithm are improved in the standard test
functions. At last, this paper optimizes the parameters of the Extreme Learning Machine (ELM) model
with the improved method and applies it to the power load forecasting problem. The effectiveness of
the improved method in solving practical engineering problems is further verified.

Keywords: Bernoulli chaotic mapping; Lévy flight; short-term load forecasting; slime mould algorithm

1. Introduction

A meta-heuristic algorithm [1] is an algorithm based on stochastic operators that does
not depend on gradient information. It finds better solutions with limited computing
power and is suitable for solving complex problems with continuous, discrete or even
mixed search spaces. It has been widely used in solving practical engineering problems
because of its simple concept and easy implementation. These algorithms generally fall
into four categories: swarms’ behavior-based, physical rule-based, nature-based, and
human-related algorithms. Swarms with collective behavior inspire swarming algorithms.
The most famous are the Particle Swarm Optimization (PSO) [2] and the Ant Colony
Optimization (ACO) [3]. The Whale Optimization Algorithm (WOA) [4], the Marine
Predator Algorithm (MPA) [5], the Artificial Gorilla Troops Optimizer (GTO) [6], the
Snake swarm Optimizer (SO) [7], and the Nutcracker Optimization Algorithm (NOA) [8]
have also been proposed in recent years. Physical laws and mathematical rules mostly
inspire physics-based algorithms. Such algorithms usually have strict proofs. The typed
algorithms are the Simulated Annealing (SA) [9], the Multi-verse Optimizer (MO) [10], the
Sine–Cosine Algorithm (SCA) [11], and the Kepler Optimization Algorithm (KOA) [12].
Nature-based algorithms are primarily derived from biological evolution in nature, such as
the Genetic Algorithm (GA) [13], the Differential Evolution algorithm (DE) [14], and the
Evolutionary Strategy (ES) [15]. Human-related algorithms are developed from long-term
human experiences, such as the harmony algorithm [16], the Teaching-Based Optimization
(TLBO) [17], and the League Championship algorithm [18]. Exploration and exploitation
are the two most essential parts of the meta-heuristic process. The exploration phase
refers to searching the solution space as broadly, randomly, and globally as possible.
The exploitation stage refers to the ability of the algorithm to search more accurately
in the area acquired in the exploration stage, with reduced randomness and improved
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accuracy [19]. However, over-exploration will eventually lead to convergence difficulties,
and only focusing on exploitation will cause the model to easily fall into local optimization.
Therefore, how to strike a balance between exploration and utilization is a complex problem
for meta-heuristic algorithms.

The optimization algorithm selected in this paper is the slime mould algorithm (SMA)
proposed by Li et al. in 2020 [20]. The SMA is inspired by slime molds’ behavior and
morphological changes during foraging. The SMA has been applied to various engineering
optimization problems because of its simple code and few parameters. However, SMA
needs to improve in dealing with complex and high-dimensional problems. Researchers
have continuously optimized the SMA in recent years. There are generally two kinds of
improved strategies: one is to improve the core equation of the algorithm by using a variety
of strategies, and the other is to mix a variety of algorithms to improve efficiency. Yu
et al. [21] combined reverse learning and chaotic mapping to optimize SMA and performed
well in urban water resources treatment. Naik et al. [22] proposed to add adaptive reverse
learning at the later stage of iteration to avoid the premature end of convergence. Zhang
et al. [23] presented reverse learning and Quantum Rotation Gate strategies to the SMA.
Jiang et al. [24] proposed an improved SMA based on elite reverse learning. The adaptive
probability threshold was adopted to adjust the selection probability of slime moulds.
The quality and diversity of the initial population are improved. Alfadhli et al. [25]
chose to integrate adaptive parameters into the iteration of the population. The improved
method adaptively changes the population size to effectively balance the characteristics
of exploitation and exploration in different stages of the SMA. Liu et al. [26] introduced
Chebyshev chaotic mapping in the initialization stage. They added the simplex method in
the later exploration stage to increase local search ability and avoid premature convergence,
which achieved excellent results in extracting PV model parameters. Qiu et al. [27] proposed
a mechanism for updating locations in stages, which divided the iteration time into three
segments on average. Different stages mix different optimization strategies to balance
exploitation and exploration; researchers have also integrated other swarm intelligence
algorithms with SMA [28–32], respectively, in either the exploration or exploitation stage
to carry out different degrees of optimization, and achieved excellent results in image
segmentation, support vector regression (SVR) prediction problems, and other directions.

These algorithm improvements perform well in their respective domains. However,
the performance improvements on one class of problems will be offset by performance
declines on another class of problems according to the No free Lunch (NFL) theorem [33],
and any other algorithm will not be ideally suited to handle various problems. Therefore, it
is necessary to improve the corresponding algorithm according to the different requirements
of the problem.

This paper presents an improved slime mould algorithm to solve the problems re-
lated to the actual power load prediction accuracy and stability: (1) The Bernoulli chaotic
mapping is added in the initial stage because the proportion of new individuals randomly
generated in the initial stage is tiny, resulting in insufficient randomness. Moreover, the
initial population is optimized by using the randomness and ergodicity of the chaotic
mapping. It makes the distribution of slime moulds more reasonable and avoids premature
puberty. (2) The decision parameter p is evenly divided into two stages, and then the excel-
lent mechanism of development is explored in different stages in the mixed DO algorithm.
The algorithm adopts different location update formulas at different stages to increase
the diversity of the distribution of slime moulds and further enhance the global search
ability and local exploitation. (3) The specular reflection learning strategy is introduced
in the late iteration to help the group escape from local optimization and improve the
solution accuracy.

The rest of this article is structured as follows: Section 2 describes the principal
concepts of the SMA and the DO. Section 3 introduces the details of the improved algorithm
BDSSMA and the improved mathematical model. In Section 4, the proposed algorithm
is compared with six swarm intelligence algorithms based on 23 benchmark functions
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to evaluate the performance of the proposed algorithm, and the statistical validity of the
proposed algorithm is evaluated via the Wilcoxon rank sum test. In Section 5, the power
load forecasting model of ELM is used to test the above several population intelligent
algorithms in practical engineering problems and prove their feasibility in power load
forecasting problems. Section 6 summarizes the whole work and provides some inspirations
for future work.

2. Background
2.1. Slime Mould Algorithm (SMA)

The SMA is a population intelligent algorithm based on slime molds’ behavior and
morphological changes in foraging. Its foraging behavior is mainly divided into two stages.
The corresponding mathematical model and method will be briefly summarized in the
following sections.

2.1.1. Approaching the Food Stage

Slime moulds will approach food according to the concentration of odor in the air, and
this contraction pattern of approaching food can be defined as:

X(t + 1) =
{

Xb(t) + vb · (W · XA(t)− XB(t)), r < p
vc · X(t), r ≥ p

(1)

In the formula, Xb(t) represents the position of the individual with the highest food
concentration found so far, that is, the current global optimal solution; XA(t) and XB(t)
represent two individuals randomly selected from the population; X(t) represents the
position of slime mould; W represents the weight of slime mould individuals. vb is a
vibration parameter randomly valued in the interval [−a, a]; vc is a random value linearly
decreasing from 1 to 0; t represents the number of current iterations; r represents the
random value within the interval [0, 1]; and the mathematical model description of the
control variable p and the range parameter of the disturbance interval a is described as:

p = tanh|S(i)− bF| (2)

a = arctanh(−
(

t
tmax

)
+ 1) (3)

where, i ∈ 1, 2, 3. . .n, S(i) represents the fitness value of the current individual X(t),
bF is the current best fitness value, and tmax is the maximum number of iterations. The
mathematical model description of the weight parameter W is shown in Equations (4) and (5):

W(Smell Index(i)) =

{
1 + r · log( bF−S(i)

bF−ωF + 1), condition
1− r · log( bF−S(i)

bF−ωF + 1), others
(4)

Smell Index(i) = Sort(S) (5)

In the formula, the condition indicates that S(i) sorts the first half of the population,
bF represents the optimal fitness obtained during the current iteration, ωF represents
the worst fitness value obtained during the current iteration, and log is used to reduce
the change rate of the value, so that the contraction frequency will not change too much.
Smell Index represents the sequence of fitness values for the sort (ascending order is used
in minimum problems).

2.1.2. Stage of Wrapping Food

In this stage, the constriction pattern of a vein tissue structure was simulated during
the search for moulds. The higher the concentration of food in venous contact, the stronger
the waves produced by the biological oscillator, the faster the cytoplasmic flow, and the



Biomimetics 2023, 8, 482 4 of 24

thicker the veins [20]. Equation (4): the positive and negative feedback between the vein
width of the slime mould and the food concentration being explored is simulated to adjust
its search pattern according to the food quality. When the food concentration is the content,
the weight near the region is more significant; when the food concentration is low, the
area’s importance is reduced, and the exploration of the other regions is shifted. Based on
the above principles, the mathematical formula of Equation (6) for slime mould location is
updated as follows:

X(t + 1) =


rand·(UB− LB) + LB, rand < Z

Xb(t) + vb · (W · XA(t)− XB(t)), rand ≥ Z, r < p
vc · X(t), r ≥ p

(6)

where UB and LB represent the upper and lower boundaries of the search range, rand
and r represent random values in [0, 1]. Z is a parameter used to balance exploration and
exploitation. In [20], Li proved through many experiments that Z of 0.03 is the best result.

2.2. Dandelion Optimizer

The dandelion optimizer (DO) is a novel swarm intelligence algorithm proposed by
Zhao et al [1], in 2022, to simulate the behavior of dandelion seeds in long-distance flight,
relying on wind. The process is mainly divided into three stages [1].

2.2.1. Ascending Phase

In the ascending phase, it is usually divided into two conditions: sunny or rainy days.

Situation 1: Sunny Day

On a clear day, the wind speed can be viewed as having a logarithmic normal distri-
bution ln Y ∼ N

(
µ, σ2). Under this distribution, the random numbers are distributed

more along the Y axis, which allows the dandelion seeds to spread further. In this case, DO
emphasizes exploration, in which the dandelion seeds are randomly blown by the wind to
various locations in the search space. The height of the dandelion seeds is determined by
the wind speed. The higher the wind, the higher the dandelion seeds fly and the farther
the seeds scatter. Affected by the wind speed, the vortex above the dandelion seeds is
constantly adjusted to make it rise in a spiral. In this case, the corresponding mathematical
expression is:

Xt+1 = Xt + α · vx · vy · lnY · (Xs − Xt) (7)

lnY denotes a lognormal distribution subject to µ = 0 and σ2 = 1, and its mathematical
formula is:

lnY =

{
1

y
√

2 π
exp
[
− 1

2σ2 (lny)2
]

y ≥ 0

0 y < 0
(8)

where Xt represents the position of the dandelion seed in t iterations. Xs represents a
randomly selected position in the search space over t iterations. y denotes the standard
normal distribution N (0, 1). The expression of randomly generated positions is shown in
Equation (9):

α = rand() ·
(

t2

tmax
2 −

2t
tmax

+ 1
)

(9)

where α is a linearly decreasing random value from 1 to 0. θ is a random number between
[−π, π]. Such fluctuations make the algorithm pay much attention to global search in
the early stage and turn to local search in the later stage, which is conducive to ensuring
accurate convergence after global search. vx and vy represent the lift component coefficients
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of dandelion due to the separation vortex action, and r is used as the variable with more
randomness. Equation (10) is the corresponding mathematical expression:

r = 1
eθ

vx = r · cosθ
vy = r · sinθ

(10)

Situation 2: Rainy Days

On rainy days, dandelion seeds cannot rise properly with the wind due to factors such
as air resistance and humidity. In this case, dandelion seeds are developed locally, and the
corresponding mathematical expression is:

Xt+1 = Xt · k (11)

where k is used to adjust the local search area of the dandelion (Equation (12)), and
Equation (13) is used to calculate the domain:

q = 1 +
(t− 1)2

(T − 1)2 (12)

k = 1− rand() · q (13)

2.2.2. Decline Stage

At this stage, dandelion seeds are still mainly explored. It is when the dandelion seed
rises to a certain distance after a steady decline. Because Brownian motion follows normal
distribution in each change, it is easy for individuals to traverse more search areas in the
iterative updating process. Therefore, Brownian motion is selected to simulate the motion
trajectory of dandelion seeds in the descending process. In order to reflect the stability
of dandelion seeds in the descending stage, the average position information after the
ascending stage is adopted. This promotes the exploitation of the whole population into
better areas. The corresponding mathematical expression is:

Xt+1 = Xt − α · βt · (Xmean−t − α · βt · Xt) (14)

Xmean−t =
1

pop∑pop
i=1 Xi (15)

In the formula, βt represents the Brownian motion and is a random number with
standard normal distribution. Xmean−t represents the average position of the population in
the iteration.

2.2.3. Landing Phase

In this section, dandelion seeds are turned into exploitation. With the continuous
iteration in the first two stages, it is possible for the algorithm to converge to the global
optimal solution at present. Therefore, the optimal solution obtained at present is the ap-
proximate location where dandelion seeds are most likely to survive. In order to accurately
converge to the global optimal, the search individual selects the current optimal solution
for exploitation in the current region. With the continuous evolution of the population,
the global optimal solution can finally be found, and the corresponding mathematical
expression is:

Xt+1 = Xelite + levy(λ) · α · (Xelite − Xt · δ) (16)
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where Xelite represents the best position of the dandelion seed in the i iteration. levy (λ)
represents the Lévy flight function, δ is a linearly increasing function from 0 to 2, and the
corresponding mathematical expression is:

levy( λ) = s · ω× σ

|t|
1
β

(17)

δ =
2t
T

(18)

where β is a random number between [0, 2] (β = 1.5 in this article). s is a fixed constant of
0.01. Both ω and t are random numbers between [0, 1]. The mathematical expression of
σ is:

σ =

 Γ(1 + β)) · sin(πβ
2 )

Γ
(

1+β
2

)
· β× 2(

β−1
2 )

 (19)

3. Methods

In the second part, we find that SMA is an algorithm with simple parameters, stable
operation, and particular optimization ability. However, there are still some problems: First,
the initial population of the swarm intelligence algorithm should have diversity, but the
random parameter Z of SMA is only 0.03, which is a small constant. The proportion of new
individuals randomly generated by Equation (6) in the total population is tiny, and the
population diversity will also decrease with the update of individual positions, resulting
in the local optimization of the algorithm. It could perform better at jumping out and
reexploring. Secondly, from the perspective of the slime mould position update mechanism,
Equation (1), the position update of the slime mould is determined by the position of the
current optimal individual and the position of two random individuals, which is equivalent
to random exploration near the current optimal position. This enhances the global search
ability of SMA in the early stage to some extent, but two randomly selected individuals also
slow down the convergence rate of SMA. As the iteration progresses, the population tends
to move closer to the current optimal position, which makes it easy for SMA to fall into
local optima when solving functions with multiple local optima. Finally, in the exploitation
stage, the disturbance factor vc converges linearly from 1 to 0. This simple linear function
is easy to make the slime mould individual start slowly in the later exploitation, resulting
in slow algorithm convergence speed or insufficient solution accuracy.

This paper proposed the following changes to solve the above problem: First, Bernoulli
chaotic mapping was added in the initialization stage, and the randomness and ergodicity
of the chaotic mapping were used to optimize the initial population to make the individual
distribution of slime moulds more reasonable and avoid premature puberty. Second, the
control variable p is divided into two stages, and then the excellent mechanism of stage
exploration and exploitation is mixed in DO to increase the diversity of molds’ individual
distribution, so that the algorithm adopts different position update formulas at various
stages, and further enhances the global search ability and local exploitation performance of
moulds. Thirdly, the planar mirror reflection imaging learning strategy is introduced in the
late iteration to help the group escape from local optimization and improve the solution
accuracy. The improvement measures are described as follows.

3.1. Chaotic Mapping

Whether the population initialization is uniform is an essential factor in determining
the optimization effect of the algorithm. Therefore, chaotic mapping is introduced to
initialize the algorithm population, which can improve the initial population’s diversity and
improve the population’s quality in subsequent iterations. In ref. [26], Liu et al. concluded
that Chebyshev chaos mapping has the best optimization effect on the initialization stage
of SMA compared with 10 common chaos factors. However, in addition to the mentioned
chaos factors, other outstanding chaos factors have yet to be discussed. We compare the
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other chaos factors [34] (Table 1) with the best chaos map currently available in SMA
(Chebyshev’s chaos map) and discuss whether there are better alternatives.

Table 1. Chaotic mapping set.

Variant Name Chaotic Map Strategy Range

Chebyshev Xn+1 = cos
(
ncos−1(Xn

))
[−1, 1]

Improved Chebyshev Xn+1 = 1− 2(cos(2arccosXn))
2 [−1, 1]

SPM
Xn+1


mod Xn

γ + µsin(πXn) + r, 0 < Xn < γ

mod Xn
γ(0.5−γ)

+ µsin(πXn) + r, γ < Xn < 0.5
F(1− Xn, γ, µ), 0.5 < Xn < 1

(0, 1)

Neuron Xn+1 = δ− 2tanh(γ)exp
(
−3Xn

2
)

, 0 < δ < 1 (0, 1)

Bernoulli Xn+1 =

{ Xn
1−γ , 0 < Xn ≤ 1− γ

Xn−(1−γ)
γ , 1− γ < Xn < 1

(0, 1)

Henon
{

Xn+1 = 1 + Yn − aX2
n

Yn+1 = bXn
(0, 1)

Kent Xn+1 =

{
Xn
m , 0 < Xn ≤ m

1−Xn
1−m , m < Xn < 1

(0, 1)

Fuch Xn+1 = cos
(

1
Xn

2 ) (0, 1)

Preferred point set Xn+1 = 2 cos
(

2πx
t

)
, t ≥ 2s + 3 (1, s)

3.2. Optimization of Location Update Mechanism

As mentioned above, researchers mainly deal with the main impact factors in stages
for the optimization of SMA position update mechanism, such as the average number of
iterations t and weight coefficient ω into multiple stages, and different stages integrate
different strategy mechanisms to achieve the optimization and balance of exploration
and exploitation. However, no researchers have optimized the position update decision
parameter p. In this paper, it is proposed for the first time that parameter p is evenly
divided into two segments, and the different mechanisms that dandelion seeds rely on in
different landing stages in the DO are mixed, such as the Lévy flight strategy and Brownian
motion. The following section describes how these two mechanisms improve the location
update section.

First, according to the two-dimensional trajectory diagram of Lévy’s flight strategy
and Brownian motion in Figures 1 and 2, Lévy’s flight trajectory has irregular step size,
small and uncertain step size, and a larger search area. In contrast, Brownian motion has a
more uniform and controlled step size, allowing for a better coverage of the entire area for
finer exploitation.
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Therefore, Brownian motion is added in the pre- p
2 part at the stage of lower food

concentration. In the original SMA, two random individuals are used to search at this stage.
Although the randomly selected individuals can increase the search scope to some extent,
they will lead to a slower convergence of SMA. This paper will improve it to replace one
of the random individuals XA(t) with the optimal individual at that time, and then add
Brownian motion. The Brownian movement of the population centered on the position
of the elite individuals not only enhanced the search ability of the early slime mould
individuals, but also avoided rapid convergence. The formula is shown as:

Xb(t) + vb·βt·(W · Xb(t)− XB(t)), r <
p
2

(20)

where Xb(t) is the optimal individual, βt is Brownian motion and is also a random number
with standard normal distribution, and XB(t) is a random individual. Then, Lévy flight
strategy is added in the later p

2 part, that is, the stage with high food concentration. Taking
advantage of Lévy’s irregular flight step length, small step length can continue to effectively
conduct in-depth search in the current area, while a large step length can help the current
random individuals explore the neighborhood, avoid premature convergence, and fall into
local optimal. The formula is shown as:

Xb(t) + vb·levy(λ)·(W · XA(t)− XB(t)),
p
2
< r < p (21)

where XA(t) is another random individual, and levy( λ) is Lévy’s flight strategy. The
perturbation factors α and k in the dandelion optimizer were added in the later iteration to
further make the iteration process more diverse. To sum up, the improved position update
formula is shown in Equation (22):

X(t + 1) =


Xb(t) + vb·βt·(W · Xb(t)− XB(t)), r < p

2
Xb(t) + vb·levy(λ)·(W · XA(t)− XB(t)),

p
2 < r < p

vc·k · α · X(t), r ≥ p
(22)

3.3. Specular Reflection Learning (SRL)

Zhang proposed specular reflection learning (SRL) in 2021 [35] based on the reflection
imaging law of light in flat mirrors, and the specular reflection learning model is shown in
Figure 3.
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In Figure 3, O is the midpoint of [LB, UB], pg is the optimal individual in the current
population, and pg

′ is the inverse individual of pg. According to the Pythagorean theorem,
we can obtain:  tanθ1 =

(UB+LB
2 −pg)

h

tanθ2 =
(pg
′−UB+LB

2 )
h′

(23)

Equation (24) is obtained according to θ1 = θ2:

(UB+LB
2 − pg)

h
=

(pg
′ − UB+LB

2 )

h′
(24)

Equation (25) presents the inverse point pg:

pg
′ =

h′

h

(
UB + LB

2
− pg

)
+

UB + LB
2

(25)

Let h′
h = k(k > 0), Equation (25) can be simplified to:

pg
′ = (k + 1) · UB + LB

2
− kpg (26)

When k = 1, it can be further simplified as:

pg
′ = UB + LB− pg (27)

Equation (27) is the general opposition-based learning applied to pg, and it can be seen
that the opposition-based learning is actually a special case of specular reflection learning.
When the general opposition-based learning generalizes to the D-dimensional search space:

pg,j
′ = (k + 1) ·

UBj + LBj

2
− kpg,j (28)

where j = 1, 2, . . ., D
Now, specular reflection learning is added to the later iteration to generate random

reverse solutions, expand the diversity of the population, and avoid falling into local
optimality. The calculation formula should evolve as follows:

X(t + 1) = UB + LB− X(t + 1)′ (29)

This paper proposed a hybrid dandelion optimizer and reflection learning method to
improve the slime mould optimization algorithm (BDSSMA); its pseudocode (Algorithm 1)
is as follows, and the specific process is shown in Figure 4.
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Algorithm 1. Pseudocode of BDSSMA

1: Start
2: Initialize BDSSMA related parameters, such as population size N, maximum number of
iterations T, variable dimension Dim, search for upper and lower bounds UB, LB.
3: Generate Bernoulli map to initialize the population.
4: While t < T
5: Calculate the initial fitness and select the best and worst individual.
6: Update inertia weight W according to Equation (4)
7: For i = 1 to N
8: if rand < z
9: Calculate the population position by Equation (32)
10: else
11: if r < p

2
12: Calculate the population position by Equation (20)
13: if p

2 < r <p
14: Calculate population location by Equation (21)
15: end if
16: Generate random reverse solutions by Equation (29)
17: end for
18: t = t + 1
19: end while
20: Return the best fitness value and the best individual
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4. Experimental Results and Analysis

This section introduces the selection experiment of the chaotic mapping function, the
simulation experiment of BDSSMA under 23 standard test functions, and the comprehen-
sive evaluation of the optimization performance of BDSSMA via the Wilcoxon rank sum
test and practical engineering design problems. All experiments were run on the same
operating system.

4.1. Experimental Environment

The simulation experiment environment is AMD Ryzen 7 5800H CPU, the main
frequency is 3.20 GHz; 16 GB memory; Windows 10 (21H2) 64-bit operating system. The
running software is MATLAB R2019b 64-bit.

4.2. Chaotic Mapping Selection

Before comparing the algorithms, the nine SMA variant algorithms are first tested to
identify which chaotic mapping is better to optimize the SMA by following the method
of [26] and combining it with the actual engineering problem: the pressure vessel design
problem. Then, the best chaotic mapping is selected as the initialization improvement of
the viscous bacteria optimization algorithm. The pressure vessel design problem is a well-
known engineering design test that aims to find the parameters of a cylindrical pressure
vessel that minimizes the total cost of production and meets the pressure requirements.
These parameters include the thickness of the shell (Ts), the thickness of the head (Th), the
inner radius (R), and the length of the cylindrical section (L). Figure 5 shows the structure
of the pressure vessel.
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The range of independent variables, the objective function f (x), and the four con-
straints g are shown below:

X = [x1 x2 x3 x4] = [Ts Th R L]

The objective function to deal with the problem is as follows:

f (x) = 0.6224x1x3x4 + 1.7781x2x2
3 + 3.1661x2

1x4 + 19.84x2
1x3 (30)

Subject to the following constraints:
g1(x) = −x1 + 0.0193x3 ≤ 0

g2(x) = −x2 + 0.00954x3 ≤ 0
g3(x) = −πx2

3x4 − 4
3 πx3

3 + 1296000 ≤ 0
g4(x) = x4 − 240 ≤ 0

(31)

The variable ranges:
0 ≤ x1 ≤ 99

0 ≤ x2 ≤ 99
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10≤ x3 ≤ 200

10≤ x4 ≤ 200

Table 2 shows the experimental data obtained by nine SMA chaotic variant algorithms
when solving the pressure vessel problem. The data were averaged 30 times. As can be
seen from the table, each variant algorithm can obtain better results, but the optimal value
obtained by the SMA and adding Bernoulli chaotic mapping is the optimal result. Therefore,
Bernoulli chaotic mapping is selected in this paper to initialize the slime mould population
and expand the population diversity. The scatterplot and histogram of Bernoulli's chaotic
map are shown in Figures 6 and 7, and the initialization update formula of equation (32) is
as follow:

Table 2. Comparison of the results of pressure vessel design problems with other chaos variants.

Variant Name Ts Th R L Optimal Cost

SMA 0.8581984 0.4254994 44.4648 149.368 6050.9863
ChebyshevSMA 0.8135765 0.4025301 42.15186 175.9837 5950.3339
Improved
ChebyshevSMA 0.7792018 0.38527 40.37239 199.2677 5887.5434

SPMSMA 0.8162131 0.4035017 42.29017 174.2755 5953.8328
NeuronSMA 0.8268668 0.4087785 42.84112 167.6462 5974.2974
BernoulliSMA 0.7782284 0.3850124 40.32229 199.9883 5887.0029
HenonSMA 0.7931507 0.3920965 41.09537 189.479 5911.7051
KentSMA 0.8639112 0.4273306 44.76207 146.2083 6049.7537
FuchSMA 0.7989452 0.3951562 41.39605 185.5404 5922.5633
GoodsetSMA 0.8309936 0.4107689 43.05643 165.1172 5981.9675
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Initialize the update formula:

X(t + 1) = Ber·(UB− LB) + LB, rand < Z (32)

4.3. Benchmark Function and Comparison Algorithm

The reference functions selected in this paper are 23 benchmark functions selected
for algorithmic comparison. F1–F7 are unimodal functions, which have no local optimal
solution and only a globally optimal solution, which is suitable for testing the algorithm’s
convergence speed and global exploitation ability. F8–F13 are multi-modal functions, which
have multiple local solutions in addition to the global optimal solution, and the number
of local minima will increase exponentially with the increase in dimension. If the effect is
not good, it quickly falls into local optimal. Therefore, this function is suitable for testing
the algorithm’s ability to avoid local optimal and explore. F14–F23 are fixed-dimensional
multi-modal functions, which are equivalent to the combination of the first two types of
operations, with a small number of local minima, comparable to accelerated experiments,
which can quickly clarify the performance of the algorithm, and are generally used to
evaluate the relationship between the exploration and exploitation of algorithms. Dim
represents the dimension of the function; range represents the function’s domain; and fmin
represents the optimal value of the process in Table 3.

Table 3. Standard test functions.

Functions Dim Range fmin

F1(x) = ∑n
i=1 x2

i 30 [−100, 100] 0

F2(x) = ∑i=1|xi |+ ∏n
i=1|xi | 30 [−10, 10] 0

F3(x) = ∑i=1

(
∑i

j−1 xj
) 2 30 [−100, 100] 0

F4(x) = maxi{|xi |, 1 ≤ i ≤ n} 30 [−100, 100] 0

F5(x) = ∑n−1
i=1

(
100
(

x2
i − xi+1

)2
+ (xi − 1)2

)
30 [−30, 30] 0

F6(x) = ∑n
i=1(xi + 0.5)2 30 [−100, 100] 0

F7(x) = ∑n
i=1 ix4

i + random [0, 1] 30 [−128, 128] 0

F8(x) = ∑n
i=1−xisin

(√
|xi |
)

30 [−500, 500] −2094.9145

F9(x) = ∑n
i=1
(

x2
i − 10cos(2πxi) + 10

)
30 [−5.12, 5.12] 0

F10(x) = −20exp
(
−0.2

√
1
n ∑n

i=1 x2
i

)
− exp

(
1
n ∑n

i=1 cos(2πxi)
)

+20+e 30 [−32, 32] 0

F11(x) = 1
4000 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
+ 1 30 [−600, 600] 0

F12(x) = π
n

{
10sin(πy1) + ∑n−1

i=1 (yi − 1)2[1 + 10sin2(πyi+1)] + (yn − 1)2
}

+ ∑n
i=1 u(xi , 10, 100, 4)

yi = 1 + xi+1
4

u(xi , a, k, m) =

k(xi − a)m xi > a
0 − a < xi < a
k(−xi − a)m xi < −a

30 [−50, 50] 0

F13(x) = 0.1{sin2(3πx1)

+∑n
i=1 (xi − 1)2[1 + sin2(3πxi + 1)] + (xn − 1)2[1 + 10sin2(2πxn)]}+

∑n
i=1 u(xi , 5, 100, 4)

30 [−50, 50] 0

F14(x) =

 1
500 + ∑25

j=1
1

j+
2
∑

i=2
(xi−aij)

6


−1

2 [−65.536,
−65.536] 1

F15(x) = ∑11
i=1[ai −

x1(b2
i +bi x2

b2
i +bi x3+x4

]2 4 [−5, 5] 0.0003

F16(x) = 4x1
2 − 2.1x1

4 + 1
3 x1

6 + x1x2 − 4x2
2 + 4x2

4 2 [−5, 5] −1.0316
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Table 3. Cont.

Functions Dim Range fmin

F17(x) =
(

x2 − 5.1
4π2 x1

2 + 5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cosx1 + 10 2 [−5, 5] 0.398

F18(x) =
[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x1

2 − 14x2 + 6x1x2 + 3x2
2)]×[

30 + (2x1 − 3x2)
2 ×

(
18− 32x1 + 12x1

2 − 48x2 + 36x1x2 + 27x2
2)] 2 [−2, 2] 3

F19(x) = −∑4
i=1 ciexp

[
−∑3

j=1 aij
(

xj − pij
)2
]

3 [1, 3] −3.86

F20(x) = −∑4
i=1 ciexp

[
−∑6

j=1 aij
(

xj − pij
)2
]

6 [0, 1] −3.32

F21(x) = −∑5
i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.5363

F22(x) = −∑7
i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.4028

F23(x) = −∑10
i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.5363

4.3.1. Test Function Experiment Results and Analysis

In order to validate the effectiveness of the hybrid modified slime mould algorithm
(BDSSMA) based on dandelion optimizer proposed in this paper, we conducted a com-
parison amongst the slime mould algorithm (SMA) as proposed in ref. [20], the chaotic
elite slime mould algorithm (CESMA) submitted in ref. [21], the marine predator algorithm
(MPA) in ref. [5], the dandelion optimizer (DO) presented in ref. [1], the Sine–Cosine al-
gorithm (SCA) [11], and the Snake Optimizer (SO) [7]—all of which were compared in
terms of performance indicators such as local mining, local extreme value avoidance, and
global exploration. The main parameters of each algorithm are shown in Table 4. For the
fairness of comparison, all algorithms are performed under the same conditions, where the
population is set to 30 and the number of iterations is set to 1000. In order to reduce the
influence of random factors in the algorithms on the results, all the comparison algorithms
are run in each function 30 times, respectively, and the average is taken as the final run
result. The experimental results are evaluated using average value (Avg) and standard
deviation (Std), and the best results are presented in bold (data requiring scientific notations
are noted in three decimal places).

Table 4. Parameter settings of the competitors.

Algorithms Parameters

SMA Z = 0.03, N = 30
CEMSA Z = 0.03, N = 30

MPA FADs = 0.2, P = 0.5
DO α = [0, 1], k = [0, 1], N = 30
SCA a = 2, r1 = r2, r4 = [0, 1]

SO N = 30, T = 0.25, T1 = 0.6
C1 = 0.5, C2 = 0.05, C3 = 2

The BDSSMA outperforms other algorithms in most test functions in Table 5. The
theoretical optimal solution is reached in F1–F5 and F7 for the unimodal test function. The
convergence accuracy and stability are excellent, and F6 is better than the original SMA
and the improved SMA, second only to MPA. These results show that the BDSSMA has
high exploratory ability and convergence according to the characteristics of the unimodal
test function. For multi-modal test functions, F8–F11 obtain the theoretical optimal value,
and the MPA in F12 obtains the optimal solution. The first variance is DO, indicating that
MPA and DO algorithms also have excellent global search capability, and F13 obtains the
optimal solution, but the stability is slightly lower than DO. The BDSSMA can effectively
avoid the local optimal solution and has an excellent global search ability according to
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the characteristics of the multi-modal test function. However, further improvements are
stable. In the fixed dimension test function, the optimal solution of BDSSMA is obtained in
F14–F23, and the convergence speed is significantly improved. However, the performance
in variance could be better, which shows that although the robustness is better than the
original algorithm, there are still some aspects that could be improved for MPA and SO
algorithms. In summary, the BDSSMA has made significant progress in convergence
accuracy and speed and has also significantly improved accuracy for MPA and DO with
similar search strategies. In terms of stability, although it has made significant progress
compared with the original algorithm and most algorithms, it is slightly inferior to MPA
and SO. In the future, we will focus on how to balance improving accuracy and stability to
make the algorithm perform better.

Convergence curves for some of the test functions are shown in Figure 8. It can be
seen that although other improved algorithms except the BDSSMA have high convergence
accuracy, the convergence speed of F1 and F2 is too slow. It takes at least 400 iterations to
reach the optimal solution. In contrast, the convergence curve of the BDSSMA decreases
significantly from the beginning of the iteration. The convergence speed is breakneck;
only 40 iterations are needed to reach the optimal solution. This shows that the improved
search strategy dramatically enhances the searchability of slime mould in the early stage
and significantly speeds up the convergence speed. It can be seen from F5 and F7 that the
BDSSMA has many inflexion points, which indicates that if slime moulds fall into the local
optimal prematurely in search, the possibility of slime moulds jumping out of the local
optimal can be effectively improved. The improved feature of more giant steps in Lévy
flight can enhance the global search ability of slime moulds. In F10, although the search
enters a stagnant state in the middle period, it rapidly converges and reaches a globally
optimal solution after two transitions. For F11, the curves of other algorithms may still
reach the optimal solution in subsequent iterations. However, they do not converge to the
optimal solution under the set number of times, which also reflects the fast convergence
speed of the BDSSMA. For F12, the initial accuracy of the BDSSMA is obviously better
than that of other algorithms, which reflects the improvement of chaotic mapping on
the initial population, and the number of iterations and inflexion points also reflect the
BDSSMA’s excellent search range and ability to jump out of the local optimal once again.
Most algorithms can reach the optimal value for fixed dimension functions, F15, F19, and
F21, but there are many inflexion points in the search process. At the same time, the
BDSSMA has fewer inflexion points than other algorithms, further reflecting the need for
improvement in global search ability.

Table 5. Test functions’ optimization results of different algorithms.

Functions BDSSMA SMA CESMA MPA DO SCA SO

F1
Avg 0 0 0 3.242× 10−50 3.043× 10−7 3.565× 10−1 6.127× 10−190

Std 0 0 0 5.078× 10−50 2.052× 10−7 1.8701 6.598× 10−190

F2
Avg 0 0 3.188× 10−121 5.632× 10−28 4.179× 10−4 9.579× 10−5 2.840× 10−93

Std 0 0 9.844× 10−121 1.491× 10−27 2.107× 10−4 2.037× 10−4 7.865× 10−93

F3
Avg 0 0 5.760× 10−181 1.018× 10−10 2.9564 5793.5845 1.369× 10−117

Std 0 0 0 4.993× 10−10 2.4232 3059.3679 4.811× 10−117

F4
Avg 0 0 3.313× 10−113 2.567× 10−19 2.737× 10−1 28.0972 6.320× 10−84

Std 0 0 1.506× 10−112 2.193× 10−19 1.914× 10−1 12.8361 1.434× 10−83

F5
Avg 7.805× 10−2 5.4668 4.738× 10−1 24.3038 27.3367 5750.7596 15.4106
Std 1.655× 10−1 10.4531 6.969× 10−1 3.679× 10−1 3.8289 13179.8133 12.4418

F6
Avg 5.851× 10−4 6.754× 10−4 7.341× 10−4 1.914× 10−9 9.748× 10−7 4.6753 1.115× 10−1

Std 1.598× 10−4 3.152× 10−4 3.772× 10−4 8.705× 10−10 3.850× 10−7 5.1547 1.4621

F7
Avg 9.719× 10−5 1.181× 10−4 9.276× 10−4 7.491× 10−4 1.233× 10−2 4.192× 10−2 1.629× 10−4

Std 9.795× 10−5 8.321× 10−5 7.673× 10−4 3.527× 10−4 5.401× 10−3 3.403× 10−2 1.275× 10−4
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Table 5. Cont.

Functions BDSSMA SMA CESMA MPA DO SCA SO

F8
Avg −12569.4586 −12569.4083 −12567.3592 −9732.7816 −8365.2092 −4005.6199 −12548.3644
Std 3.553× 10−2 5.525× 10−2 4.250× 10−2 437.6714 825.8337 282.9489 36.9470

F9
Avg 0 0 0 0 17.9632 16.1379 5.106× 10−1

Std 0 0 0 0 19.9646 21.3463 1.089× 10−3

F10
Avg 8.882× 10−16 8.882× 10−16 8.882× 10−16 4.086× 10−15 2.869× 10−5 11.4109 1.346× 10−15

Std 0 0 0 1.388× 10−15 1.903× 10−6 10.0663 0

F11
Avg 0 0 0 0 −6.641× 10−4 −7.558× 10−1 6.136× 10−3

Std 0 0 0 0 4.596× 10−4 2.616× 10−1 1.025× 10−2

F12
Avg 2.209× 10−5 2.265× 10−4 2.916× 10−4 6.301× 10−7 6.785× 10−7 2.3779 3.803× 10−2

Std 1.362× 10−5 8.394× 10−3 8.542× 10−4 8.560× 10−8 2.318× 10−8 3.8311 6.831× 10−2

F13
Avg 1.542× 10−4 4.339× 10−3 1.941× 10−3 3.453× 10−3 9.762× 10−4 206.1985 9.149× 10−3

Std 8.185× 10−4 5.619× 10−3 2.861× 10−3 1.422× 10−2 3.449× 10−7 918.8782 1.236× 10−2

F14
Avg −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
Std 2.952× 10−13 4.172× 10−10 5.462× 10−11 6.663× 10−16 8.506× 10−14 9.247× 10−5 2.561× 10−16

F15
Avg 2.944× 10−4 5.318× 10−4 4.009× 10−4 3.075× 10−4 9.645× 10−4 1.016× 10−3 4.282× 10−4

Std 2.846× 10−4 3.575× 10−4 2.427× 10−4 1.485× 10−19 4.105× 10−4 2.041× 10−4 3.575× 10−4

F16
Avg 0.998 0.998 0.998 0.998 0.998 1.3954 0.99911
Std 6.422× 10−17 1.443× 10−13 5.922× 10−14 3.559× 10−15 6.077× 10−16 2.433× 10−3 6.736× 10−3

F17
Avg 3.979× 10−1 3.979× 10−1 3.979× 10−1 3.979× 10−1 3.979× 10−1 0.3987 3.979× 10−1

Std 1.766× 10−9 3.502× 10−9 2.071× 10−9 6.773× 10−12 1.650× 10−12 1.731× 10−4 6.409×10−14

F18
Avg 3 3 3 3 3 3 6.227
Std 2.876× 10−15 2.172× 10−12 1.321× 10−12 7.675× 10−15 3.103× 10−9 3.869× 10−5 9.043

F19
Avg −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8552 −3.8628
Std 4.286× 10−10 3.371× 10−8 2.106× 10−7 2.710× 10−15 1.475× 10−8 2.596× 10−4 2.954× 10−15

F20
Avg −3.3446 −3.2386 −3.2356 −3.3220 −3.2655 −2.8703 −3.3131
Std 5.750× 10−2 5.597× 10−2 5.388× 10−2 1.488× 10−15 6.013× 10−2 3.916× 10−1 1.714× 10−2

F21
Avg −10.1532 −10.1531 −10.1530 −10.1532 −5.3945 −3.158 −10.1496
Std 8.389× 10−5 7.476× 10−5 4.428× 10−4 5.891× 10−15 3.3004 2.0671 8.222× 10−3

F22
Avg −10.4028 −10.4027 −10.4019 −10.4029 −6.7583 −3.1367 −10.3981
Std 4.778× 10−4 1.141× 10−4 2.572× 10−4 3.506× 10−15 3.178 1.7267 1.037× 10−2

F23
Avg −10.5363 −10.5363 −10.5219 −10.5364 −7.0434 −4.6063 −10.5364
Std 9.941× 10−5 7.145× 10−5 2.391× 10−2 3.181× 10−15 3.8456 1.587 0.0099343

4.3.2. Wilcoxon Rank Sum Test

Evaluating the algorithm performance via mean and standard deviation alone is not
comprehensive enough, and to further evaluate the performance of BDSSMA, the Wilcoxon
rank sum test nonparametric statistical test is again used here to verify whether the overall
BDSSMA results have a significant advantage over the comparable algorithms. Where the
significance level is set to 0.05, if the p-value generated by the comparison is lower than
0.05 in this case, it means that BDSSMA has a statistically significant advantage over the
compared algorithm. Otherwise, the performance difference between the two algorithms
could be clearer. Table 6 shows the Wilcoxon rank sum test results of BDSSMA compared
with other algorithms on 23 standard test functions, where N/A indicates that the two
groups of running data are identical and cannot be tested, that is, the two algorithms have
the same performance. “+”, “−”, and “=“, respectively, indicate that BDSSMA is better
than, worse than, and equal to the algorithm compared with it. Because the algorithm
cannot be compared with itself, the p-value of BDSSMA is no longer listed in the table.
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Table 6. Wilcoxon rank sum test results.

Functions SMA CESMA MPA DO SCA SO

F1 N/A N/A 1.212×10−12 1.212× 10−12 1.212×10−12 1.212×10−12

F2 N/A N/A 8.007× 10−9 8.007× 10−9 8.007× 10−9 8.007× 10−9

F3 N/A 2.934× 10−2 1.212×10−12 1.212×10−12 1.212×10−12 1.212×10−12

F4 N/A 4.193× 10−2 1.212×10−12 1.212×10−12 1.212×10−12 1.212×10−12

F5 7.695× 10−8 1.800× 10−8 3.019× 10−11 3.019× 10−11 3.019× 10−11 8.485× 10−9

F6 3.439× 10−2 5.592× 10−1 3.019× 10−11 3.019× 10−11 3.019× 10−11 3.019× 10−11

F7 3.095× 10−2 4.127× 10−2 1.329× 10−10 3.019× 10−11 3.019× 10−11 9.524× 10−3

F8 1.892× 10−4 2.745× 10−3 3.019× 10−11 3.019× 10−11 3.019× 10−11 1.206× 10−10

F9 N/A N/A N/A 1.212× 10−12 1.212× 10−12 8.152× 10−2

F10 8.818× 10−3 N/A 5.359× 10−5 6.386× 10−5 6.386× 10−5 1.594× 10−5

F11 N/A N/A N/A 6.386× 10−5 6.386× 10−5 2.004× 10−2

F12 6.553× 10−11 3.604× 10−7 6.796× 10−13 1.201× 10−6 6.796× 10−14 5.896× 10−14

F13 3.771× 10−9 4.084× 10−5 8.292× 10−5 1.957× 10−9 3.019× 10−14 1.235× 10−1

F14 6.796× 10−3 1.465× 10−3 2.717× 10−19 5.008× 10−17 7.066× 10−18 1.913× 10−18

F15 3.018× 10−2 3.012× 10−2 3.010× 10−14 2.281× 10−2 6.526× 10−9 6.588× 10−2

F16 6.796× 10−3 1.396× 10−1 6.796× 10−14 6.777× 10−14 7.899× 10−14 2.205× 10−2

F17 7.389× 10−3 1.199× 10−2 1.777× 10−10 6.627× 10−14 3.019× 10−14 2.374× 10−13

F18 1.022× 10−5 1.468× 10−4 8.172× 10−15 1.429× 10−14 7.319× 10−14 9.323× 10−9

F19 7.727× 10−3 2.709× 10−2 1.212× 10−12 6.736× 10−6 3.019× 10−11 4.081× 10−12

F20 2.320× 10−2 4.911× 10−2 1.475× 10−15 3.857× 10−7 1.435× 10−14 2.196× 10−13

F21 8.684× 10−4 6.121× 10−3 7.574× 10−12 7.959× 10−3 3.019× 10−11 6.621× 10−1

F22 9.748× 10−6 3.705× 10−5 1.512× 10−8 2.853× 10−1 6.796× 10−8 5.991× 10−3

F23 3.183× 10−3 7.380× 10−6 1.015× 10−11 3.672× 10−1 3.019× 10−11 1.688× 10−3

+/-/= 17/0/6 16/2/5 21/0/2 21/2/0 23/0/0 19/4/0

The BDSSMA outperforms SMA on 17 test functions, CESMA on 16 test functions,
MPA on 21 test functions, DO on 21 test functions, SCA on 21 test functions, and SO on
19 test functions in Table 6. Therefore, the performance of BDSSMA is statistically significant.
In conclusion, BDSSMA combines the advantages of DO and SMA and then improves
the algorithm’s performance by combining the specular reflection learning strategy. The
optimization accuracy and speed are higher than the other six competitive algorithms to a
certain extent.

5. Practical Application Test of the Improved Algorithm
5.1. Introduction to the Principle of Extreme Learning Machine (ELM)

Extreme Learning Machine (ELM), proposed by Professor Huang Guangbin in 2004, is
a simple, easy, and effective single-hidden layer forward neural network learning algorithm
(as shown in Figure 9) [36]. Traditional neural network learning algorithms (such as the BP
algorithm) must set many artificial neural network training parameters, which can easily
lead to local optimal solutions. The ELM algorithm only needs to set the number of nodes
in the hidden layer, does not need to adjust the input weight ωi and implicit bias of the
network bi during the implementation of the algorithm, and generates a unique optimal
solution. It has the advantages of fast learning speed and good generalization performance;
therefore, it has been widely used in engineering.
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The mathematical model of ELM is from Equation (33), where β denotes the ma-
trix of output weights, H is the hidden layer output matrix, and T is the desired output
matrix. After the hidden layer neuron parameters (ω i, bi) are randomly generated and
given training samples according to arbitrary continuous sampling distribution proba-
bilities [37], the hidden layer output matrix H is actually an invariant known quantity.
Thus, Equation (34) can be obtained by solving for its minimal paradigm, where H+ is the
Moore–Penrose-generalized inverse of the minimal paradigm.

Hβ = T (33)

β̂ = H+T. (34)

5.2. Algorithm Performance Evaluation

The ELM algorithm can theoretically improve the learning speed of the entire network
by randomly selecting hidden neuron parameters. Some studies have found that in specific
circumstances [38], this feature may require ELM to have more randomly selected hidden
neurons than traditional methods. Too many randomly selected neurons will inevitably
produce some useless neurons for model training, failing to obtain the optimal solution.
The key to optimizing ELM lies in its network structure, and meta-heuristic algorithms are
gradually regarded as a new choice for optimizing ELM because of their excellent adaptive
ability and search capability.

This paper uses the BDSSMA to optimize ELM (refer to Figure 10). Firstly, ELM’s
input weights and hidden layer biases are set to the slime individuals in the BDSSMA
search space. The slime individuals continuously update their positions via the search
strategy of the algorithm to update the global optimal solution. Continuous iteration
searches the optimal value in the solution space to optimize the ELM model and improve
the prediction results.
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To validate the credibility and dependability of the proposed ELM model, this paper
selected all data from the standard dataset provided by the 9th “CSEE Cup” National
Electrical Mathematical Modeling Competition for College Students [39] to verify the
validity and reliability of the proposed short-term load forecasting model. The dataset
includes the power load value of an area from 1 January 2012 to 10 January 2015, and
meteorological factor data (daily mean temperature, daily relative humidity, and daily
rainfall). Data from 1 January 2014 to 14 December 2014 were used as the training set to
train the ELM model, and then 96 samples were used as the test set from 15 December
2014 to 31 December 2014 to forecast the power system’s load. We will compare it with the
improved ELMs of six algorithms to assess the effectiveness of BDSSMA optimized ELM in
short-term load forecasting. The parameters used for the comparison will be the same as in
Section 4.3.1, with 30 populations and 1000 iterations. The performance of the models will
be evaluated using maximum relative error (MAE), root-mean-squared error (RMSE), and
mean absolute percentage error index (MAPE), as specified in Equations (35)–(37):

εMAE =
1
m∑m

i=1

∣∣pi
′ − pi

∣∣ (35)
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εRMSE =

√
1
m∑m

i=1 (p i
′ − pi

)2
(36)

εMAPE =
1
m∑m

i=1

∣∣∣∣ pi
′ − pi
pi

∣∣∣∣ · 100% (37)

where m is the number of samples; pi is the actual load value of the test set; pi
′ is the

predicted load value of the test set; and the smaller the εMAE, εRMSE, and εMAPE, the more
accurate the prediction effect of the algorithm.

The changing trend of the load prediction curve of the BDSSMA-ELM model is most
similar to the changing trend of the actual load. The result is closer to the real value
from Figures 11 and 12. However, the ELM model optimized using other classification
algorithms cannot effectively predict the specific value of load and the changing trend.
Table 7 shows the accuracy of different ELM prediction models to compare the prediction
accuracy of different models more directly.
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Table 7. Comparison of the accuracy of different ELM prediction models.

Prediction Model εMAE/KW εRMSE/KW εMAPE/%

ELM 95.701 103.875 11.4127%

BDSSMA-ELM 81.648 90.184 9.7658%

SMA-ELM 90.183 96.038 10.8011%

CESMA-ELM 88.534 94.881 10.5995%

MPA-ELM 91.815 99.391 10.9917%

DO-ELM 92.778 98.901 11.0731%

SO-ELM 91.815 99.391 10.9917%

The maximum relative error εMAE of the BDSSMA-ELM decreased by 14.053 KW,
8.535 KW, 6.886 KW, 10.167 KW, 11.130 KW, and 10.167 KW, respectively, compared with
traditional ELM, SMA-ELM, CESMA-ELM, MPA-ELM, DO-ELM, and SO-ELM prediction
models. The root-mean-squared error εMAPE decreased by 13.691 KW, 5.854 KW, 4.697 KW,
9.207 KW, 8.717 KW, and 9.207 KW, respectively. The mean absolute percentage error εMAPE
decreased by 1.6469%, 1.0353%, 0.8337%, 1.2259%, 1.3073%, and 1.2259%, respectively.
In summary, The ELM combined with BDSSMA has made some progress in prediction
accuracy. There are still two main problems to be solved. First, the improved algorithm
shows good application results on the test set. However, the load will have a certain number
of discrete points in the graph with large fluctuations in the actual power operation problem.
It will significantly impact the prediction effect of ELM. There is still a gap with the actual
value, although this error can be reduced by adding an optimization algorithm. How
to optimize the data preprocessing is a problem in the future. Secondly, the algorithm’s
running time is longer, although the improved algorithm improves the ELM prediction
accuracy and enhances the stability. Our next focus is how to strike a balance between
improving efficiency and reducing time.

6. Conclusions

This paper presents an improved BDSSMA by referring to the dandelion optimizer and
some strategies to optimize the slime mould algorithm in the exploration and exploitation
stages. (1) Different variants are selected in the initialization stage. The Bernoulli chaos
map is finally selected to increase the population diversity. (2) It is proposed to divide the
molds’ position update variable p into two stages and then mix the excellent mechanism of
stage exploration and exploitation in the dandelion optimizer, which has exceptional global
search ability so that the algorithm adopts different position update formulas at different
stages to enhance further the global search ability and local exploitation performance of
moulds. (3) The specular reflection learning strategy was introduced in the late iteration to
help further the slime mould population escape from local optimization and improve the
solution accuracy. A series of standard test function experiments show that the proposed
improved algorithm performs better than SMA, CESMA, MPA, DO, SCA, and SO in
convergence speed and accuracy. In the Wilcoxon rank sum test, BDSSMA also achieved
excellent results in a statistical sense. In the actual ELM model of power load forecasting, the
forecasting accuracy has also been improved. In this paper, the accuracy and speed of the
SMA global optimization are improved under ideal simulation test conditions. However,
the improved algorithm still has many limitations when faced with practical engineering
problems with many constraints. How to improve the stability of the improved algorithm
and how the improved algorithm can further optimize the prediction time are the directions
that should be focused on in future research.
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